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Relativistic distorted-wave analysis of quasielastic proton-nucleus scattering
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A relativistic distorted-wave impulse approximation formalism is presented for the calculation of quasielastic
proton-nucleus scattering. It is shown that the double differential cross section may be written as a contraction
between the hadronic tensor (describing the projectile and ejectile) and the polarization tensor (describing the
nuclear target) and that this mathematical structure also holds for the case where distortions are included. The
eikonal approximation is used to introduce distortions in the wave functions, and the nuclear response is described
using a Fermi gas model. The highly oscillatory nine-dimensional integrand contained in the expression for the
double differential cross section is computed using a novel technique based on combining traditional Gaussian
integration methods with the powerful fitting functions in the MATLAB programming language. This work has
successfully calculated the distorted-wave quasielastic differential cross section for proton-nucleus scattering
within a fully relativistic framework. It is found that the distortions lead to a reduction in the double differential
cross section and have a negligible effect on the computed spin observables.
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I. INTRODUCTION

Quasielastic scattering comprises a large percentage of the
inclusive proton-nucleus spectrum, and it is therefore very
important to have a quantitative description of this process.
In addition, different parts of the NN interaction can be
probed by studying quasielastic ( �p, �p ′) or ( �p, �n) scattering.
In addition to the cross section, polarization observables can
be measured, which has led to a number of investigations of
this reaction. The complete set of spin observables are the
analyzing power Ay and the polarization transfer observables
Di ′j . In particular, it was the analyzing power which proved a
most useful observable in encouraging the use of a relativistic
formulation (i.e., the dynamics of the reaction is based on the
Dirac equation and not the traditional Schrödinger equation)
of nuclear physics reactions.

The first relativistic model of quasielastic proton-nucleus
scattering was formulated by Horowitz and Murdoch and
was called the relativistic plane-wave impulse approximation
(RPWIA) [1]. Their model correctly predicted the analyzing
power for the ( �p, �p ′) reaction from 40Ca at an incident beam
energy of 500 MeV and laboratory scattering angle of 18◦
through the use of an effective nucleon mass, which is an
intrinsically relativistic concept.

In particular, for any reaction the fundamental quantity
which must be calculated is the invariant matrix element
defined as

M = 〈f |F̂ |i〉, (1)
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where |i〉 and |f 〉 are the initial and final nuclear states,
respectively, and F̂ is the scattering operator that connects
the initial and final states. The differential cross section is then
simply given by

dσ = [kinematic factor] × |M|2. (2)

In general, the three quantities |i〉, |f 〉, and F̂ are extremely
difficult to calculate. In the original model of Ref. [1] the
following assumptions were made: (i) the reaction is a single-
step process whereby the incident proton interacts with only
one target nucleon, and (ii) the spin observables (being ratios
of cross sections) are largely insensitive to distortions. As-
sumption (i) essentially reduced the nuclear scattering process
to a two-body scattering process. Assumption (ii) significantly
decreased the numerical burden since all nucleons could then
be described by free-particle Dirac spinors. In this model the
scattering operator F̂ becomes the NN scattering matrix, which
is a complex 16 × 16 matrix containing, in principle, 256
matrix elements. In the original RPWIA, F̂ was parametrized
by five complex amplitudes which could be obtained directly
from experiment via the Wolfenstein amplitudes. Even though
the analyzing power was well described by the effective
nucleon mass, the polarization transfer observables preferred
the free nucleon mass.

To do a thorough analysis of the original model of Ref. [1],
Hillhouse et al. studied various aspects of the model in a series
of papers [2–7], namely, (i) more refined self-consistent calcu-
lations of the projectile and ejectile effective masses, (ii) sens-
itivities of the complete set of spin observables to different
five-term parametrizations of the NN interaction, (iii) new
meson-exchange parameters for the relativistic NN ampli-
tudes, (iv) medium modifications of the NN interaction
and the effect on ( �p, �p ′) and ( �p, �n) complete sets of spin
observables, and (v) the replacement of the ambiguous
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five-term parametrization of F̂ by a general Lorentz-invariant
representation.

The aforementioned papers were all based on the plane-
wave assumption for the projectile and ejectile nucleons.
References [5,8] suggest that the inclusion of nuclear distortion
effects could be a way to address the discrepancies in the
plane-wave relativistic impulse approximation.

In this paper, we begin with the most general form of the
differential cross section and systematically derive the equiv-
alent two-body form, which leads to a representation in which
the inclusion of distortions can be done very naturally. This
is done specifically for quasielastic proton-nucleus scattering.
The polarized double differential cross section is written as a
contraction between two tensors, namely, a projectile-ejectile
tensor describing the projectile and ejectile and a target tensor
describing the nuclear target. The “modular” form of the
derived expression of the polarized double differential cross
section allows one to systematically investigate effects such as
distortions and different models for the nuclear target.

Another goal of this work is to provide the first calculation
of quasielastic spin observables using relativistic distorted
waves. Here one has to make a choice between using a full
partial wave expansion or some other approximation which
captures the main features of distortion effects while still
allowing numerical results in a reasonable time. In this work,
we employ the relativistic eikonal formalism for a number of
reasons: (i) it has been successfully used in numerous studies
of nuclear scattering reactions [9–13], (ii) it allows a measure
of analytical tractability, which would be very difficult if one
were to employ a full partial-wave expansion, and (iii) it
offers a computational speed advantage compared to a full
partial-wave expansion.

To end this section, we make the reader aware that the
derived expression for the double differential cross section is,
however, a multidimensional integral. This nine-dimensional
integral carries an enormous computational time penalty, and
we resort to computing an eight-dimensional integral which
results in a function dependent on a single variable. A Fourier
series is then used to fit this resultant function. Using the
fitting function, we are able to perform the full integration and
calculate the polarized double differential cross section in a
reasonable amount of time. From the polarized double differ-
ential cross sections, we calculate polarization observables.

This paper is organized as follows. In Sec. II we present the
formalism. In Sec. III we highlight briefly the procedure used
to compute the polarized double differential cross section, and
we end with our results in Sec. IV.

II. FORMALISM

A. Double differential cross section in terms of M
The most general form of the differential cross section for

the quasielastic scattering reaction is given by [14]

dσ = 1

|v1 − v2|
(

M2

EkEk′

)
(2π )4δ(k + K − k′ − K ′)

× d3k′

(2π )3

d3K ′

(2π )3
|M|2. (3)

In Eq. (3), v1 and v2 are the velocities of the projectile
and the target nucleus, M the transition matrix element
for this particular reaction, M the free nucleon mass, and
k, k′,K and K ′ the asymptotic four-momenta of the projectile,
ejectile nucleon, target, and residual nucleus, respectively.
From Eq. (3),

(2π )4δ(k + K − k′ − K ′)
= 2πδ(Ek + EK − Ek′ − EK′)(2π )3δ(k + K − k′ − K′),

(4)

where we can perform the integration over K′ in the three-
dimensional δ function above and using

d3k′ = k′2 dk′ d� = k′Ek′ dE′ d�′, (5)

where dE′ = d(Ek′) and k′ = |k′|. Equation (3) can now be
written as

dσ = 1

(2π )2|v1 − v2|
(

M2k′Ek′ dE′ d�′

EkEk′

)
× δ [ω − EK′ + EK] |M|2, (6)

where the energy transfer

ω = Ek − Ek′ (7)

is introduced. Rearranging factors, we obtain

dσ = M2

(2π )2

(
k′Ek′ dE′ d�′

|v1 − v2|EkEk′

)
|M|2δ [ω − (EK′ − EK)] .

(8)

Equation (8) is valid in any Lorentz system. We need to chose
a reference frame, however; and since the distorted-wave
functions are traditionally generated in the center-of-mass
(c.m.) frame, we choose this as our reference frame. In the
proton-nucleus c.m. frame, the three-momenta are defined as

k + K = k′ + K′, (9)

which implies that the scattering four-momenta are then

k = (Ek, k), K = (Ek,−k),
(10)

k′ = (Ek′ , k′), K ′ = (Ek′ ,−k′).

From the conservation of energy

(k2 + M2)
1
2 + (

k2 + M2
t

) 1
2 = (k′2 + M2)

1
2 + (

k′2 + M2
t

) 1
2 ,

(11)

it is clear that

k = k′. (12)

Equation (8) now reads

dσ = M2

(2π )2

(
k dE′ d�′

|v1 − v2|Ek

)
|M|2δ[ω − (EK′ − EK)]. (13)

We eliminate the velocity-dependent term by making the
following algebraic replacement [15]:

|v1 − v2| · [Ek]proj = k
[
(k2 + M2)

1
2 + (

k2 + M2
t

) 1
2
]

(
k2 + M2

t

) 1
2

. (14)
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Finally we replace and cancel terms in Eq. (13), which results
in

dσ = M2

(2π )2

⎛
⎝ (

k2 + M2
t

) 1
2 dE′ d�′[(

k2 + M2
) 1

2 + (
k2 + M2

t

) 1
2
]
⎞
⎠

× |M|2δ [ω − (EK′ − EK)] . (15)

Grouping kinematic terms together and summing over all final
nuclear states (here we replace EK with E0 and EK′ with En),

dσ

dE′ d�′ =
⎛
⎝ M2

(
k2 + M2

t

) 1
2

4π2
[
(k2 + M2

) 1
2 + (

k2 + M2
t

) 1
2
]
⎞
⎠

×
∑

n

|M|2δ[ω − (En − E0)]. (16)

We now rewrite Eq. (3) in terms of the double differential cross
section as

dσ

dE′d�′ = K
∑

n

|M|2 δ(ω − (En − E0)), (17)

where

K = M2
(
k2 + M2

t

) 1
2

4π2
[
(k2 + M2)

1
2 + (

k2 + M2
t

) 1
2
] (18)

is a pure kinematic factor. By using the identity

Im

{
1

ω − (En − E0) + iε

}
= −πδ(ω − (En − E0)),

and keeping in mind that |M|2 is purely real, Eq. (17) can be
written as

dσ

dE′ d�′ = − 1

π
K Im

{∑
n

|M|2 1

ω − (En − E0) + iε

}
.

(19)

Equation (19) is the main result for this section. |M|2 is
a purely real quantity, but in Eq. (19), we have related
the polarized double differential cross section to the matrix
element. The advantage of writing it in this form is that
one can relate the nuclear response to the imaginary part
of the target tensor. The target tensor or polarization tensor
is a many-body entity which can then be calculated using
well-known many-body techniques.

B. Transition amplitude

For the scattering process under consideration, the transi-
tion matrix element M is given as [10]

M =
∫

d4x d4x ′
A∏

i=1

d4yi

A∏
j=1

d4y ′
j [ψ̄ (−)(x ′, k′, î

′
, s ′)

⊗ �̄f (y ′
1, . . . , y

′
j , . . . , y

′
A)]

× F̂many(x, x ′, {y}, {y ′})[ψ (+)(x, k, î, s)

⊗ �i(y1, . . . , yi, . . . , yA)]. (20)

In Eq. (20), the following notation applies:

(i) x, x ′, y and y ′ are four-vectors.
(ii) ⊗ denotes the Kronecker product.

(iii) ψ (+)(x, k, î, s) is the relativistic distorted-wave func-
tion of the projectile with outgoing boundary conditions
indicated by the superscript (+) and with asymptotic
three-momentum k in the proton-nucleus c.m. system
and spin projection s along an arbitrary quantization
axis î in the rest frame of the projectile.

(iv) ψ̄ (−)(x ′, k′, î
′
, s ′) = ψ†(−)(x ′, k′, î

′
, s ′)γ 0, where

ψ (−)(x ′, k′, î
′
, s ′) is the relativistic distorted-wave

function of the ejectile nucleon, with incoming
boundary conditions denoted by the superscript
(−) with asymptotic three-momentum k′ in the
nucleon-nucleus c.m. system and spin projection s ′

along an arbitrary quantization axis î
′
in the rest frame

of the ejectile.
(v) �i(y1, . . . , yi, . . . , yA) is the initial ground state wave

function of the nucleus; a function of all A constituent
target nucleons.

(vi) �̄f (y ′
1, . . . , y

′
j , . . . , y

′
A) is the final ground state wave

function of the nucleus; a function of all A constituent
target nucleons.

(vii) F̂many(x, x ′, {y}, {y ′}) is the operator that connects the
initial and final states.

We now give our conventions for the Fourier transforms
used in the analysis to follow. The Fourier transform of f (k)
where k is a four-vector is defined as

f (x) =
∫

d4k

(2π )4
e−ik·xf (k), (21)

and the inverse transform is

f (k) =
∫

d4xeik·xf (x). (22)

It follows that

δ(x − x ′) =
∫

d4k

(2π )4
e−ik·(x−x ′), (23)

and

(2π )4δ(k − k′) =
∫

d4xe−ix·(k−k′). (24)

The completeness relation is

1 =
∫

d4p

(2π )4
|p〉〈p|, (25)

from which we obtain

〈x|x ′〉 =
∫

d4p

(2π )4
〈x|p〉〈p|x ′〉 = δ(x − x ′), (26)

as well as

〈x|p〉 = e−ip·x, (27)

〈p|x ′〉 = eip·x ′
. (28)

From the experimental evidence, quasielastic scattering is a
single-step reaction where the projectile is assumed to interact
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with only one bound target nucleon in the target nucleus.
The other nucleons are assumed to remain frozen during the
scattering process. We approximate our F̂many operator as

F̂many(x, x ′, {y}, {y ′}) =
A∑

i=1

〈x ′y ′
i |F̂ |xyi〉

A∏
j=1,j �=i

δ(y ′
j − yj ),

(29)

where F̂ is now a two-body operator connecting the initial
and final states. Inserting this two-body operator into Eq. (20)
results in

M =
A∑

i=1

∫
d4x d4x ′ d4yi d

4y ′
i

⎛
⎝ A∏

j=1,j �=i

d4y ′
j δ(y ′

j − yj )

⎞
⎠

× [ψ̄ (−)(x ′, k′, î
′
, s ′) ⊗ �̄f (y ′

1, . . . , y
′
i , . . . , y

′
A)]

×〈x ′y ′
i |F̂ |xyi〉[ψ (+)(x, k, î, s)

⊗ �i(y1, . . . , yi, . . . , yA)]. (30)

Next we change the basis from position space to momentum
space by inserting a complete set of momentum eigenstates.
The bra-ket portion on the right-hand side of Eq. (29) becomes

A∑
i=1

〈x ′y ′
i |F̂ |xyi〉 =

A∑
i=1

∫
d4p

(2π )4

d4p′

(2π )4

d4pi

(2π )4

d4p′
i

(2π )4

× eip·xe−ip′ ·x ′
eip·yi e−ip′

i ·y ′
i 〈p′p′

i |F̂ |ppi〉.
(31)

Substituting Eq. (31) into Eq. (30),

M =
A∑

i=1

∫
d4x d4x ′ d4yi d

4y ′
i

⎛
⎝ A∏

j=1,j �=i

d4y ′
j δ(y ′

j − yj )

⎞
⎠

×
∫

d4p

(2π )4

d4p′

(2π )4

d4pi

(2π )4

d4p′
i

(2π )4

× eip·xe−ip′ ·x ′
eip·yi e−ip′

i ·y ′
i [ψ̄ (−)(x ′, k′, î

′
, s ′)

⊗ �̄f (y ′
1, . . . , y

′
i , . . . , y

′
A)]

×〈p′p′
i |F̂ |ppi〉[ψ (+)(x, k, î, s)

⊗ �i(y1, . . . , yi, . . . , yA)]. (32)

We assume that the time dependence of the distorted incoming
and outgoing wave functions are given by

ψ (+)(x, k, î, s) = e−iEkx0ψ (+)(x, k, î, s), (33)

ψ̄ (−)(x ′, k′, î
′
, s ′) = eiEk′ x ′

0ψ̄ (−)(x′, k′, î
′
, s ′). (34)

In a similar way, we can write down the time dependence for
the initial

�i(y1, . . . , yi, . . . , yA)

=
[

A∏
j=1,j �=i

e−iKj,0yj,0

]
e−iKi,0yi,0�i(y1, . . . , yi , . . . , yA),

(35)

and final nuclear target ground state wave functions

�̄f (y ′
1, . . . , y

′
i , . . . , y

′
A)

=
[

A∏
j=1,j �=i

eiK ′
j,0y

′
j,0

]
eiK ′

i,0y
′
i,0�̄f (y′

1, . . . , y′
i , . . . , y′

A).

(36)

Inserting the above into Eq. (32) and separating the temporal
components from the spatial components results in

M =
A∑

i=1


i

∫
d3x d3x ′ d3yi d

3y ′
i

d3p

(2π )3

d3p′

(2π )3

d3pi

(2π )3

d3p′
i

(2π )3

× e−ip·xeip′ ·x′
e−ipi ·yi eip′

i ·y′
i [ψ̄ (−)(x′, k′, î

′
, s ′)

⊗ �̄f (y′
1, . . . , y′

i , . . . , y′
A)]〈p′ p′

i |F̂ |p pi〉
× [ψ (+)(x, k, î, s) ⊗ �i(y1, . . . , yi , . . . , yA)], (37)

where


i =
∫ (

A∏
j=1,j �=i

d4y ′
j δ(y ′

j − yj )

)∫
dx0 dx ′

0 dyi,0 dy ′
i,0

× dp0

2π

dp′
0

2π

dpi,0

2π

dp′
i,0

2π
e−iEkx0eiEk′ x ′

0e−iKi,0yi,0eiK ′
i,0y

′
i,0

×
⎡
⎣ A∏

m=1,m�=i

e−iKm,0ym,0

⎤
⎦
⎡
⎣ A∏

n=1,n�=i

eiK ′
n,0y

′
n,0

⎤
⎦

×eipo·x0e−ip′
o·x ′

0eipi,o·yi,0e−ip′
i,o·y ′

i,0 . (38)

Up until now, the derivation is completely general. To progress
further, we must choose a representation for the two-body
operator F̂ . We choose the IA1 representation for which

〈p′ p′
i |F̂ |p pi〉 = (2π )3δ(p + pi − p′ − p′

i)

×
T∑

L=S

FL(p, pi , p′, p′
i)(λ

L ⊗ λL). (39)

In Eq. (39), the following holds true:

(i) Three-momentum conservation is explicitly enforced:
p + pi = p′ + p′

i .
(ii) λL ∈ {I4, γ

5, γ µ, γ 5γ µ, σµν} where L = S, P, V,A,

T . This is the well-known SPVAT or IA1 form of the
scattering operator. Ambiguities associated with this
form of F̂ were first pointed out in Refs. [16,17];
however, this representation was successfully employed
in elastic [18,19], quasielastic [1,5], and inelastic
proton-nucleus scattering [10,12,20].

(iii) FL is the complex NN amplitude.

Our model presented in this paper uses the IA1 represen-
tation due to the following reasons. Even though one should
in principle use the more complete IA2 representation, this
may not be the best place to start. The inclusion of distortions
leads to many numerical complications, and if one were to
combine this with the IA2 form it could be very difficult
to disentangle different effects. From a pedagogical point of
view, it is therefore best to first use the IA1 representation. A
numerical implementation of the IA2 representation is a very
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complicated undertaking, as shown in the work of Tjon and
Wallace and Van der Ventel et al. In addition, one can argue
that the IA1 calculation should always serve as a baseline for
the full IA2 calculation, since the latter contains the SPVAT
form as a special case.

Inserting Eq. (39) into Eq. (37) and performing the
integration over the undetected recoil nucleus momentum p′

i

and substituting the result into Eq. (37) results in

M =
A∑

i=1


i

T∑
L=S

∫
d3x d3x ′ d3yi d

3y ′
i

d3p

(2π )3

d3p′

(2π )3

d3pi

(2π )3

× e−ip(yi−x)eip′(x′−y′
i )e−ipi (y′

i−yi )[ψ̄ (−)(x′, k′, î
′
, s ′)

⊗ �̄f (y′
1, . . . , y′

i , . . . , y′
A)]FL(p, pi , p′)(λL ⊗ λL)

× [ψ (+)(x, k, î, s) ⊗ �i(y1, . . . , yi , . . . , yA)]. (40)

The relativistic free NN scattering amplitudes are normally
extracted from free NN scattering experiments via suitable
phase-shift analysis, such as the well-known Arndt phases
[21]. The explicit dependence of F̂ on the “local” momenta
p, pi , and p′ in Eq. (40) is thereby replaced by the corre-
sponding asymptotic values k, Ki , and k′. Hence we make the
replacement

FL(p, pi , p′) −→ FL(k, Ki , k′). (41)

The only dependence on the momenta p, pi , and p′ are now
buried in the exponentials, and we can systematically perform
the integrals over these variables, i.e.,∫

d3p e−ip·(yi−x) = (2π )3δ(yi − x). (42)

The result is a product of δ functions of the form

δ(x′ − y′
i)δ(yi − x)δ(y′

i − yi). (43)

Equation (40) becomes

M =
A∑

i=1


i

T∑
L=S

∫
d3x d3x ′ d3yi d3y ′

i

× δ(x′ − y′
i)δ(yi − x)δ(y′

i − yi)

× [ψ̄ (−)(x′, k′, î
′
, s ′) ⊗ �̄f (y′

1, . . . , y′
i , . . . , y′

A)]

×FL(k, Ki , k′)(λL ⊗ λL)

× [ψ (+)(x, k, î, s) ⊗ �i(y1, . . . , yi , . . . , yA)]. (44)

By performing the integration over y′
i , yi , and x′

i in the three-
dimensional δ functions systematically, Eq. (44) becomes

M =
A∑

i=1


i

T∑
L=S

∫
d3xFL(k, Ki , k′)

× [ψ̄ (−)(x, k′, î
′
, s ′) ⊗ �̄f (y′

1, . . . , x, . . . , y′
A)]

× (λL ⊗ λL)[ψ (+)(x, k, î, s) ⊗ �i(y1, . . . , x, . . . , yA)].

(45)

Using the identity

(A ⊗ B)(C ⊗ D) = AC ⊗ BD (46)

repeatedly Eq. (45) becomes

M =
A∑

i=1


i

T∑
L=S

FL(k, Ki , k′)
∫

d3x

× [ψ̄ (−)(x, k′, î
′
, s ′)λLψ (+)(x, k, î, s)]

× [�̄f (y′
1, . . . , x, . . . , y′

A)λL�i(y1, . . . , x, . . . , yA)].

(47)

The target space contains initial and final wave functions and
is still extremely complicated. We now make an additional
approximation: we assume that the operator λL has a simple
one-body form. We can then define the initial and final nuclear
states in terms of Slater determinants as

�i = 1√
A!

det
[
φ(i)

n (yk)
]
n=1,...,A, k=1,...,A

, (48)

�f = 1√
A!

det
[
φ(f )

m (yk)
]
m=1,...,A, k=1,...,A

. (49)

The action of the operator λL now acting on the ith particle
only can then be written as

∫ A∏
j=1,j �=i

d3yj �̄f λ
(i)
L �i

= 1

A!

A∑
m=1

A∑
n=1

(−1)2+m+n

∫ A∏
j=1,j �=i

d3yj det
[
φ

(f )
g �=m(yk �=i)

]
× det

[
φ

(i)
h �=n(y� �=i)

]
φ̄(f )

m (yi)λ
(i)
L φ(i)

n (yi). (50)

The initial and final nuclear states now differ only by a single
one-particle state, for example, state number 1; this then
becomes∫ A∏

j=1,j �=i

d3yj �̄f λ
(i)
L �i = (A − 1)!

A!

A∑
m=1

A∑
n=1

δm1δn1φ̄
(f )
m (yi)

× λ
(i)
L φ(i)

n (yi)

= 1

A
φ̄

(f )
1 (yi)λ

(i)
L φ

(i)
1 (yi)

= 1

A
〈�f | ˆ̄φ(x)λLφ̂(x)|�i〉, (51)

where φ̂ is the Heisenberg field operator and yi → x from
the preceding integrations. Finally substituting Eq. (51) into
Eq. (47) gives

M =
A∑

i=1


i

A

T∑
L=S

∫
d3xFL(k, Ki , k′)

× [ψ̄ (−)(x, k′, î
′
, s ′)λLψ (+)(x, k, î, s)]

×〈�f | ˆ̄φ(x)λLφ̂(x)|�i〉, (52)

with


i = 1 ⇒
A∑

i=1


i = A. (53)
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Taking the complex conjugate for M results in

M∗ =
T∑

L′=S

∫
d3yF ∗

L′(k, Ki , k′)[ψ̄ (+)(y, k′, î
′
, s ′)

× λL′
ψ (−)(y, k, î, s)]〈�i | ˆ̄φ(y)λL′ φ̂(y)|�f 〉. (54)

C. Hadronic tensor

Substituting Eqs. (52) and (54) into Eq. (19) results in

dσ

dE′ d�′ = − 1

π
KIm

[
T∑

L,L′=S

FL(k, k′, K)F ∗
L′(k, k′, K)

×
∫

d3x d3y HLL′
(x, y)�LL′ (x, y, ω)

]
. (55)

In Eq. (55) the projectile-ejectile tensor HLL′
(x, y) is defined

as

HLL′
(x, y ) = [ψ̄ (−)(x, k′, î

′
, s ′)λLψ (+)(x, k, î, s)]

× [ψ̄ (+)(y, k, î, s)λL′
ψ (−)(y, k′, î

′
, s ′)],

and the polarization tensor �LL′(x, y, ω) is defined as

�LL′(x, y, ω) =
∑

n

〈n| ˆ̄φ(x)λLφ̂(x)| 0〉〈 0| ˆ̄φ(y)λL′
φ̂(y)|n〉

ω − (En − E0) + iε

+〈 n| ˆ̄φ(y)λL′
φ̂(y)|0〉〈0| ˆ̄φ(x)λLφ̂(x)| n〉

ω + (En − E0) − iε
.

(56)

In the nuclear matter approximation, Eq. (56) can be written
as

�LL′(x, y, ω) =
∫

d3q

(2π )3
e−iq·(x−y)�LL′(q, ω). (57)

Substituting Eq. (57) into Eq. (55) gives

dσ

dE′ d�′ = − 1

π
KIm

[
T∑

L,L′=S

FL(k, k′, K)F ∗
L′(k, k′, K)

×
∫

d3q

(2π )3
HLL′

(q)�LL′(q, ω)

]
, (58)

where the hadronic tensor HLL′
is given by

HLL′
(q) =

∫
d3x d3y e−iq·(x−y)HLL′

(x, y)

=
∫

d3x e−iq·x[ψ̄ (−)(x, k′, î
′
, s ′)λLψ (+)(x, k, î, s)]

×
∫

d3y eiq·y[ψ̄ (+)(y, k, î, s)λL′
ψ (−)(y, k′, î

′
, s ′)]

(59)

= HL(q)[HL′
(q)]∗. (60)

Equation (58) is our main result for this section. It is the
double differential cross section written as a contraction of
the hadronic tensorHLL′

and the polarization tensor �LL′ . The
hadronic tensor contains all the information pertaining to the

projectile and the ejectile nucleons. The nuclear distortions
are built into this quantity and will be discussed further in
Secs. II C2 and II C3. What is important to note in Eq. (59) is
that distortions to any level of sophistication can be incorpo-
rated in the projectile and ejectile wave functions. The conse-
quence of this formulation in Eq. (58) of the differential cross
section is that the “contraction of tensors” structure often seen
in elementary particle physics also holds for the case where dis-
tortions are included. This is an important result of this work.

To summarize then, starting with the most basic form of the
matrix element, the complex scattering problem is reduced to a
two-body scattering problem using the SPVAT representation
of the NN scattering operator F̂ that was successfully used in
proton-nucleus scattering reactions [1,5,10,12,20]. The scat-
tering operator, formulated in momentum space, is normally
evaluated at the asymptotic momenta. The amplitudes are then
completely determined by free scattering data [21]. Replacing
the amplitudes with their respective asymptotic momenta
values allows the integrations over the local momenta to
be performed. The remaining integrations over the spatial
coordinates are performed, and the invariant matrix element
is written in a form containing a projectile-ejectile part and
a target-space part. Taking the product of the matrix element
and its complex conjugate and applying the nuclear matter
approximation to the target tensor resulted in the form of
Eq. (58). Writing the cross section as a contraction of two
tensors is analogous to what is normally done in elementary
particle physics and usually all the complexity is encoded in
the hadronic tensor. The compact expression for the double
differential cross section given in Eq. (58), however, hides
the extreme difficulty in its numerical implementation for a
number of reasons:

(i) In general the hadronic tensor should be calculated
using distorted waves for the projectile and ejectile. The
numerical complexity associated with using distorted
waves as opposed to plane waves will be further
expanded upon in Sec. II C1. The standard choice
here that must be made is between a full partial-wave
expansion or an eikonal approximation.

(ii) The response of the nucleus to an external probe
is described by the polarization tensor. This is an
extremely complicated quantity but it can be evaluated
systematically using various approximations.

(iii) The calculation of the multidimensional integrals d3x,
d3y, and d3q significantly increases the numerical
burden.

(iv) The large number of Lorentz indices which must be
contracted: 25 in total since L,L′ ∈ {S, P, V,A, T }.
This is in contrast to, for example, electromagnetic
two-body electron-proton scattering, where one has
to contract at most two Lorentz indices. To provide
a systematic way of evaluating this contraction we
classify the tensors according to the number of Lorentz
indices they have. This is called the rank of the tensor,
and the combinations which may be made up from
the set {S, P, V,A, T } by taking pairs are classified
according to the rank in Table I.

The factors mentioned above have been significant
in retarding progress in the analysis of quasielastic
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TABLE I. Grouping of ranks of target polarizations based on the
Lorentz indices needed to specify a particular polarization.

Rank Polarization tensors

0 �SS �SP �PS �PP

1 �SV �SA �PV �PA

�V S �V P �AS �AP

2 �ST �PT �V V �V A

�AV �AA �T S �T P

3 �V T �AT �T V �T A

4 �T T

proton-nucleus scattering using distorted waves. In the next
section we study the hadronic tensor in detail.

1. Hadronic tensor: Plane-wave case

To compute one factor of Eq. (60) is computationally
very demanding in a distorted-wave formulation and therefore
the plane-wave case is presented first. The position space
representation of the incoming Dirac plane wave is given by

ψ (+)(x, k, î, s) = U (k, î, s)eik·x, (61)

and the outgoing Dirac plane-wave spinor by

ψ (−)(x, k′, î
′
, s ′) = U (k′, î

′
, s ′)eik′ ·x, (62)

in which the Dirac spinor is

U (k, î, s) =
√

Ek + M

2M

[
φ(î, s)

�σ ·k
Ek+M

φ(î, s)

]
, (63)

with E2
k = k2 + M2. The Pauli spinor φ(î, s) is defined as

φ(î, s) =
∑
sz

D(1/2)
szs

(î)χs, (64)

in which D(1/2)
szs is the Wigner-D function and the polarized

two-component spinor χs is a linear combination of χsz= 1
2

and
χsz=− 1

2
defined as

χs = χsz= 1
2
+ χsz=− 1

2
. (65)

The orientation of the spin polarization is obtained by
performing a Wigner-D transformation on χs . We define the
longitudinal, sideways, and normal polarization directions as
l̂, ŝ, and n̂, respectively. The Wigner-D function is a 2 × 2
matrix given in Ref. [22] as

D(1/2)
szs

(î) =
[
e−i(α+γ )/2 cos β

2 −e−i(α−γ )/2 sin β

2

ei(α−γ )/2 sin β

2 ei(α+γ )/2 cos β

2

]
, (66)

in which the quantization axis î represents the spin polariza-
tions l̂, ŝ, and n̂. These polarizations are related to the Euler
angles used in Eq. (66) as follows for

l̂ : α = 0β = θc.m.γ = 0, (67)

ŝ : α = 0β = π/2 + θc.m.γ = 0, (68)

n̂ : α = π/2β = π/2γ = 0. (69)

Substituting Eqs. (61) and (62) into HL(q) and performing the
integration over the d3x and d3y integrals results in

HLL′
(q) = [(2π )3δ(k − k′ − q)]2[Ū (k′, î

′
, s ′)λLU (k, î, s)]

× [Ū (k, î, s)λL′
U (k′, î

′
, s ′)]. (70)

As an example, we give the result using the SS interaction
where L = S → λ[L=S] = I4 and trace techniques are used to
evaluate Eq. (70)

HSS(q) = [(2π )3δ(k − k′ − q)]2 1

16M2
[4k · k′ + 4k · s ′k′ · s

− 4s · s ′(k · k′ + M2) + 4M2]. (71)

Substituting Eqs. (71) and (76) into Eq. (58) and performing
the integration over q generates a leading δ(0) factor. The
δ(0) factor evaluates to infinity and should strictly be com-
puted numerically; however, one can apply a common trick,
namely,

δ(0) = V

(2π )3
= 1

(2π )3

(
A

ρB

)
, (72)

where ρB is the baryon density, and

ρB = γ

6π2
k3
F , (73)

where the degeneracy factor γ = 4 for nuclear matter. This
leads to

δ(0) = 3π2A

2k3
F

, (74)

where k3
F is the Fermi momentum. We then arrive at(
dσ

dE′ d�′

)
PW

= − 1

π
K(FS(k, k′, K)F ∗

S (k, k′, K))
(

3π2A

2k3
F

)

× 1

16M2
[4k · k′ + 4k · s ′k′ · s − 4s · s ′(k · k′ + M2)

+ 4M2][Im{�SS(k − k′, ω)}], (75)

Eq. (75) is then an analytical solution to compute the polarized
double differential cross section in the plane-wave limit for
the SS interaction only. The same procedure is followed
to derive a similar expression to Eq. (75) using the PP
interaction. The polarization tensor is based on the relativistic
Fermi-gas model and treats the nuclear ground state as a
system of noninteracting fermions at finite density. Note that
the polarization tensors for Im {�SP } = Im {�PS} = 0 and
for [23,24]

Im{�SS} = − 1

8π |q| (4M∗2 − q2)(E∗
F − E∗), (76)

Im{�PP } = q2

8π |q| (E∗
F − E∗), (77)

where M∗ is the reduced mass, the four-vector q2 = ω2 − q 2,
and

E∗ = min(E∗
F ,Emax), (78)
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in which

Emax = max

{
E∗

F − ω,
1

2

[
|q|

(
1 − 4M∗2

q2

) 1
2

− ω

]}
.

(79)

The quantity E∗
F is the energy at the Fermi momentum given

by

E∗
F =

√
k2

F + M∗2. (80)

The polarization observables are defined as linear com-
binations of polarized double differential cross sections. For
simplicity we let

dσszs ′
z
= dσ

d�′dE′ (si, sf ), (81)

where si = (j, sz) and sf = (i ′, s ′
z) refer to the initial and

final spin polarizations, respectively, and j ∈ {l̂; ŝ; n̂} and i ′ ∈
{l̂′; ŝ′; n̂′}. We introduce the short-hand notation u to designate
the spin projection direction sz = 1

2 or “spin-up” and d to
designate the spin projection direction sz = − 1

2 or “spin-
down.” Polarization observables are then calculated as

Di ′j = dσuu − dσdu − dσud + dσdd

dσuu + dσdu + dσud + dσdd

. (82)

The unpolarized double differential cross section is given
by the denominator in Eq. (82). The analyzing power Ay is
the ratio of initially polarized nucleons left unpolarized after
interacting with the target nucleus and is calculated using

Ay = (dσuu + dσdu) − (dσud + dσdd )

dσuu + dσdu + dσud + dσdd

. (83)

2. Hadronic tensor: Distorted-partial-wave case

Introducing distorted waves for the projectile and ejectile in
quasielastic proton-nucleus scattering represents a significant
improvement over previous work [2–7,25] which utilized the
plane-wave impulse approximation. A choice must be made
between a full partial-wave expansion or some approximation
which retains the essentials of distortion effects. To illustrate
the numerical challenge one faces in calculating HLL′

using
full distorted partial waves consider the partial-wave expansion
of the projectile wave function [10,26–28]

ψ (+)(x, k, î, s)

= 4π

kx

(
Ek + M

2M

) 1
2 ∑

ljmlsz

ileiδlj

〈
l
1

2
msz|j,m + sz

〉

×D( 1
2 )

szs (î) Y ∗
lm(x̂)

[
glj (kx)Ylj,m+sz

(x̂)

if2j−l,j (kx)Y2j−l,j,m+sz
(x̂)

]
, (84)

with a similar expression for the ejectile wave function. The
above equation has the following notation:

(i) x = |x| and k = |k|.
(ii) 〈l 1

2mlms |jmj 〉 is a Clebsch-Gordon coefficient.
(iii) Ylm(x̂) is a spherical harmonic function.

(iv) glj (z) and flj (z) are radial wave function solutions
of Schrodinger-like radial differential equations that
contain the central, spin-orbit, and Darwin potentials
[26,27].

(v) Yljµ(x̂) is a spin-spherical harmonic function given by

Yljµ(x̂) =
∑

t ′z

〈
l
1

2
, µ − t ′z, t

′
z|jµ

〉
Yl,µ−t ′z (x̂)χt ′z . (85)

(vi) The relativistic Coulomb phase shift δlj is an implicit
function of the projectile and target masses, the projec-
tile and target atomic numbers, and the momentum k.

From Eq. (84) one can see that the incident projectile has
a sum over l up to some lmax where typically the amount of
partial waves needed to give a relatively accurate description
of the distortion effects is a function of the physical size of the
target nucleus, the range of the interaction, and the energies of
the colliding particles. For instance, one or two partial waves
will suffice in some scattering problems, whereas others will
require hundreds of partial waves. Coupled with this is a sum
over j = |l − 1

2 |, l + 1
2 . There is, however, a sum over l in

the ejectile wave function as well, together with a sum over j

and (the source of considerable increase in computation) over
ml (the projection of l). The three-dimensional projectile and
ejectile wave functions must be evaluated for every combina-
tion of quantum numbers. Additionally, the integrations over
all space is nested in the integral over q. Note also that in the
distorted-wave case, the functions glj and flj are not analytical
functions but must be stored in large arrays (keeping in mind
the large number of quantum number combinations) further
adding to the numerical burden. Together with the strong
oscillatory nature of the integrand and convergence issues of
the integral, it quickly becomes clear that a full partial-wave
expansion is an extremely numerically intensive operation.

3. Hadronic tensor: Eikonal distorted-wave case

In contrast to the full partial-wave expansion, the Dirac
eikonal distorted wave [29] offers a semianalytical form
closely resembling the plane-wave expression and with the
contribution of distortions effects neatly isolated in a mul-
tiplicative factor under certain conditions. Eikonal distorted-
wave functions introduced by Glauber removed the computa-
tional burden of dealing with partial waves at high energies
and have since been improved upon to apply to a wide range
of scattering problems [30–38]. For our application, we follow
the familiar procedure described by Amado [29] to derive the
incoming distorted-wave function with momentum k to first
order in the eikonal limit as

ψ (+)(x, k, î, s)

=
√

Ek + M

2M

[
I2
�σ ·p̂

Ek+M+Vs−Vv

]
eik·xeiS(+)(x)φ(î, s), (86)

where the incoming eikonal phase in cylindrical coordinates
with x = (b, z) is

S(+)(b, z) = −M

K

∫ z

−∞
dz′{Vc + Vso[�σ · (b × K) − iKz′]},

(87)
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where we have replaced the gradient operator p̂ in Eq. (87) by
the average momentum defined as

K = 1
2 (k + k′). (88)

The central Vc(x) and spin-orbit Vso(x) potentials are defined
as

Vc(x) = Vs + E

M
Vv + V 2

s − V 2
v

2M
; (89)

Vso(x) = 1

2M[E + M + Vs − Vv]

1

x

d

dx
[Vv − Vs], (90)

where the Lorentz scalar Vs(x) ≡ Vs and vector Vv(x) ≡ Vv

potentials are calculated in accordance to the prescriptions
given in Ref. [39].

The outgoing eikonal distorted-wave function is derived by
applying the time reversal operator T to the incoming wave
function:

ψ (−)(x, k′, î
′
, s ′) = T [ψ (+)(x, k′, î

′
, s ′)] (91)

=
√

Ek′ + M

2M

[
I2
�σ ·p̂

Ek′+M+V ∗
s −V ∗

v

]
eik′ ·xe−iS(−)(x)

×
∑
s ′
z

(−)
1
2 −s ′

z

(
D(1/2)

s ′
zs

′ (î
′
)
)∗

χ−s ′
z
, (92)

and the outgoing eikonal phase given then by

S(−)(x) = −M

K

∫ ∞

z

dz′{V ∗
c + V ∗

so[�σ · (b × K) − iKz′]}.
(93)

In general the eikonal phases S(x) contained in the wave
functions ψ (+) and ψ (−) are 2 × 2 matrices acting on the
Pauli spinors. However, in this work we neglect the spin-orbit
potential and consequently S(x) becomes proportional to the
identity matrix. Also, before substituting Eqs. (86) and (92)
into HL(q), an additional set of approximations is made. First,
for the same reasons as in Ref. [11], the gradient operators in
the lower components of the Dirac spinors in Eqs. (86) and (92)
are replaced by their expectation values k and k′, respectively,
to first order. Second, the assumption is made that E + M

dominates Vs − Vv to such an extent that the latter can be dis-
carded in the lower components of the incoming and outgoing
Dirac eikonal distorted-wave functions. Applying these to the
wave functions and substituting them into HL(q) leads to

HL(q) = [ŪλLU ]

{∫
b d2b dzei(k−k′−q)·(b,z)

× exp

(
−i

M

K

∫ ∞

−∞
dz′Vc(b, z′)

)}
, (94)

where the vector x = (b, z), and we have written the
three-dimensional spatial integral d3x in terms of cylindrical
coordinates. We can recast Eq. (94) in a compact form as

HL(q) = [Ū (k′, î
′
, s ′)λLU (k, î, s)]G(q), (95)

where

G(q) =
∫

d3xei(k−k′−q)·x exp

(
−i

M

K

∫ ∞

−∞
dz′Vc(b, z′)

)
.

(96)

Equation (95) illustrates the incredible usefulness in using
eikonal distorted waves. One is able to separate all the effects
related to the nuclear distortions from the effects related
to the nuclear spin couplings of the particles. This form
makes the eikonal approach such a powerful and insightful
approximation because it allows one to systematically study
these modular structures independently and assess their
effects. However, Eq. (95) is again an example where the
simplicity of the expression masks the complexity of the
numerical implementation. The integrand contained in G(q)
is a multidimensional oscillatory integral dependent on six
independent variables b, φb, z, q, θq , and φq in the case of
cylindrical coordinates. Although it has a form similar to the
Fourier-Bessel type eikonal scattering amplitude so regularly
found in the literature, the presence of the integration variable
q prevents further simplification of the spatial integral.
In this form the integrations over z and φb now have to
be explicitly performed. Even though the use of eikonal
distorted-wave functions leads to greater transparency with
respect to physical interpretations compared to the traditional
partial-wave expansion, the point is reached where one has to
resort to the numerical evaluation of specifically Eq. (96).

III. CALCULATION PROCEDURE

The integration over q in Eq. (58) in full reads(
dσ

dE′ d�′

)
DW

= − 1

π
K

T∑
L,L′=S

|FL(k, K, k′)|2
∫ 1

0
dq

×
∫ 1

0
sin θq dθq

∫ 1

0
dφq

× q2

4π
(qmax − qmin)HLL′

(q, θq, φq)

×Im {�LL′(q, θq, φq, ω)}, (97)

where the appropriate transformation equation, namely,∫ b

a

f (x ′) dx ′ →
∫ 1

0
f ((b − a)x + a)(b − a) dx, (98)

is applied to the integrals. Again, using the SS interaction only,
the integral is written as(

dσ

dE′ d�′

)
DW

= − 1

π
KFS(k, K, k′)F ∗

S (k, K, k′)

×
∫ qmax

qmin

dqF (q, ω), (99)

where

F (q, ω) =
∫ 1

0
dθq dφq sin θqHSS(q)Im {�SS(|q|, ω)}

= Im {�SS(q, ω)}
∫

d�qHS(q)[HS(q)]∗, (100)

and HS(q) is given by Eq. (95) with λL → λS = I4. Equa-
tion (100) is calculated as follows:

(i) A proton with laboratory energy Tlab = 400 MeV is
used and is scattered off a 40Ca target at a center-of-mass
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(e) ω = 275 MeV
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FIG. 1. Function F (q, ω) is shown with the Fourier series interpolant given in the text. The crosses indicate nonzero grid points on the q axis.

angle θc.m. = 40◦. The incident particle has spin quanti-
zation axis and spin projection (n̂, 1

2 ) and the outgoing
particle (n̂, 1

2 ).
(ii) An arbitrary number of “q-grid” points can be used

to generate the function F (q, ω); however, for this
calculation, 40 grid points typically provided sufficient
nonzero values to construct an appropriately smooth
F (q, ω).

(iii) Gaussian quadrature is used to compute HS(q). To
converge, this multidimensional integral requires a
minimum of 50 Gaussian integration points in each
dimension. Additionally, the “infinity” limits for the

calculation of the eikonal phase in Eq. (96) were set
to the maximum range in which the central potential
Vc �= 0 for a specific target. The impact parameter value
b is set to a minimum value where the distorted wave
coincides with the plane wave.

(iv) Taking the product of HS(q) and its complex conjugate
[HS(q)]∗ solves the calculation of the six-dimensional
integral nested in the nine-dimensional integral of
Eq. (99).

(v) Gaussian quadrature is used to compute∫
d�qHS(q)[HS(q)]∗. To converge, this double

integral (which contains the nested six-dimensional
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TABLE II. Fourier coefficients for Eq. (101) used to generate the interpolant functions F (q) for ten ω values.

ω a0 n = 1 n = 2 n = 3 n = 4 n = 5 w

75 0.004798 an 0.2246 −0.07723 0.009182 0.001712 −0.0126 2.821
bn 0.1098 0.001151 −0.03368 0.04606 −0.009644

100 0.1853 an −0.2096 0.1054 −0.04718 0.04304 −0.003087 3.174
bn 0.2323 −0.005559 0.01143 −0.01069 0.0008471

125 0.3012 an −0.002143 −0.1335 0.09079 −0.007971 −0.01921 2.797
bn 0.4091 −0.1192 −0.0002197 0.05805 −0.01696

150 0.3918 an −0.2712 −0.01373 0.07594 −0.06597 0.01598 2.902
bn 0.4534 −0.2029 0.09222 −0.007007 −0.01004

175 0.4199 an −0.3609 −0.02922 0.09189 −0.06786 0.01887 2.874
bn 0.4586 −0.223 0.09257 −0.003499 −0.01109

200 0.4153 an −0.4845 0.07271 0.02189 −0.03825 0.01499 2.909
bn 0.3133 −0.226 0.1131 −0.04817 0.009294

225 0.382 an −0.5271 0.2177 −0.0857 0.04091 −0.009284 3.006
bn 0.005177 −0.06416 0.03843 −0.01847 0.004432

250 0.3157 an −0.4063 0.1814 −0.06474 0.0199 −0.004281 3.036
bn −0.1786 0.08986 −0.04264 0.02192 −0.004418

275 0.9568 an −0.2865 −0.934 0.3436 0.05794 −0.06808 2.189
bn −1.088 0.7291 0.4096 −0.245 −0.04082

300 6.977 an −12.24 9.047 −4.893 1.886 −0.446 1.693
bn −0.3726 0.2234 −0.1646 −0.08791 −0.01425

integral of above) requires a minimum of 60
Gaussian integration points in each dimension. This
numerical integration step effectively computes the
eight-dimensional integral F (q, ω).

(vi) We employ the powerful MATLAB cftool package to fit
F (q, ω).

(vii) For each value of ω we find that for this calculation,
F (q, ω) is well reproduced by the following Fourier
series

F (q, ω) = a0

2
+

5∑
n=1

[an cos(nwq) + bn sin(nwq)],

(101)

where the ω-dependent coefficients for this calculation
are given in Table II. As an example, the interpolation
procedure is shown in Fig. 1.

By substituting Eq. (101) into Eq. (99) the analytical
expression for the polarized double differential cross section
is then

dσ

dE′ d�′

=
5∑

n=1

∫ qmax

qmin

dq

(
a0

2
+ [an cos(nwq) + bn sin(nwq)]

)

= a0(ω)

2
(qmax − qmin) +

5∑
n=1

{
bn(ω)

nw
[cos(nwqmin)

− cos(nwqmax)] + an(ω)

nw
[sin(nwqmax) − sin(nwqmin)]

}
,

(102)

and we can use Eq. (102) to calculate the double differential
cross section for each value of ω. Figure 4 shows the
unpolarized double differential cross section for the plane-
wave calculation for the rank-0 polarizations compared to the
unpolarized double differential cross section for the distorted-
wave calculation for the rank-0 polarization. This result our
attempt to calculate the distorted-wave double differential
cross section for quasielastic scattering.

IV. RESULTS

The results using the derived expression for the polarized
double differential cross section for quasielastic scattering in
the plane-wave case for the SS interaction given in Eq. (75)
are shown in Figs. 2(a) and 2(b) shows that for the PP
interaction.

Our calculations of the polarized double differential cross
sections presented in Figs. 2(a) and 2(b) are for an incident
proton with Tlab = 400 MeV scattering off a 40Ca target at
θc.m. = 40◦ with incoming quantization axis s and outgoing
axis s ′. For the polarization orientations using the short-hand
notation to indicate the spin projections, one finds that the mag-
nitudes of the uu and dd differential cross sections are equal
and lie on top of each other in Fig. 2, hence only one curve is
visible for the two cross sections in the plot. This trend is the
same for the du and ud directions; however, the magnitude for
these projections is smaller than for the uu and dd projections.
In the calculation the quasielastic peak is located at an energy
transfer ω = 175 MeV for all the polarized differential cross
section cases. We summarize this result as follows: For the
case with incoming quantization axis ŝ and outgoing axis
ŝ′ denoted as (ŝ, ŝ′), the respective magnitudes are denoted
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FIG. 2. Polarized double differential cross sections for the plane-wave case for the ŝ and ŝ′ quantization directions at Tlab = 400 MeV on
40Ca, θc.m. = 40◦. In the (ŝ, ŝ ′) polarized differential cross sections, the uu and dd states are equal and du = ud , hence only two sets of curves
are visible in the plots.

as uu = dd > du = ud, as explained above, and the location
of the respective quasielastic peaks as uu = dd = du = ud.
Table III summarizes the results for the other quantization
directions for the SS and PP interactions.

In Table III the polarization directions (n̂, n̂) have only one
set of polarized nonzero differential cross sections, namely,
uu and dd for the SS interaction and du and ud for the PP
interaction; hence the comparison of the relative positions of
the quasielastic peak for these polarizations become redundant.
From the table one finds that (l̂, l̂′) and (ŝ, ŝ′) have equal profiles
for the SS interaction; however, “flipped” profiles for the PP
interaction. These two polarizations represent a π/2 rotation
difference and for a spherical symmetric potential, as in these
calculations, the result is consistent and expected. Similarly,
for the SS interaction, the (l̂, ŝ′) and (ŝ, l̂′) profiles are flipped for
the magnitudes. For the PP interaction and both polarization
directions (l̂, ŝ′) and (ŝ, l̂′), the magnitudes and positions of the
quasielastic peaks are identical and is a consistent result for the
spherically symmetric target nucleus used in the calculations.
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FIG. 3. Unpolarized double differential cross sections for the SS
interaction, the PP interaction, and the rank-0 polarization for the
plane-wave calculation with Tlab = 400 MeV proton on 40Ca at θc.m. =
40◦. The scale on the left of the plot refers to the SS calculation and
that for the PP calculation is shown on the right. Note that the PP
differential cross section is an order of magnitude smaller than that
for the SS calculation.

As stated previously, the unpolarized double differential
cross section is given by the denominator in Eq. (82) and
is shown for the SS (circle-dashed) and PP (cross-dotted)
interactions in Fig. 3. The sum of the four unpolarized
differential cross sections,(

dσ

dE′ d�′

)
rank-0

=
(

dσ

dE′ d�′

)
SS

+
(

dσ

dE′ d�′

)
SP

+
(

dσ

dE′ d�′

)
PS

+
(

dσ

dE′ d�′

)
PP

,

(103)

where each double differential cross section in Eq. (103) on
the right-hand side is the unpolarized double differential cross
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FIG. 4. Unpolarized rank-0 double differential cross sections for
the plane-wave (PW) and distorted-wave (DW) calculations. The
differential cross sections are for the incoming n̂ and outgoing n̂
quantization directions at Tlab = 400 MeV on 40Ca, θc.m. = 40◦. Each
circle in the distorted-wave double differential cross section is the
integral value of each interpolation function shown in Fig. 1. Note that
the distorted-wave calculation is above the plane-wave calculation at
lower momentum transfer values, as this is a consequence of using
Eq. (74) as opposed to a numerical evaluation of δ(0). This factor for
δ(0) leads to the sharp cutoff of the plane-wave calculation at lower
momentum transfer values and is not a result of nuclear distortions
seemingly having an opposite effect at lower momentum transfer
values.
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FIG. 5. Polarized double differential cross sections for the distorted-wave case for the s and s ′ quantization directions at Tlab = 400 MeV
on 40Ca, θc.m. = 40◦. In the (ŝ, ŝ ′) polarized differential cross sections, the uu and dd states are equal and du = ud , hence only two sets of
curves are visible in the plots.

 0.48
 0.5

 0.52
 0.54
 0.56
 0.58
 0.6

 0.62
 0.64
 0.66
 0.68

 50  100  150  200  250  300  350

D
l’l

ω (MeV)

DW

PW -0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200  250  300  350

D
l’l

ω (MeV)

DW

PW

 0.626
 0.628

 0.63
 0.632
 0.634
 0.636
 0.638

 0.64
 0.642
 0.644
 0.646
 0.648

 50  100  150  200  250  300  350

D
s’

s

ω (MeV)

DW

PW -0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200  250  300  350

D
s’

s

ω (MeV)

DW

PW

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 50  100  150  200  250  300  350

D
nn

ω (MeV)

DW

PW

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200  250  300  350

D
nn

ω (MeV)

DW

PW

FIG. 6. Plane-wave and distorted-wave spin observable values for Dl′ l , Ds′s , and Dnn for protons with laboratory incident energy of
Tlab = 400 MeV on 40Ca for quasielastic scattering at θc.m. = 40◦. The figures on the right are presentations in which the vertical axes have
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TABLE III. Magnitude and position comparison for the polarized differential cross sections for the plane-wave calculations for the different
polarization directions. These polarized double differential cross sections are used to compute the unpolarized double differential cross sections
and spin observables.

Polarization SS PP

(l̂, l̂′) Magnitude uu = dd > du = ud uu = dd < du = ud

Position uu = dd = du = ud uu = dd > du = ud

(ŝ, ŝ′) Magnitude uu = dd > du = ud uu = dd > du = ud

Position uu = dd = du = ud uu = dd < du = ud

(n̂, n̂) Magnitude uu = dd > du = ud = 0 uu = dd = 0 < du = ud

Position – –

(l̂, ŝ′) Magnitude uu = dd < du = ud uu = dd < du = ud

Position uu = dd = du = ud uu = dd < du = ud

(ŝ, l̂′) Magnitude uu = dd > du = ud uu = dd < du = ud

Position uu = dd = du = ud uu = dd < du = ud

section, generates the unpolarized rank-0 double differential
cross section. One therefore needs a total of 16 polarized
double differential cross sections to compute the rank-0
differential cross section. The solid line in Fig. 3 indicates
the unpolarized rank-0 differential cross section. Clearly, the
SS cross section dominates and contributes more the 90% of
the unpolarized rank-0 differential cross section.

The relationship between the plane-wave calculation and
the distorted-wave calculation is essentially contained in the
hadronic tensor and is given by Eq. (95). The effect the
multiplicative factor G(q) has on the differential cross section
is to reduce its magnitude in the distorted-wave case and is
shown in Fig. 4.

In using the expression for δ(0) given in Eq. (74), the plane-
wave calculation has a sharp cutoff at lower momentum trans-
fer values. The result of this is that the plane-wave calculation
is now below the distorted-wave calculation and is therefore
not an opposite effect of distortions at lower momentum
transfer values. This result represents a successful calculation
of the distorted-wave quasielastic differential cross section for
proton-nucleus scattering within a full relativistic framework.
The mixing of polarization states is controlled by the pro-
portionality factor [ŪλLU ] and yields the same relationships
given in Table III for the distorted-wave case. To illustrate
this result, Fig. 5 shows the distorted-wave polarized double
differential cross sections for the polarization directions (ŝ, ŝ′).
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FIG. 7. Same as Fig. 6, but for spin observables Dl′s and Ds′ l .
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Comparing the distorted-wave calculation with those for
the plane-wave calculation (Fig. 5 vs Fig. 3), the magnitude
differences between different polarization directions are equal,
as are the locations of the quasielastic peaks.

In contrast to the differential cross sections of the distorted-
wave calculation which are similar to that for the plane-wave
calculation, the spin observables are very interesting.

In Figs. 6 and 7 the figures on the right show spin
observables as they are normally presented in the literature.
One notices that these observables are flat; however, when
one changes the scale on the vertical axis, there is substantial
structure in the curves. None of the spin observables show
similar structure, and therefore their interpretation becomes
difficult. What is clear, however, is that there is very little
influence of distortion on spin observables.

V. CONCLUSION

In this paper we have developed a relativistic formalism
that calculates the quasielastic polarized double differential
cross section using plane waves and an attempt is made using
distorted waves. We find that the simple mathematical structure
of the contraction of two tensors to calculate the differential

cross section also holds when distortions are included in the
formulism. The effect distortions have on the differential cross
section is to reduce the magnitude of the differential cross
section. The general structure and features of the polarized
differential cross sections are preserved and are identical
for the plane-wave and distorted-wave calculations. This is
because the distortions enter as a multiplicative factor in the
differential cross section. The proportionality factor in the
differential cross section contains the polarized incoming and
outgoing Dirac spinors and in contrast controls the polarization
state mixing in the case of the rank-0 calculations. Further-
more, using the rank-0 unpolarized differential cross sections,
the plane-wave and distorted-wave spin observables were
calculated and compared, and one can conclude that distortions
have a negligible effect on spin observables for the rank-0 case.
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