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Core excitation contributions to the breakup of the one-neutron halo nucleus 11Be on a proton

R. Crespo,1,2,* A. Deltuva,1,† and A. M. Moro3,‡
1Centro de Fı́sica Nuclear, Universidade de Lisboa, Av. Prof. Gama Pinto 2, PT-1649-003 Lisboa, Portugal
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The effect of the core excitation in the breakup of a one-neutron halo nucleus is studied within two different
reaction formalisms, namely, the core excited model and the single-scattering approximation of the three-body
Faddeev–Alt-Grassberger-Sandhas equations with target-core potential allowing for the core excitation. As
an example, we consider the breakup of 11Be on a proton target at 63.7 MeV/nucleon incident energy and
calculate the semi-inclusive cross section in the excitation energy interval Ex = 3.0–5.5 MeV (Erel = 2.5–5 MeV)
containing the 3/2+ resonance with dominant contribution of the 10Be(2+) core excited state. The effect of the
core excitation to the breakup cross section integrated around this resonance is found to be very significant.
Moreover, when resonant and nonresonant contributions are added, the resulting semi-inclusive cross section is
in reasonable agreement with the existing data, demonstrating the relevance of the core excitation mechanism
for this observable. The present calculations also show the importance of incorporating the energy dependence
of the core-target transition operators in the reaction formalism.

DOI: 10.1103/PhysRevC.83.044622 PACS number(s): 24.50.+g, 25.60.Gc, 27.20.+n

I. INTRODUCTION

Halo nuclei are few-body weakly bound nuclear states that
appear at the neutron drip line. A major source of information
on the structure of these systems comes from reactions induced
by exotic beams on stable targets. A powerful technique
extensively used in the past years to extract information from
these systems is the reconstruction of the excitation energy
spectrum from the measurement in coincidence of the outgoing
fragments following the dissociation of a weakly bound
projectile. A meaningful interpretation of these experiments
requires an accurate description of the reaction mechanism and
a realistic structure model for the ground and the continuum
states.

A recent example is the measurement of the breakup of the
11Be halo nucleus on a proton target at 63.7 MeV/nucleon [1].
Due to the experimental energy resolution, the measured semi-
inclusive cross section contained integrated contributions from
ranges of relative neutron-core energy. These observables have
been recently analyzed within the Faddeev–Alt-Grassberger-
Sandhas (Faddeev–AGS) scattering framework [2–4] extended
to include the Coulomb force [5,6]. It was found [7,8] that
these calculations reproduce well the shape of the cross-section
angular distribution corresponding to excitation energies in the
range Ex = 0.5−3.0 MeV (although, at the smallest angles,
the magnitude is underestimated by about 40%). However,
significant disagreements, both in shape and magnitude, were
found in the excitation energy range 3.0–5.5 MeV (relative
neutron-10Be energy range 2.5–5.0 MeV).
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The origin of this discrepancy can not be ascribed to the
choice of the proton-neutron or proton-core potentials. In
fact, it was found in Ref. [8] that the calculated breakup
observables are essentially independent of the choice of the
proton-neutron potential, provided that one uses a realistic NN

parametrization, and change by less than 10% for two different
choices of the underlying proton-core potential. Thus, with the
present NN and N -core dynamic inputs, these disagreements
remain up to now a puzzle and it is timely to understand the
underlying physics of this discrepancy.

A possible source of the disagreement could be due to the
structure model used in Ref. [8], in which both the ground and
continuum states are assumed to be well described by pure
single-particle configurations relative to the 10Be in its ground
state. However, the energy range 3.0–5.5 MeV is likely to
contain contributions from the second 11Be resonance at Ex =
3.41 MeV with spin assignment 3/2+ [9]. This resonance has a
dominant 10Be(2+) ⊗ ν2s1/2 parentage with the core in its first
excited state at Ex = 3.368 MeV and, hence, the population
of this resonance involves the excitation of the 10Be core, a
mechanism that can not be accounted for by the 10Be(0+)+n

model assumed in the calculations of Ref. [8].
In this paper, we investigate the contribution of the 11Be

3/2+ resonance and hence the relevance of this core excitation
mechanism in the description of the breakup cross section
containing integrated contributions in the energy range Ex =
3.0–5.5 MeV measured in [1]. Two reaction mechanisms are
used in our calculations. The first one is the core excited
model (C-exc) pioneered by several works in the 1960s [10]
and described below. The second is the single-scattering term
(SST) of the three-body multiple scattering Faddeev–AGS
expansion for the transition amplitude with the proton-core
potential allowing for the core excitation. While the Faddeev–
AGS framework for three-body nuclear reactions [6,11] has
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been used quite extensively in the last few years, it always
assumed fixed masses and spins of the three involved particles.
An extension including the dynamical coupling between
different internal states of the particles still awaits to be done. In
this paper, we present a step in this direction by calculating the
Faddeev–AGS transition amplitudes in the SST approximation
but with interactions allowing for the excitation of the 10Be
core.

In both cases, we assume that the 11Be ground state and
3/2+ resonance are well described by the pure single-particle
configurations 10Be(0+) ⊗ ν2s1/2 and 10Be(2+) ⊗ ν2s1/2, re-
spectively. Under this assumption, the 3/2+ resonance be-
comes a bound state of neutron and 10Be(2+) with 0.46-MeV
binding energy and the corresponding transition is calculated
as an inelastic scattering leading to the two-cluster final
state, not as a true three-body breakup. Aside from the 3/2+
resonance, we add true three-body breakup contributions
calculated in Ref. [8] from all partial waves with the core
being in its ground state 10Be(0+), which can be regarded as a
nonresonant background. Since we ignore possible admixtures
of 10Be(2+) and 10Be(0+) in the 11Be states, the resonant and
nonresonant contributions can be added incoherently.

It is worth mentioning that the same problem was recently
studied using the XCDCC formalism [12], an extension of the
continuum discretized coupled channels (CDCC) method [13],
which incorporates core excitation effects. Estimations of core
excitation effects using this reaction tool were found to be
small, in particular in the case of our working example [14].

II. FORMALISMS

We shall start by summarizing the C-exc model. Consider
the excitation of a projectile nucleus in its ground state J0

to a final state J . Although the model can be formulated in
a more general way, in this paper we assume that both the
initial and final states are well described by pure single-particle
configurations relative to a given state of the core, i.e.,

|�i〉 = [|φI0 ⊗ ψi〉]J0 , |�f 〉 = [|φI ⊗ ψf 〉]J , (1)

where |φI0〉 (|φI 〉) describes the internal state of the core
and ψi (ψf ) is the single-particle neutron-core bound-state
wave function in the initial (final) state. The indexes i and f

comprise the set of quantum numbers �, s, and j corresponding
to the orbital angular momentum, the spin, and their sum, and
any additional label required to specify the state. In our case
study, the considered transition is from the 11Be(1/2+) ground
state to the 11Be(3/2+) resonant state (Ex = 3.41 MeV), where
the core is excited from a I0 = 0+ initial state to a I = 2+ final
state, and the valence neutron remains in a 2s1/2 single-particle
configuration.

Within the distorted-wave Born approximation (DWBA),
the transition matrix for the excitation from the initial state
|�i〉 to the final state |�f 〉 is given by

Aif = 〈χ (−)
f ( �R)�f (�r, �ξ )|Vvt ( �Rvt ) + Vct ( �Rct , �ξ )

−Uaux( �R)|χ (+)
i ( �R)�i(�r, �ξ )〉, (2)

where Uaux( �R) is an auxiliary optical potential that produces
the distorted wave χ

(+)
i ( �R) for the incoming channel. In our

calculations, the distorted wave for the outgoing channel
[χ (−)

f ( �R)] will be also generated with the same auxiliary

potential. In this expression, Vvt ( �Rvt ) and Vct ( �Rct , �ξ ) are the
valence-target and core-target interactions, respectively. To
allow the core excitation mechanism, the latter depends on
the internal states of the core (�ξ ). The valence-target and
the auxiliary optical potential can not induce transitions of
the core and can therefore be omitted from the previous
expression. In Eq. (2), the initial and final distorted waves
are evaluated at the projectile-target coordinate ( �R), whereas
the interaction Vct ( �Rct , �ξ ) is evaluated at the core-target
coordinate. However, in our core excited model approach, we
make the approximation �R ≈ �Rct in Eq. (2), which means that
both distorted waves and the potentials Vct are evaluated at the
�Rct coordinate.

As a consequence of this approximation, the core-valence
coordinate disappears from the transition operator, remaining
only in the initial and final states, and the scattering amplitude
factorizes into the product of two terms, one depending on
the valence wave functions and the other depending on the
core. Under these approximations, the projectile-target scat-
tering amplitude is directly related to a core-target amplitude
describing the excitation of the core. By working out the
angular-momentum algebra as given in detail in Ref. [15], one
gets the following expression of the differential cross section:

dσ

d	
(J0 → J ) = W|〈ψf |ψi〉|2δ�,�0δj,j0

dσct

d	
(I0 → I ) (3)

with dσct/d	 the core-target inelastic differential cross section
and W the geometric factor

W = (2J0 + 1)(2I + 1)W (λIJ0j0; I0J )2. (4)

The core excited model can be deduced from the XCDCC
approach [12] by calculating the transition in the Born
approximation, neglecting the valence-target interaction and
core-recoil effects, and taking a central valence-core potential.

The core-target interaction can be expressed in terms of a
multipole expansion

Vct ( �Rct , �ξ ) = 4π
∑
λµ

Vλ(Rct )Yλµ(R̂ct )Y
∗
λµ(ξ̂ ). (5)

Note that, in the present case, only the term λ = 2 contributes.
In our approach, we adopt a simple axially symmetric
rotational model (with band head K = 0+) assuming that the
core has a permanent quadrupole deformation characterized
by the deformation parameter β2. By deforming the central
potential Vct (R) and expanding it in terms of the deformation
parameter for λ = 2, one gets the leading term

Vλ(R) = − 1√
4π (2λ + 1)

δλ

dVct (R)

dR
(6)

with the deformation length δλ = βλR0 for the multipolarity
λ, where R0 is an average radius of the nucleus.

We now briefly describe the three-body Faddeev–AGS re-
action approach. This is a nonrelativistic three-body multiple-
scattering framework that has been used [6–8,11] to calculate
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various observables of three-body nuclear reactions. In this
paper, we make steps toward extending it to include the
interactions with the core excitation. We use here the odd-
man-out notation for the three interacting particles (1, 2, 3),
which means, for example, that the potential between the pair
(2, 3) is denoted as v1. We take particle 1 as the proton target,
and particles 2 and 3 as the valence neutron and the core of
the projectile, respectively. The transition amplitudes are given
by the on-shell matrix elements of the operators Uβα . These
operators are obtained by solving the three-body AGS integral
equations [3,4] that can be found by iteration leading to

Uβα = δ̄βαG−1
0 +

∑
γ

δ̄βγ tγ δ̄γ α

+
∑

γ

δ̄βγ tγ G0

∑
ξ

δ̄γ ξ tξ δ̄ξα + · · · , (7)

with δ̄γ α = 1 − δγα and the pair transition operator

tγ = vγ + vγ G0tγ , (8)

where G0 is the free resolvent G0 = (E + i0 − H0)−1 and E

is the total energy of the three-particle system in the center of
mass (c.m.) frame. Much like the proton-core potential vγ , the
corresponding transition operator tγ couples different states of
the core; it is calculated without any approximations in close
analogy with Ref. [16].

In these calculations, we will consider only the leading term
of the series (7) that will be referred to hereafter as SST. Note
that the single-scattering term t3, where the proton scatters
from the neutron, does not contribute to the core excitation.
Thus, we shall retain only the proton-core single-scattering
term t2 of the multiple-scattering expansion.

The SST amplitude for the transition from the initial |k1�i〉
to the final |k′

1�f 〉 three-body state is given by

〈k′
1�f |t2|k1�i〉 =

∫
d3q23ψ

∗
f (q′

23)

×〈q ′
13φf |t2(ω13)|φiq13〉ψi(q23) (9)

with qij = mj ki−mikj

mi+mj
and relative pair (1, 3) energy ω13 = E −

[q23 − m2
m2+m3

k1]2 m1+m2+m3
2m2(m1+m3) . As usual, k1 (k′

1) is the initial
(final) relative momentum between particle 1 and the center-
of-mass of pair (2, 3). The SST involves a full folding integral
of a product of a transition matrix evaluated at a variable energy
ω13 and a transition density form factor with q′

23, q′
13, and q13

being uniquely determined by k1, k′
1, and q23. The SST only

assumes a factorized form if additional approximations are
made [17].

III. RESULTS

In this paper, we analyze the p(11Be,10Be n)p breakup
semi-inclusive cross section containing integrated contribu-
tions for excitation energies Ex = 3.0–5.5 MeV measured
in [1]. The initial and final states of the 11Be projectile
are generated using a Woods-Saxon potential with radius
R0 = 1.25 × 101/3 fm, diffuseness a = 0.67 fm, and the depth
adjusted in each case to yield the appropriate separation energy
[18,19].

The wave function of the ground state of 11Be can be
written as
∣∣11

Begs
〉 = α|10Be(0+

1 ) ⊗ 2s〉 + β|10Be(2+
1 ) ⊗ 1d〉 + · · · ,

(10)

where α2 and β2 represent the spectroscopic factors for each
component. The precise relative weight of each component
is still fairly uncertain. The spectroscopic factors for the
component where the core is in its ground state, obtained
from theoretical calculations [20–25] that can be found in the
literature, or extracted from experimental data [26,27], range
from 0.55 to 0.92.

Nevertheless, in the case of the 11Be ground state, the
component where the core is in its ground state is, in most
predictions, clearly the dominant one. For the case of the
second resonance, the core is dominantly in the first excited
state.

For the purpose of estimating the effects of the transition to
the second 11Be(3/2+) resonance to the breakup, we have
assumed pure single-particle configurations: For the initial
state, we assumed that the valence neutron is in the 2s1/2

pure single-particle configuration relative to the 10Be core in
its ground state, whereas for the 3/2+ resonance, we also
assumed the 2s1/2 configuration, but coupled to the 10Be in its
first excited (2+

1 ) state.
The central part of the p+10Be interaction was taken from

the global parametrization of Watson et al. [18]. The transition
potential describing the excitation of the core was generated
according to Eq. (6) using a deformation parameter β2 = 0.67
from Ref. [23] and the 10Be matter radius R0 = 2.94 fm from
Ref. [19].

Since we assume pure single-particle states for 11Be, the
integrated cross section will be given as an incoherent sum of
the single-particle (s.p.) breakup cross section (that is, with the
10Be in its ground state) and the inelastic cross section for the
transition to the 3/2+ state of 11Be.

The s.p. breakup cross section is taken from Ref. [8],
where it was calculated using the Faddeev–AGS scattering
framework with the realistic CD-Bonn NN potential. The
inelastic cross section was estimated using both the SST and
C-exc models [Eq. (3)]. In the latter case, the geometric factor
is W = 2

5 , and the extra factor due to the overlap of the
single-particle wave functions is 〈ψf |ψi〉 = 0.9487.

In Fig. 1, we compare our results for the breakup cross-
section angular distribution dσ/d	c.m. with the experimental
data. The dashed curve represents the s.p. contribution that
fails in reproducing magnitude and shape of the data. The
thin solid and dashed-dotted curves correspond to the inelastic
cross-section results of the C-exc model and the three-body
SST, respectively, demonstrating that the effects of the core
excitation are significant. The SST differs from the C-exc
results, being lower at θc.m. < 15◦ and higher at θc.m. > 15◦.
In order to explore the origin of this difference, we have
fixed in the SST approach the energy of the proton-core
pair in the transition amplitude to its maximum value, i.e.,
ω13 = E. These results, represented with circles, are almost
indistinguishable from the C-exc results. Thus, it is important
to incorporate a proper treatment of the energy dependence
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FIG. 1. (Color online) Angular distribution of the semi-inclusive
cross section for the breakup p(11Be,p)10Be n at 63.7 MeV/u with
contributions where the relative core-neutron energy is integrated
over the energy range Erel = 2.5–5.0 MeV.

of the two-body t matrix into the reaction framework. The
incoherent sum of the s.p. and SST contributions is given by
the thick solid curve and is in reasonable agreement with the
data except for the first data point, which is overestimated due
to the size of the s.p. contribution.

Our result is in contrast to those presented in Ref. [12],
where estimations of core excitation effects using the extension
of the CDCC approach (XCDCC) were found to be negligible.
The XCDCC includes the interference between possible mul-
tichannel components of the projectile as well as dynamical
excitation of the core within the projectile during the reaction,
and therefore has perturbation effects beyond the DWBA. The

detailed multichannel effects are presently an open question.
In the core excited and SST reaction approaches described in
the text, structure and dynamics effects are clearly delineated.
Further work to include multichannel components within these
reaction frameworks is underway.

IV. SUMMARY AND CONCLUSIONS

In summary, we have studied the breakup of 11Be on
the proton target at 63.7 MeV/nucleon incident energy. We
estimated the effects of the core excitation p +10 Be(0+

1 ) →
p +10 Be(2+

1 ) on the semi-inclusive cross section around the
second resonance of 11Be with excitation energy Ex = 3.41
MeV and spin 3/2+. The inelastic cross section was evaluated
using the proton-core single-scattering term of the three-body
Faddeev–AGS equations as well as the C-exc model; in both
cases, the core excitation provides a significant contribution to
the breakup cross section. In addition, our calculations show
that it is important to handle properly the energy dependence
of the two-body t matrices in the reaction formalism.

An extension of the Faddeev–AGS framework to include
higher-order core excitation terms is highly desirable to make
a more accurate evaluation of these contributions.
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