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We compute the bulk viscosity of a gas of pions at temperatures below the QCD crossover temperature, for
the physical value of mπ , to lowest order in chiral perturbation theory. Bulk viscosity is controlled by number-
changing processes which become exponentially slow at low temperatures when the pions become exponentially
dilute, leading to an exponentially large bulk viscosity ζ ∼ (F 8

0 /m5
π ) exp(2mπ/T ), where F0 � 93 MeV is the

pion decay constant.
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I. INTRODUCTION

One of the most prominent discoveries of the heavy ion
program at the BNL Relativistic Heavy Ion Collider (RHIC)
has been the success of hydrodynamics [1] with a zero [2] or
very small [3] viscosity. Though the exact value of the viscosity
cannot yet be extracted due to uncertainties in the initial state
and other effects, it is a robust result that the viscosity near the
QCD crossover temperature is small, η/s < 0.5 [3]. On the
other hand, perturbative calculations show that the viscosity
to entropy ratio η/s at high temperatures T � 1 GeV, where
perturbation theory should work, is significantly higher [4].
Both theoretical [5] and data-driven [6] analyses of the pion
gas indicate that η/s also rises at low temperatures, suggesting
that the relative viscosity bottoms out near the crossover [7],
similar to the behavior in conventional fluids [8].

The bulk viscosity is also expected to be important in the
hydrodynamics of heavy ion collisions [9]. Bulk viscosity
vanishes for a conformal system, a good approximation to
QCD at high temperatures; therefore the bulk viscosity to
entropy ratio ζ/s is small at high temperatures [10]. Near
the crossover temperature, QCD is very far from conformal,
as indicated by the peak in (ε − 3P )/T 4 [11,12], and it is
expected that ζ/s may display a peak at this scale [13,14].
At lower temperatures, QCD is well described by a pion gas.
Existing studies of pion gases indicate that the bulk viscosity
falls away at low temperatures [5,6]. This suggests that the
ratio ζ/s shows the opposite behavior of η/s, peaking near the
transition and falling off to either side [15].

However, previous analyses of the bulk viscosity of a pion
gas have been very incomplete. In particular, neither standard
reference [5,6] considers number-changing processes. But
such processes are essential to the relaxation of particle number
to equilibrium and frequently control the bulk viscosity, as
emphasized by Jeon [16]. Therefore we believe that what the
calculations in the literature were computing was not really
the bulk viscosity of a pion gas, but rather the constant for
a relaxation process which treated kinetic but not chemical
equilibration. To make a fair comparison with the calculations
of ζ/s at higher temperatures, one should compute the true
bulk viscosity of a pion gas at low temperatures. When the
bulk viscosity calculated in this way becomes large, it indicates
that the pion gas will lose chemical equilibrium, a physically
interesting property.

In this paper, we will provide a calculation of the bulk
viscosity of a pion gas, including the relaxation via number-
changing reactions to chemical equilibrium. We will work
to lowest nontrivial order in chiral perturbation theory, the
effective theory of low energy pions. That is, we will make an
expansion to lowest order in mπ/4πF0 and T/4πF0, treating
T/mπ as a free parameter of order 1. (Here F0 is the pion
decay constant, mπ is the pion mass treating the π0 and π± as
degenerate, and T is the temperature as usual.) Our treatment
is therefore only valid at temperature scales low enough that
there are almost no resonances (such as ρ mesons) and few
kaons relative to pions; we will not try to extrapolate close to
the crossover temperature.

In the next section of the paper, we will review the
physics of bulk viscosity in a gas of relativistic, massive,
weakly coupled bosons, emphasizing the role played by
number-changing processes. We show that the bulk viscosity
is controlled by mπ/T and by the rate of number-changing
processes. In Sec. III we present the calculation of the
number-changing rate within chiral perturbation theory. Our
numerical results and conclusions are presented in Sec. IV,
but can be summarized here. We find that, as temperature
falls, number-changing processes become less efficient and
the bulk viscosity actually grows, scaling as ζ/s ∼ F 8

0 T −8 for
T ∼ mπ and ζ/s ∼ F 8

0 T −1/2m
−15/2
π exp(3mπ/T ) for mπ �

T . Therefore the behavior of bulk viscosity is not the opposite
of the behavior of shear viscosity, and in particular both the
bulk viscosity to entropy ratio and the bulk viscosity itself
diverge exponentially in the low temperature limit.

II. KINETIC DESCRIPTION OF BULK VISCOSITY

By definition, bulk viscosity ζ is a reduction of the
pressure in an expanding system, and an increase in pressure
in a contracting system, proportional to the rate of volume
change,1

P = Peq − ζ∇ · v = Peq − ζ
dV/dt

V
. (2.1)

1When we write noncovariantly, we implicitly work in the instanta-
neous local rest frame. We use boldface p, v for vectors and normal
letters p, v for their magnitudes; P is always the pressure.
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This arises because the volume change induces a departure
from equilibrium, which in turn modifies the pressure. To see
how this occurs for a pion gas, we need to describe the system
in terms of a calculable approximation scheme. Since physical
QCD is near the chiral limit, the pion is a pseudo-Goldstone
boson of the (spontaneously but also explicitly broken) chiral
symmetry, and pions are therefore weakly coupled at low
momenta and well described by chiral perturbation theory (see,
for instance, Refs. [17,18]). Weak coupling means that thermal
pions will have well-defined quasiparticles which will be well
described by Boltzmann equations. Defining the species sum
and integration ∫

a p
≡

∑
a

∫
d3 p

(2π )32E p
, (2.2)

the pressure is related to the occupancy of species a at
momentum p, fa( p), via

P = 1

3

∫
a p

2p2fa( p) . (2.3)

fa( p) in turn evolves according to the Boltzmann equation

2E p
∂fa( p, t)

∂t
+ 2 p · ∂fa( p, t)

∂x
= −C[f ] = −Celastic[f ] − Cinel[f ] , (2.4)

with C[f ] the collision operator, which we discuss in more
detail below.

The left-hand side of the Boltzmann equation drives the
system from equilibrium. Since the bulk viscosity involves
one space-time gradient, we can find it by expanding the
Boltzmann equation to first order in gradients; since the
left-hand side is explicitly first order in gradients, we may
substitute fa( p, t) with its equilibrium form

f0 =
(

exp

[
E p − v · p

T

]
− 1

)−1

. (2.5)

We take the energy to be E = √
p2 + m2

π , meaning that we
will neglect interaction self-energy corrections in comparison
to the explicit pion mass. Clearly this treatment does not
allow us to consider QCD in the strict chiral symmetry limit,
where interaction effects are the only thing which lead to
modified dispersion. It would be interesting to return to this
case in the future, but we expect it to be rather subtle; for
instance, the lowest order interaction effect actually does not
change the dispersion relation [19,20], and the next order only
shifts the speed of propagation away from the speed of light
[19,21], which we believe also does not lead to nonvanishing
bulk viscosity. Therefore interaction effects appear to arise
at a rather high order in (T/4πF0)2. Therefore interaction
effects can be neglected for T <∼ mπ , which is what we are
considering. In this case, explicitly evaluating the left-hand
side of the Boltzmann equation yields

2E p
∂fa( p, t)

∂t
+ 2 p · ∂fa( p, t)

∂ p

= 2f0(1+f0)

(
E2

T 2

dT

dt
+ pipj

T
∂ivj

)
. (2.6)

We are interested in the case ∂ivj = 1
3δij∇ · v. The tempera-

ture changes with time because expansion causes cooling; at
first order in gradients, the time dependence of the temperature
has its usual equilibrium relation to ∇ · v, dT /dt =
−c2

s T ∇ · v with c2
s ≡ dP/dε the squared speed of sound [10].

Therefore the left-hand side of the Boltzmann equation is

2f0(1+f0)
p2 − 3c2

s E
2

3T
∇ · v . (2.7)

This “source” for departure from equilibrium has no net
energy content. To see this, note that

P =
∫

a p

2p2

3
f0( p) , ε =

∫
a p

2E2
pf0( p) , (2.8)

c2
s = dP

dε
= dP/dT

dε/dT
=

∫
a p

2p2

3
E
T 2 f0(1+f0)∫

a p 2E2 E
T 2 f0(1+f0)

, (2.9)

and therefore∫
a p

E f0(1+f0)
2p2

3T
= c2

s

∫
a p

E f0(1+f0)
2E2

T
, (2.10)

which shows that there is no energy content for the source for
departure from equilibrium. That this occurs is just a check
that we have correctly identified the time dependence of the
temperature. However, the source does carry a net particle
number, namely,

dn

dt

∣∣∣∣
LHS

=
∫

a p
f0(1+f0)2

p2 − 3c2
s E

2

3T
∇ · v �= 0. (2.11)

This means that expansion leaves excess pions, relative to the
equilibrium number at the given energy density. The relaxation
of this excess particle number controls equilibration and bulk
viscosity.

Next we turn to the collision term. At lowest (fourth) order
in T ,mπ

4πF0
, the collision term contains only elastic ππ ↔ ππ

scattering. Such terms drive fa( p) toward its equilibrium form
except that they cannot change total particle number. That
is, there is no solution to the linearized Boltzmann equation
with Eq. (2.7) on the left-hand side and only ππ ↔ ππ

collision processes on the right-hand side, since the left-hand
side includes a change to the net particle number, while the
right-hand side cannot change particle number. Therefore a
calculation involving only number-conserving processes is
incomplete and inconsistent, as emphasized by Jeon [16]
in the context of scalar λφ4 theory.2 Therefore we must
include as well the lowest order number-changing process.
Since QCD is parity symmetric but the pion is a parity-odd

2Nevertheless the two previous references on bulk viscosity in a
pion gas treated only elastic processes. Ref. [6] got a finite answer
by using the methodology developed in Ref. [22], which assumes
particle number is conserved and therefore allows a nonzero chemical
potential in the equilibrium distribution function. Ref. [5] got a
finite answer by doing a one-loop diagrammatic evaluation without
“ladder” graphs, which amounts to neglecting the departure from
equilibrium in all f ’s other than f ( p) in the Boltzmann equation.
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scalar, all interaction terms are even in the pion field, and the
lowest order kinematically allowed number-changing process
is ππ ↔ ππππ .

At this point there is a simplification. As in the case of
scalar λφ4 theory [16] (but unlike the case of weakly coupled
QCD [10]), number-changing processes are much less efficient
than number-conserving processes in a pion gas. Number-
conserving processes drive the nonequilibrium distribution
function f ( p) = f0 + δf toward an almost-equilibrium form,

but with a chemical potential for particle number,

f a
µ ( p) ≡

(
exp

E − µa − p · v

T + δT
− 1

)−1

. (2.12)

Here δT is determined by the condition that the energy content
of fµ is the same as the energy content of f0. But number-
conserving processes cannot lead to the relaxation of µ toward
zero, because the elastic collision term vanishes if f ( p) =
fµ( p):

0 = −Celastic[fµ] = 1

2!

∫
b p′,ckdk′

|Mab,cd

p p′→kk′ |2(2π )4δ4(pµ + p′µ − kµ − k′µ)

× (
f a

µ ( p)f b
µ ( p′)

[
1+f c

µ(k)
][

1+f d
µ (k′)

] − [f ↔ (1+f )]
)
, (2.13)

because the gain term ∝ f ( p) and the loss term ∝ [1+f ( p)] cancel. Therefore f ( p) will equal fµ( p) plus a small correction.
The value of µ will dominate the pressure shift.

We cannot make the substitution f ( p) = fµ( p) in the elastic part of the collision operator. But if we consider the integral
∫
a p

of Eq. (2.4), then the integral over Celastic exactly vanishes, independent of the form of f ( p). We can approximate f ( p) = fµ( p)
in the smaller inelastic part of C, yielding

∇ · v

∫
a p

f0(1+f0)
p2 − 3c2

s E
2
p

3T
=

∫
a p

(−Cinel[f
a]) ≡ −Cinel . (2.14)

There are two contributions to this collision term. One contribution arises when p = p1 is one of the four pions,

C4→2
inel = 1

3!2!

∫
a p1b p2c p3d p4,ek1f k2

∣∣Mabcd,ef

p1 p2 p3 p4→k1 k2

∣∣2
(2π )4δ4

( ∑
i=1..4

p
µ

i −
∑
i=1,2

k
µ

i

)

×(
f a

µ ( p1)f b
µ ( p2)f c

µ( p3)f d
µ ( p4)

[
1+f e

µ(k1)
][

1+f f
µ (k2)

] − [f ↔ (1 + f )]
)
. (2.15)

The other contribution, C2→4
inel , arises when p = k1 is one of the two pions. It is the same except 1

3!2! is replaced with − 1
4!1! , so it

cancels half of the above contribution. (These prefactors are symmetry factors to eliminate overcounting; for instance, if b, c, d

are identical, then only 1/3! of the phase space should be integrated over; and if b, c, d are all distinct, then the sum
∑

bcd over
counts the possibilities by a factor of 3!. The sign difference arises from the relative sign between gain and loss terms.)

Next we expand f a
µ ( p) to first order in µ, δT :

f a
µ ( p) � f0( p) + f0( p)[1+f0( p)]

(
µ

T
+ EδT

T 2

)
. (2.16)

Inserting in Eq. (2.15) and expanding to first order in µ, δT , the distribution functions become

f0( p1)f0( p2)f0( p3)f0( p4)[1+f0(k1)][1+f0(k2)]

[
(4 − 2)

µ

T
+

(∑
E p −

∑
Ek

) δT

T 2

]
. (2.17)

The sum of energies cancels by energy conservation, leaving

Cinel[fµ] = 2(2µ)

T

1

4!2!

∫
a p1b p2c p3d p4,ek1f k2

∣∣Mabcd,ef

p1 p2 p3 p4→k1 k2

∣∣2
(2π )4δ4

( ∑
l=1..4

p
µ

l −
∑
l=1,2

k
µ

l

)

×(
f0( p1)f0( p2)f0( p3)f0( p4)[1+f0(k1)][1+f0(k2)]

)
, (2.18)

which determines µ. The value of µ in turn determines the
pressure correction,

P − Peq =
∫

a p

2p2

3
f0( p)[1+f0( p)]

(
µ

T
+ EδT

T 2

)
. (2.19)

Recall that δT is set by the condition that the perturbation
carry no net energy, which using Eq. (2.16) is

δT

∫
a p

f0(1+f0)
2E3

T 2
= −µ

∫
a p

f0(1+f0)
2E2

T
. (2.20)
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Combining this with Eq. (2.10), we find

P − Peq = µ

∫
a p

f0(1+f0)2
p2 − 3c2

s E
2

3T
. (2.21)

Putting everything together with the definition in Eq. (2.1), we
find

ζ =
T

(∫
a p f0(1+f0)2p2−3c2

s E
2

3T

)2

4Ĉinel
, (2.22)

Ĉinel = 1

4!2!

∫
a p1b p2c p3d p4,ek1f k2

∣∣Mabcd,ef

p1 p2 p3 p4→k1 k2

∣∣2

× (2π )4δ4

( ∑
i=1..4

p
µ

i −
∑
i=1,2

k
µ

i

)

×(f0( p1)f0( p2)f0( p3)f0( p4)[1+f0(k1)][1+f0(k2)]) .

(2.23)

The integration in the numerator is elementary, so evaluating
the denominator will be our main challenge.

Using the technique developed in Refs. [4,10,23], we would
arrive at the same result by using the single parameter Ansatz
for the departure from equilibrium shown in Eq. (2.16). In
the notation used there, each term in the numerator is S̃

and the denominator is C̃. The factor of 4 is essentially
(µ + µ + µ + µ − µ − µ)2/µ2 and can be understood as
follows: each number-changing collision changes particle
number by 2 (one factor of 2), and a chemical potential makes
the forward process faster than the backward process by 2µ/T

(the other factor of 2).

III. CHIRAL PERTURBATION THEORY

Quantum chromodynamics is considered as the fundamen-
tal theory for describing strong interactions between quarks
and gluons. However, at energies below the breaking scale
of chiral symmetry, quarks and gluons are confined within
the asymptotic hadron states, such as pions, kaons, and η

mesons. In this energy regime, the QCD coupling constant
becomes so large that the theory is highly nonperturbative
and we still lack an analytical method to solve it. However,
the situation gets better if we write an effective field theory
describing the meson states. It is an experimental fact that,
at sufficiently low energies, the light mesons interact weakly
with each other, with the strength of interactions controlled by a
derivative expansion which is described by chiral perturbation
theory [18,24], an effective theory for the interactions of light
pseudoscalar mesons.

In the chiral limit, the QCD Lagrangian possesses an
SU(N )L × SU(N )R × U(1)V global symmetry. Here N de-
notes the number of flavors. The axial symmetry U(1)A of
the QCD Lagrangian, present at the classical level, is broken
due to a quantum anomaly. Experimental facts, such as the
hadron spectrum and quark condensate, indicate that the
SU(N )L × SU(N )R × U(1)V spontaneously breaks down into
SU(N )V × U(1)V . According to Goldstone’s theorem, in this
process, massless Goldstone bosons, which are identified with
the pseudoscalar mesons, are generated. Since we are dealing

with a pure pion gas, we only focus on the case that N = 2, that
is, only up and down quarks are of concern in our discussion.

In this specific case, the three kinds of pions are considered
as the Goldstone bosons, and they transform as a triplet
under the subgroup SUV (2). Moreover, pion fields, the three-
component vector 

 = (φ1, φ2, φ3), are isomorphic to the
quotient group SU(2)L × SU(2)R/SU(2)V .

In the chiral limit, one can, in terms of pion fields 

 =
(φ1, φ2, φ3), construct the general Lagrangian invariant under
SU(2)L × SU(2)R × U(1)V , with the ground state invariant
only under the subgroup SU(2)V × U(1)V . But in fact, instead
of being massless, pions have small but finite masses around
135 MeV. This is because chiral symmetry is not an exact one.
It is broken by a small amount due to the nonvanishing masses
of up and down quarks. In order to give masses to pions, one
also needs to add an explicit symmetry-breaking term into the
Lagrangian, which is treated as a small perturbation.

The general effective Lagrangian can be organized by chiral
order,

Leff = L2 + L4 + L6 + · · · ,
where the subscripts indicate the chiral order. L2 with
the smallest chiral order contains the minimum number of
derivatives and quark mass terms. It reads [18]

L2 = −F 2
0

4
Tr(∂µU∂µU †) + F 2

0 m2
π

4
Tr(U + U †) . (3.1)

Here

U = exp

(
i

τ · 


F0

)
= exp

[
i
φ (x)

F0

]
, (3.2)

φ (x) =
(

φ3 φ1 − iφ2

φ1 + iφ2 −φ3

)
=

(
π0

√
2π+√

2π− −π0

)
, (3.3)

where F0 ≈ 93 MeV is the pion decay constant and 
τ are the
three Pauli matrices.

The matrix element for elastic scattering is well known
in chiral perturbation theory [18] and does not concern us,
since Eq. (2.22) shows that the bulk viscosity is controlled
by number-changing processes. We need the matrix element
for 4π → 2π processes. Three classes of diagrams can arise,
as depicted in Fig. 1. For each class, we must sum over the
distinct permutations of the external lines.

Expanding L2, one can find the corresponding matrix
elements. For the representative permutations shown in Fig. 1,
the matrix elements read (here for simplicity of writing down
the matrix elements, all the four-momenta are viewed as
incoming)

M1 =
∑

g=1,2,3

V (a, b, e, g)
−i

p2
g + m2

π

V (c, d, f, g) , (3.4)

M2 =
∑

g=1,2,3

V (a, b, c, g)
−i

p2
g + m2

π

V (d, e, f, g) , (3.5)

M3 = i

9F 4
0

δabδcdδef
[
4(pa · pb + pc · pd + pe · pf )−3m2

π

]
+ all distinct pairings of the set {a, b, c, d, e, f } ,

(3.6)
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πa

πb

πc

πd
πf

πe

πg

πa

πb

πc

πd

πe

πf

πg2
2

2

2

πa

πb

πc

πd

πe

πf

2

FIG. 1. Three classes of diagrams needed to evaluate the inelastic scattering rate to lowest order in chiral perturbation theory. Here,
subscripts a–f are the Cartesian isospin indices, and the number “2” in a circle denotes the chiral order of the vertex.

where
∑

g=1,2,3
is a sum over the species type in the propagator,

pg is the four-momentum of the propagator, and

V (α, β, γ, g) = (
i/3F 2

0

) [
δαgδβγ

(
2pα · pβ + 2pα · pγ

− 4pβ · pγ + m2
π

) + δβgδαγ
(
2pα · pβ

+ 2pβ · pγ − 4pα · pγ + m2
π

)
+ δγgδαβ

(
2pα · pγ + 2pβ · pγ

− 4pα · pβ + m2
π

)]
. (3.7)

Therefore, the transition amplitude of the lowest order in
question is

|M|2 =
∣∣∣∣∣
∑
perm

M1 +
∑
perm

M2 + M3

∣∣∣∣∣
2

, (3.8)

where
∑

perm
means a sum is taken over all distinct permutations

of the external lines.
This transition amplitude has a very complicated form, so

we cannot finish the integral Ĉinel analytically. Therefore, we
resort to numerical methods. For the numerical calculation,
we work in the local plasma rest frame; that is, the rest-frame
four-velocity is uµ = (1, 0, 0, 0). The distribution function
in this frame is just f0( 
p) = [exp(Ep) − 1]−1. The main
challenge is to perform the phase-space integration over six
external states. We consider the process as 4π → 2π , that
is four incoming particles and two outgoing particles. We
perform unconstrained integrations over the four incoming
particle momenta in spherical coordinates with pa as the
z axis and pb lying in the xz plane,∫

d3 pa d3 pb d3 pd d3 pe

(2π )12 16EaEbEcEd

= 1

8 (2π )10

∫
p2

a dpa

Ea

p2
b dpb dθb

Eb

p2
b dpb d�c

Ec

p2
b dpb d�d

Ed

,

(3.9)

and then apply the energy-momentum conserving delta func-
tion to simplify the two-particle final phase-space integration
in the manner shown in Refs. [25,26]. The final state phase
space can be rewritten as∫

d3 pe d3 pf

(2π )6 4EeEf

δ4(pa + pb + pc + pd − pe − pf )

=
√

1 − 4m2/s

29π6

∫
d�∗, (3.10)

where �∗ is defined in the center-of-mass frame of the
total incoming momentum kµ = p

µ
a + p

µ

b + p
µ
c + p

µ

d , and
s = −k2 is the Mandelstam variable. In the c.m. frame, it
is most convenient to work in spherical coordinates, with the z

axis chosen along the boost axis to the plasma rest frame. All
dot products between incoming momenta are easily expressed
in terms of the plasma frame variables, as is the Mandelstam
variable s. For final state particle energies and dot products
between an incoming and an outgoing momentum, we need to
apply the boost between c.m. and plasma frame variables. An
alternative approach is to consider the process 2π → 4π and
apply the energy-momentum conserving delta function on the
four-particle final state phase space as shown in Refs. [25,26];
but this approach is a little more involved. The resulting
11-dimensional integrations are performed by Monte Carlo
integration using CUBA [27].

We determine the pressure, speed of sound, and numerator
of Eq. (2.22) by performing the integrals in Eqs. (2.8), (2.9),
and (2.22) numerically. It has become customary to compare
viscosities with the entropy density s = ∂P/∂T , which has
the same units as ζ . Differentiating Eq. (2.8),

s =
∫

a p

2Ep2

3T 2
f0(1+f0), (3.11)

which we also handle numerically.

IV. RESULTS AND DISCUSSION

The results of numerical calculation of the bulk viscosity
are shown in the Table I and Fig. 2. The most obvious feature of
the bulk viscosity is that ζ and ζ/s both rise as the temperature
is lowered. This is the same behavior as the shear viscosity,
in contrast to the high temperature regime, T � �QCD, where
η/s rises but ζ/s falls with rising temperature.

We can understand the rising behavior of ζ/s with lower
temperature, for T ∼ mπ , as follows. First, the strength of
conformal symmetry breaking depends on mπ/T , which gets
larger as T gets smaller. Second, as the temperature gets
lower, the typical momentum scale for pions gets lower.
Since pions are pseudo-Goldstone bosons, they interact mostly
through high-derivative interactions, which get weaker as
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TABLE I. Values of ζ and s at certain temperatures.

T (MeV) 10 20 30 40 50 60 70

ζ (GeV3) 3.6 × 1011 2.1 × 105 9.3 × 102 3.9 × 101 4.1 × 100 7.0 × 10−1 1.6 × 10−1

s (GeV3) 2.4 × 10−10 3.9 × 10−7 5.8 × 10−6 2.7 × 10−5 7.4 × 10−5 1.6 × 10−4 2.9 × 10−4

T (MeV) 80 90 100 110 120 130 140

ζ (GeV3) 4.7 × 10−2 1.6 × 10−2 5.9 × 10−3 2.4 × 10−3 1.1 × 10−3 5.2 × 10−4 2.6 × 10−4

s (GeV3) 4.7 × 10−4 7.1 × 10−4 1.0 × 10−3 1.4 × 10−3 1.9 × 10−3 2.5 × 10−3 3.2 × 10−3

the energy scale is lowered. Therefore the system remains
out of equilibrium longer, leading to higher viscosities.
This last effect becomes very important when T � mπ .
In this case the density of pions falls exponentially, n ∼
(mπT )3/2 exp(−mπ/T ). The probability to have four pions in
one place at one time, to participate in a number-changing
collision, is therefore exponentially small,3 so the rate of
number-changing processes is exponentially suppressed and
the bulk viscosity becomes exponentially large. This behavior
was pointed out in the context of scalar field theory by
Jeon [16].

In the low temperature limit T � mπ , the behavior of the
bulk viscosity can be calculated analytically. In this regime the
distribution function for incoming pions is well approximated
by the nonrelativistic form f0(p) � e−m/T e−p2/2mπ T . The
typical value of the momentum p is p ∼ √

mπT � mπ ,
which greatly simplifies both the initial particle phase space
and the matrix element. For the purposes of evaluating the
matrix element M4→2, at leading order we can make the
approximation that

pa = pb = pc = pd = (m, 
0), pe = (2m,
√

3 
m),

pf = (2m,−
√

3 
m) . (4.1)

Under this approximation the summation of the matrix element
over species can be found in closed form:

∑
a,b,c,d,e,f |M|2 ∼

2025m4
π/2F 8

0 . Factoring it out of the integral, and approx-
imating s ∼ 16m2, the remaining angular integrations can
be performed easily. Then the phase-space integral in Ĉinel

3Or for the inverse process, the probability to have two pions with
enough energy to generate four pions is exponentially small.
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FIG. 2. Numerical calculation of bulk viscosity ζ and the bulk
viscosity to entropy ratio ζ/s.

reduces to∫
d3 pa d3 pb d3 pc d3 pd d3 pe d3 pf

(2π )1864EaEbEcEdEeEf

× (2π )4 δ4(pa + pb + pc + pd − pe − pf )

×f0(pa)f0(pb)f0(pc)f0(pd )[1+f0(pe)][1+f0(pf )] (4.2)

�
√

3

4096π9m4
π

∫
p2

a dpap
2
b dpbp

2
c dpcp

2
d dpd

× e−4mπ /T e−(p2
a+p2

b+p2
c+p2

d )/2mπ T

=
√

3m2
πT 6e−4mπ /T

16384π7
.

We also need to carry out the integral in Eq. (2.22), which
includes determining the speed of sound from Eq. (2.10).
Here there is a subtlety: if we compute c2

s to lowest order
and put it in Eq. (2.22), again computing in the nonrelativistic
approximation, we get zero. Both equations must be expanded
to second order in T/mπ , yielding

c2
s = T

mπ

− T 2

2m2
π

+ O
(
T 3/m3

π

)
, (4.3)

∫
a p

f0(1+f0)2
p2 − 3c2

s E
2

3T
= exp(−mπ/T )

×
(

−3
m

1/2
π T 5/2

(2π )3/2
+ O(T 7/2m−1/2

π )

)
, (4.4)

where the factor of 3 counts the number of pion species.
Combining these results, the low temperature limit of the bulk
viscosity is

ζ (T � m) � 16384
√

3π4

225

F 8
0

m5
π

exp

(
2mπ

T

)
,

(4.5)

ζ

s
(T � m) � 32768

√
6π

11
2 F 8

0

675m
15
2

π T
1
2

exp

(
3mπ

T

)
,

where we used the leading-order behavior of Eq. (3.11), s �
[3m

5/2
π T 1/2/(2π )3/2] exp(−mπ/T ). These low temperature

asymptotics are consistent with our numerical results.
We should emphasize that at temperatures such that the

bulk viscosity is very large, ζ∇ · u >∼ P , the near-equilibrium
expansion implicit in defining and using ζ has broken down.
When this occurs, the system in question has fallen out of
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chemical equilibrium; in fact, ζ∇ · u > P can be taken as
a criterion for the breakdown of chemical equilibrium and
the freezing out of number-changing processes. And when ζ

becomes exponentially large, the approximation that we treat
QCD without including electromagnetic interactions ceases to
be valid. At low temperatures the dominant number-changing
process would actually be π0 → 2γ (and its crossings). We
will not consider this extension here.

In conclusion, we have computed the bulk viscosity of
a pion gas, the natural low-temperature limit of QCD. We
find that the bulk viscosity rises at low temperatures, growing

exponentially as ζ ∼ exp(2mπ/T ) in the T � mπ limit. This
growth implies that kinetic theory will generally break down
at low temperatures, explaining chemical freeze-out.
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