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Initial eccentricity fluctuations and their relation to higher-order flow harmonics
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Monte Carlo simulations are used to compute the centrality dependence of the participant eccentricities (εn)
in Au + Au collisions for the two primary models currently employed for eccentricity estimates—the Glauber
and the factorized Kharzeev-Levin-Nardi (fKLN) models. They suggest specific testable predictions for the
magnitude and centrality dependence of the flow coefficients vn, respectively measured relative to the event
planes �n. They also indicate that the ratios of several of these coefficients may provide an additional constraint
for distinguishing between the models. Such a constraint could be important for a more precise determination of
the specific viscosity of the matter produced in heavy ion collisions.
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Collective flow continues to play a central role in ongoing
efforts to characterize the transport properties of the strongly
interacting matter produced in heavy ion collisions at the
Relativistic Heavy Ion Collider (RHIC) [1–16]. An experi-
mental manifestation of this flow is the anisotropic emission of
particles in the plane transverse to the beam direction [17,18].
This anisotropy can be characterized by the even-order Fourier
coefficients,

vn = 〈ein(φp−�RP)〉, n = 2, 4, . . . , (1)

where φp is the azimuthal angle of an emitted particle, �RP is
the azimuth of the reaction plane, and the brackets denote
averaging over particles and events [19]. Characterization
has also been made via the pairwise distribution in the
azimuthal angle difference (�φ = φ1 − φ2) between particles
[17,20,21]:

dNpairs

d�φ
∝

[
1 +

∑
n=1

2v2
n cos(n�φ)

]
. (2)

Anisotropic flow is understood to result from an asymmetric
hydrodynamiclike expansion of the medium produced by the
two colliding nuclei. That is, the spacial asymmetry of the
produced medium drives uneven pressure gradients in and
out of the reaction plane and, hence, a momentum anisotropy
of the particles is emitted about this plane. This mechanistic
picture is well supported by the observation that the measured
anisotropy for hadron pT � 2 GeV/c can be described by
relativistic hydrodynamics [5,10,12,14,15,22–31].

The differential Fourier coefficients v2(Npart) and v2(pT )
have been extensively studied in Au + Au collisions at
the RHIC [20,32–38]. One reason for this has been the
realization that these elliptic flow coefficients are sensitive
to various transport properties of the expanding hot medium
[5–7,9,11,13,23,39–41]. Indeed, considerable effort has been
and is being devoted to the quantitative extraction of the
specific shear viscosity η/s (i.e., the ratio of shear viscosity
η to entropy density s) via comparisons to viscous relativistic
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hydrodynamic simulations [9–12,14,15,30], transport model
calculations [6,13,42], and hybrid approaches that involve the
parametrization of scaling violations to ideal hydrodynamic
behavior [7,16,40,43,44]. The initial eccentricity of the colli-
sion zone and its associated fluctuations has proven to be an
essential ingredient for these extractions.

Experimental measurements of the eccentricity have not
been possible to date. Consequently, much reliance has been
placed on the theoretical estimates obtained from the overlap
geometry of the collision zone, specified by the impact param-
eter b or the number of participants Npart [31,34,43,45–52].
For these estimates, the geometric fluctuations associated with
the positions of the nucleons in the collision zone serve as the
underlying cause of the initial eccentricity fluctuations. That
is, the fluctuations of the positions of the nucleons lead to
fluctuations of the so-called participant plane (from one event
to another) which result in larger values for the eccentricities
(ε) referenced to this plane.

The magnitude of these fluctuations are, of course, model
dependent, and this leads to different predictions for the
magnitude of the eccentricity. More specifically, the ε2

values obtained from the Glauber [34,53] and the factorized
Kharzeev-Levin-Nardi (fKLN) [54,55] models (the two pri-
mary models currently employed for eccentricity estimates)
give results that differ by as much as ∼25% [56,57]—a
difference that leads to an approximate factor of 2 uncertainty
in the extracted η/s value [9,16]. Thus, a more precise
extraction of η/s requires a clever experimental technique
that can measure the eccentricity and/or the development
of experimental constraints that can facilitate the requisite
distinction between the models used to calculate eccentricity.

Recently, significant attention has been given to the study
of the influence of initial geometry fluctuations on higher-
order eccentricities εn,n�3 [30,31,47,50–52,58–60], with an
eye toward a better understanding of how such fluctuations
manifest into the harmonic flow correlations characterized
by vn (for odd and even n), and whether they can yield
constraints that could serve to pin down the “correct” model
for eccentricity determination. For the latter, the magnitudes
of εn and its detailed centrality dependence are critical.
Therefore, it is essential to resolve the substantial differences
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in the εn values reported and used by different authors
[30,31,47,50–52,58–60].

Here, we argue that the magnitudes and trends for the
eccentricities εn imply specific testable predictions for the
magnitude and centrality dependence of the flow coefficients
vn, measured relative to their respective event planes �n. We
also show that the values for εn obtained for the Glauber
[34,53] and fKLN [54,55] models indicate sizable model-
dependent differences that could manifest in experimentally
detectable differences in the centrality dependence of the ratios
v3/(v2)3/2, v4/(v2)2, and v2/vn,n�3. Such a constraint could be
important for a more precise determination of the specific
viscosity of the hot and dense matter produced in heavy ion
collisions.

I. ECCENTRICITY SIMULATIONS

Monte Carlo (MC) simulations were used to calculate
event-averaged eccentricities (denoted here as εn) in Au + Au
collisions, within the framework of the Glauber (MC-Glauber)
and fKLN (MC-KLN) models. For each event, the spatial
distribution of nucleons in the colliding nuclei were generated
according to the Woods-Saxon function:

ρ(r) = ρ0

1 + e(r−R0)/d
, (3)

where R0 = 6.38 fm is the radius of the Au nucleus and d =
0.53 fm is the diffuseness parameter.

For each collision, the values for Npart and the number of
binary collisions Ncoll were determined within the Glauber
ansatz [53]. The associated εn values were then evaluated
from the two-dimensional profile of the density of sources
in the transverse plane ρs(r⊥), using modified versions of
MC-Glauber [53] and MC-KLN [55], respectively.

For each event, we compute an event shape vector Sn and
the azimuth of the rotation angle �n for the nth harmonic of
the shape profile [47,50],

Snx ≡ Sn cos (n�n) =
∫

dr⊥ρs(r⊥)ω(r⊥) cos(nφ), (4)

Sny ≡ Sn sin (n�n) =
∫

dr⊥ρs(r⊥)ω(r⊥) sin(nφ), (5)

�n = 1

n
tan−1

(
Sny

Snx

)
, (6)

where φ is the azimuthal angle of each source and the
weights ω(r⊥) = r⊥2 and ω(r⊥) = r⊥n are used in respective
calculations. Here, it is important to note that the substantial
differences reported for εn in Refs. [30,31,47,50–52,58–60]
are largely due to the value of ω(r⊥) employed.

The eccentricities were calculated as

εn = 〈cos n(φ − �n)〉 (7)

and

ε∗
n = 〈cos n(φ − �m)〉, n �= m, (8)

where the brackets denote averaging over sources and events
belonging to a particular centrality or impact parameter range;
the starred notation is used here to distinguish the nth order

moments obtained relative to an event plane of a different order
�m.

For the MC-Glauber calculations, an additional entropy
density weight was applied reflecting the combination of
spatial coordinates of participating nucleons and binary colli-
sions [48,56]:

ρs(r⊥) ∝
[

(1 − α)

2

dNpart

d2r⊥
+ α

dNcoll

d2r⊥

]
, (9)

where α = 0.14 was constrained by multiplicity measure-
ments as a function of Npart for Au + Au collisions [61].
These procedures take account of the eccentricity fluctuations
that stem from the event-by-event misalignment between the
short axis of the “almond-shaped” collision zone and the
impact parameter. Note that εn [cf. Eq. (7)] corresponds to
vn measurements relative to the so-called participant planes
[34,53]. That is, each harmonic εn is evaluated relative to the
principal axis determined by maximizing the nth moment.
This is analogous to the measurement of vn with respect
to the nth order event-plane in actual experiments [62].
It, however, contrasts recent experimental measurements in
which a higher-order coefficient (v4) has been measured with
respect to a lower-order event plane (�2) [38,63]. Note as well
that we have established that the angles �n for the odd and
even harmonics are essentially uncorrelated for the Npart range
of interest to this study.

A. Results for ω(r⊥) = r⊥2 and ω(r⊥) = r⊥n

Figure 1 shows a comparison of εn,n�6 vs Npart for
ω(r⊥) = r⊥2, for MC-Glauber (a) and MC-KLN (b) models
for Au + Au collisions. The solid and open symbols indicate
the results for the even and odd harmonics, respectively. For
this weighting scheme, εn is essentially the same for n � 3

FIG. 1. (Color online) Calculated values of εn,n�6 vs Npart for
ω(r⊥) = r⊥2 for MC-Glauber (a) and MC-KLN (b) for Au + Au
collisions. The open and solid symbols indicate the results for odd
and even harmonics, respectively.
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FIG. 2. (Color online) Same as Fig. 1 for ω(r⊥) = r⊥n.

and has magnitudes which are significantly less than that
for ε2, except in very central collisions where the effects
of fluctuation dominate the magnitude of εn,n�2. Note the
approximate 1/

√
(Npart) dependence for εn,n�3. The smaller

magnitudes for εn,n�3 (with larger spread) apparent in Fig. 1(b)
can be attributed to the sharper transverse density distributions
for MC-KLN.

Figure 2 shows a similar comparison of εn,n�6 vs
Npart for calculations performed with the weight ω(r⊥) =
r⊥n. This weighting results in an increase in the sensi-
tivity to the outer regions of the transverse density dis-
tributions. Consequently, the overall magnitudes for εn,n�3

are larger than those shown in Fig. 1. This weight-
ing also leads to a striking difference in the relative
magnitudes of εn,n�2 for MC-Glauber (a), MC-KLN (b),
and the results for ω(r⊥) = r⊥2 shown in Fig. 1.

II. ECCENTRICITY RATIOS

The magnitudes and trends of the calculated eccentricities
shown in Figs. 1 and 2 are expected to influence the measured
values of vn. To estimate this influence, we first assume that the
resulting anisotropic flow is directly proportional to the initial
eccentricity, as predicted by perfect fluid hydrodynamics.
Here, our tacit assumption is that a possible influence from
the effects of a finite viscosity (η/s) is small because current
estimates indicate that η/s is small [4,6,7,9–16,30,40,43,44]—
of the same magnitude as for the conjectured lower bound
η/s = 1/4π , by Kovtun, Son and Starinets [64].

Figure 1 indicates specific testable predictions for the
relative influence of εn,n�2 on the magnitudes of vn,n�2.
That is, (i) ε2 should have a greater influence than εn,n�3 in
noncentral collisions, (ii) the respective influence of εn,n�3

on the values for vn,n�3 should be similar irrespective of
centrality, and (iii) the ratios v4,5,6/v3 should follow a specific
centrality dependence due to the influence of ε4,5,6/ε3. Such

FIG. 3. (Color online) Comparison of ε2,4,5/ε3 vs Npart for
Au + Au collisions. Results are shown for MC-Glauber (a) and
MC-KLN (b) calculations.

a dependence is illustrated in Fig. 3, where we show the
centrality dependence of the ratios ε2,4,5/ε3, obtained for
MC-Glauber (a) and MC-KLN (b) calculations. They suggest
that, if MC-Glauber-like eccentricities, with weight ω(r⊥) =
r⊥2, are the relevant eccentricities for Au + Au collisions, then
the measured ratio v2/v3 should increase by a factor of ≈2,
from central to midcentral collisions (Npart ∼ 350–150). For
Npart � 150, Fig. 2(a) shows that the ratio v2/v3 could even
show a modest decrease. The eccentricity ratios involving the
higher harmonics suggest that, if they are valid, the measured
values of v4,5,6/v3 should show little, if any, dependence on
centrality, irrespective of their magnitudes.

The ratios ε2,4,5/ε3 obtained for MC-KLN calculations are
shown in Fig. 3(b). While they indicate qualitative trends
which are similar to the ones observed in Fig. 3(a), their
magnitudes and their detailed dependence on centrality are
different. Therefore, if the qualitative trends discussed earlier
were indeed found in the data, then these differences suggest
that precision measurements of the centrality dependence of
the relative ratios for v2/v3, v4/v3, v5/v3, . . . for several
pT selections, could provide a constraint for aiding the dis-
tinction between fKLN-like and Glauber-like initial collision
geometries. Specifically, smaller (larger) values of the relative
ratios are to be expected for v2/v3 and v4/v3 for Glauber-like
(fKLN-like) initial geometries. Note the differences in the
expected centrality dependencies as well.

Figure 4 compares the eccentricity ratios ε2,4,5/ε3 obtained
for the MC-Glauber (a) and MC-KLN (b) calculations with
the weight ω(r⊥) = r⊥n. The magnitudes of these ratios and
their centrality dependencies are distinct for the MC-Glaber
and MC-KLN calculations. They are also quite different
from the ratios shown in Fig. 3. This suggests that precision
measurements of the centrality dependence of the relative
ratios v2/v3, v4/v3, v5/v3, . . . (for several pT selections)
should not only allow a clear distinction between MC-Glauber

044902-3



ROY A. LACEY et al. PHYSICAL REVIEW C 83, 044902 (2011)

FIG. 4. (Color online) Same as Fig. 3 for ω(r⊥) = r⊥n.

and MC-KLN initial geometries but also a distinction between
the ω(r⊥) = r⊥2 and ω(r⊥) = r⊥n weighting methods.

A finite viscosity will influence the magnitudes of vn. Thus,
for a given pT selection, the measured ratios for v2/v3, v4/v3,
v5/v3, . . . will be different from the eccentricity ratios shown in
Figs. 3 and 4. Note as well that, even for ideal hydrodynamics,
the predicted magnitude of v4/ε4 is only a half of that for v2/ε2

[59]. Nonetheless, the rather distinct centrality-dependent
eccentricity patterns exhibited in Figs. 3 and 4 suggest that
measurements of the ratios of these flow harmonics should
still allow a distinction between MC-Glauber and MC-KLN
initial geometries, as well as a distinction between the two
weighting methods.

FIG. 5. (Color online) Comparison of ε3/(ε2)3/2 vs Npart (a) and
ε4/(ε2)2 vs Npart (b) for MC-Glauber and MC-KLN initial geometries
(as indicated) for Au + Au collisions.

FIG. 6. (Color online) Same as Fig. 5 for ω(r⊥) = r⊥n.

The ratios v3/(v2)3/2 and v4/(v2)2 have been recently found
to scale with pT [65], suggesting a reduction in the influence
of viscosity on them. Thus, the measured ratios vn/(v2)n/2

could give a more direct indication of the centrality-dependent
influence of εn/(ε2)n/2 on vn/(v2)n/2. The open symbols in
Figs. 5 and 6 indicate a substantial difference between the
ratios ε3/(ε2)3/2 (a) and ε4/(ε2)2 (b) for the MC-Glauber and
MC-KLN geometries as indicated. Note as well that the ratios
in Fig. 6 are substantially larger than those in Fig. 5. The
latter difference reflects the different weighting schemes used,
i.e., ω(r⊥) = r⊥n and ω(r⊥) = r⊥2, respectively. Interestingly,
the ratios for ε4/(ε2)2 imply much larger measured ratios
for v4/(v2)2 than the value of 0.5 predicted by perfect fluid
hydrodynamics (without fluctuations) [66,67]. However, they
show qualitative trends that are similar to those for the
measured ratios v4/(v2)2, obtained for v4 evaluations relative
to the �2 plane [38,63]. The relatively steep rise of the ratios in
Figs. 5 and 6 (albeit steeper for MC-Glauber) can be attributed
to the larger influence that fluctuations have on the higher
harmonics. Note that these are the same fluctuations that give
rise to the “anomalously low” values of ε4 evaluated with
respect to �2 in central collisions [50].

Figures 3–6 suggest that measurements of the centrality
dependence of the ratios v3/(v2)3/2 and v4/(v2)2, in conjunc-
tion with those for v2/v3, v4/v3, v5/v3 . . . , may provide a
robust constraint for the role of initial eccentricity fluctua-
tions, as well as an additional handle for making a distinc-
tion between Glauber-like and fKLN-like initial geometries.
These measurements could also lend insight, as well as place
important constraints for the degree to which a small value
of η/s and/or the effects of thermal smearing modulate the
higher order flow harmonics [compared to v2] as has been
suggested [31,52,60].

III. SUMMARY

In summary, we have presented results for the initial eccen-
tricities εn,n�6 for Au + Au collisions with different weighting
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schemes for the two primary models currently employed for
eccentricity estimates at the RHIC. The calculated values of
εn,n�6, which are expected to influence the measured flow
harmonics vn, suggest that measurements of the centrality
dependence of v2/(v3), v4/v3, v3/(v2)3/2, v4/(v2)2, etc. could
provide stringent constraints for validating the predicted
influence of eccentricity fluctuations on vn, as well as an
important additional handle for making a distinction between
Glauber-like and fKLN-like initial geometries. Measurements

of vn and their ratios are now required to exploit these simple
tests.
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