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The coupled Langevin equations in two-dimensional collective space are used to study the dynamics of
nuclear neck growth. Special attention is paid to the effects of coupling between neck and radial degrees of
freedom on the evolution from dinucleus to mononuleus. The dynamic model is applied for the study of neck
evolution of the mass asymmetric system 50Ti + 249Cf. In order to estimate the effects of the coupling, we use
the equations in the coupled and uncoupled cases. Our results show that the coupling between neck and radial
motions reduces the neck growth velocity and delays the transition from dinuclear to mononuclear regimes. In
addition, by solving these dynamic equations we get the probability distributions of radial degree of freedom at
the injection point sin in the asymmetric fission valley. In this way, sin is no longer an adjustable parameter in the
fusion-by-diffusion model. The distributions obtained are located at positions very close to s = 0. Moreover, the
coupling significantly reduces the fluctuation in the sin space. Our results show that the quasifissionlike events are
unlikely to take place during the transition period for the mass asymmetric systems. Based on the sin distribution
obtained, the evaporation residue (ER) cross sections for 3n and 4n evaporation channels in the 50Ti +249Cf
reaction leading to formation of 296120 and 295120 isotopes are calculated. The maximum ER cross sections in
3n and 4n channels with the sin distributions are equal to 0.1 and 0.065 pb, respectively, which are more than
two times larger than those obtained by the fusion-by-diffusion model with the sin = 0 assumption.
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I. INTRODUCTION

In our previous work [1], we demonstrated that evolution
from dinucleus to mononucleus plays an important role in
the formation of a superheavy nucleus. In that work, the
dynamics of neck growth for the reaction system 136Xe +
136Xe was simulated in terms of the two-dimensional Langevin
equation. The simulation results have shown that for the
136Xe + 136Xe reaction, more than 80% of quasifission events
occur during the transition from dinuclear to mononuclear
regimes. Incorporating this essential physical ingredient in
the calculations, the fusion-by-diffusion model [2,3] nicely
accounts for the experiment of the 136Xe + 136Xe reaction
performed in Dubna [4].

However, in our previous work we used a schematic
version of the liquid drop model [5,6] to describe the dynamic
process. In that model, the geometrical shape of the system
is parametrized in terms of two spheres, representing the
approaching nuclei, joined by a conical or cylindrical neck.
This description of the configuration allows for a simple
polynomial approximation to the liquid-drop potential energy
and analytic formula for the one-body dissipation function
[6–8]. However, a conical or cylindrical neck may be not so
realistic in shape. In this connection, both the potential energy
and the dissipation function of this schematic model are only
approximately valid. In order to overcome this deficiency, in
this work we use a more realistic dynamic model based on
the nuclear deformation potential energy calculated in the
framework of the finite range liquid-drop model (FRLDM)
[9,10], the one-body dissipation [11–14], and the shape of
nuclear surface specified by two spheres smoothly joined with

a hyperboloidal neck. With this model we make a detailed
analysis of mass asymmetric systems that are more favorable
for synthesis of superheavy elements because the fusion
probability increases with the decrease of the product of the
charge numbers Zp and Zt of projectile and target nuclei,
respectively. For mass symmetric systems, the neck degree
of freedom is weakly coupled to the others. However, for
mass asymmetric systems, usually the effects of the coupling
between different degrees of freedom should be important. In
the following, we will pay special attention to the influence
of the coupling between the neck and radial degrees of
freedom in the dynamical evolution of the nuclear systems.
The coupling between the neck and mass asymmetric degrees
of freedom is not taken into account, mostly due to the fact that
motions of the neck and mass asymmetry happen in different
time scales. As shown below, the neck grows very rapidly,
therefore the transition from dinucleus to mononucleus is
realized in a short time scale. On the other hand, the mass
asymmetry of the system changes very slowly, especially at the
early stages of neck growth, the flow of nuclear mass through
the window between two contact nuclei is strongly damped
because the friction of the asymmetric degree of freedom
is approximately in inverse proportion to the radius of the
neck [6].

The main motivation of this work concerns a modification
of the fusion-by-diffusion model [2,3]. This model brings
out the basic physics of the observed hindrance with an
elementary formula. However, in formulating the model,
numerous approximations were introduced. One of these is
that the dynamics of the neck growth phase was bypassed by
introducing an adjustable parameter sin, the separation between
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the surfaces of the approaching nuclei at which injection into
the asymmetric fission valley takes place. This may bring
about uncertainty in the fusion hindrance factor (or the fusion
probability) because it sensitively depends on the parameter
sin for the reaction systems with large Coulomb parameter z =
ZpZt/(A1/3

p + A
1/3
t ). In our approach, the dynamics of neck

growth is taken into account in terms of the multidimensional
Langevin equations. By solving these dynamic equations
event by event, the probability distribution of sin is obtained.
Therefore, sin is no longer a free parameter in the modified
fusion-by-diffusion model. In order to estimate the effects
of this modification, we will calculate the formation cross
sections of superheavy nuclide 295,296120 via a hot fusion
reaction of 50Ti + 249Cf and compare the results with those
published in Ref. [15].

The paper is arranged as follows. In Sec. II, dynamic evolu-
tion from dinucleus to mononucleus is simulated in terms of the
multidimensional Langevin equations. This is followed by a
presentation and discussion of the coupling effects on the neck
growth. With the sin distributions obtained in the simulations,
the formation cross sections of superheavy nuclei 295,296120
are calculated and the results are presented in Sec. III.
Finally, the summary and conclusion are given in Sec. IV.

II. DYNAMICS OF NECK GROWTH

The orientation effects of deformed nuclei play an important
role in the subbarrier fusion. However, it is not so easy to
define the potential energy of deformation for the case of
two touching arbitrary oriented deformed nuclei. The main
difficulty here stems from the lack of knowledge about the
subsequent evolution of the nuclear shapes after two nuclei
come into contact. For simplicity, target deformation is not
taken into account in the dynamic simulations, and the shape
of the system is specified in terms of two spheres with radii
R1 and R2 smoothly connected by a hyperboloidal neck.
An example of a shape described in this way is shown in
Fig. 1. Three variables may be defined for a given shape:
elongation L = (l2 − l1) + R1 + R2, mass asymmetry η =
(A2 − A1)/(A1 + A2), and neck size n. Here l1,2 are the center
positions of two outside spheres and A1,2 denote the mass
numbers of two portions left and right of the middle vertical
plane located at z = l3. Instead of elongation, we use s =
L − 2(R1 + R2), i.e., the separation between the surfaces of
the approaching nuclei in the Monte Carlo simulations and
neck size n is defined as neck radius at z = l3 with l3 the
center position of the neck portion.

The coupled Langevin equations of motion in multidimen-
sional collective space have the form

dqi

dt
= µijpj ,

(1)
dpi

dt
= −1

2
pjpk

∂µjk

∂qi

− ∂V (q)

∂qi

− γijµjkpk + θij ξj (t),

where qi ≡ s, n stand for the collective coordinates, pi its
conjugate momenta, V (q) is the (FRLMD) potential energy
of deformation, µij denotes the inverse matrix elements of the
inertia tensor mij , and γij is the friction tensor. The normalized
random variables ξj (j = 1, 2) are assumed to be independent

FIG. 1. A shape described by two spheres with radii R1 and R2

smoothly connected with a hyperboloidal neck. li (i=1,2,3) denote the
center positions of three portions. The surface of the hyperboloidal
neck is specified by a3 and c3. In the case of hyperboloidal neck
shape, the value of a3 is equal to the neck radius at l3, i.e., a3 = n.
The quantity c3 is imaginary for this shape and hence not shown.

white noises. The strength θij of the random force is given by
θikθkj = T γij with T the temperature of the heat bath. We make
the Werner-Wheeler approximation [16,17] for incompressible
and irrotational flow to calculate the collective inertia. The
following expression is used for one-body dissipation [11–14]:

γij = ρmv̄πn̄2f (n)δsj + 2πρmv̄

∫ l2+R2

l1−R1

ρs√
1 + ρ

′2
s

×[(Aiρ
′
s + A

′
iρs/2)(Ajρ

′
s + A

′
j ρs/2)]dz, (2)

where the primes denote differentiation with respect to z, and
ρm is the nuclear mass density, v̄ is the average nucleon speed,
n̄ is the average neck radius, and ρs stands for the radius of
nuclear surface in a cylindrical coordinate; the quantities Ai

and Aj are defined in Ref. [17] as a function of z and q. The
first and second terms in Eq. (2) are the window (γ window

ij ) and
wall (γ wall

ij ) dissipation tensors, respectively. For the window
dissipation, only the radial element γ window

ss is important; the
others are negligible in magnitude. In order to make a smooth
transition from a dinuclear regime to a mononuclear one, we
introduce a weight function f (n) in the window term with an
expression similar to the one used in Ref. [6],

f (n) = cos2

[
1

2
π

(
n

Ri

)2
]

, (3)

with Ri = R1 if R1 � R2; otherwise Ri = R2.
We set the initial coordinate and momentum values of radial

motion, s(0) = 0 and ps(0) = pr , based on an assumption
that the results of the first step may give initial conditions of
the second step [18]. Here pr is the radial momentum at the
contact point with its distribution f (pr ) calculated in terms of
the surface friction model (SFM) [1,19–21] during the capture
process.

As an example, the calculated radial momentum distribu-
tions at the contact point are presented in Fig. 2 for the system
50Ti + 249Cf at the incident energies of 235 and 245 MeV,
respectively. For the neck motion, the initial conditions may
be approximately estimated as follows. As two nuclei approach
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FIG. 2. The radial momentum distributions at the contact point
for the system 50Ti + 249Cf at the incident energies of 235 (open
circles) and 245 MeV (filled circles), respectively. The distributions
are calculated in terms of the surface friction model (SFM).

the contact point, the diffused surfaces of the two nuclei
overlap. The nucleons in the overlap most probably fill in
the neck region because of the incompressibility of nuclear
matter. As a consequence, the dinuclear system has already
developed a neck at the contact configuration. The number of
nucleons in the neck region can be estimated with [22]

Aneck =
∫

dr 	(r) exp

[
− (z − l3)2

b2

]
, (4)

where 	(r) is the distribution function of nucleon density and
the parameter b is set to be 0.8 fm. With the number of nucleons
in the neck (Aneck) calculated, one can figure out the initial neck
radius n(0) at the contact point by means of the nuclear shape
as shown in Fig. 1. As the neck size increases from zero to
n(0), the potential energy decreases by an amount of 
V (q).
We assume that this part of the potential energy transforms
into the kinetic energy of the neck motion. Based on these
assumptions, we set approximately the initial momentum of
neck degree of freedom:

pn(0) =
√

2mnn
V (q), (5)

with the inertia of neck mnn calculated in terms of the
Werner-Wheeler method [16,17]. We define n = √

0.5Ri with
Ri = min(R1, R2) to be the boundary between the dinuclear
and mononuclear regimes, which is similar to the criterion
suggested by Swiatecki [5].

The Langevin equations are applied for the study of neck
dynamics of the mass asymmetric system 50Ti + 249Cf.
We apply the equations in the coupled and uncoupled (by
switching off the coupling terms) approaches. Figure 3 shows
the transition time distributions for the system 50Ti + 249Cf
with the two approaches. Here the transition time is defined
as the time at which the reaction system arrives at the
mononuclear regime, i.e., injection into the asymmetric fission
valley takes place. It may be seen from the figure that in the
coupled case the transition time increases as compared to the
uncoupled results. The deterministic (i.e., in the absence of

FIG. 3. Distributions of transition time for the system 50Ti + 249Cf
with two approaches of the multidimensional Langevin equations.
The open and filled circles represent the results of uncoupled and
coupled calculations, respectively.

the stochastic force) velocity of neck growth in a unit of light
velocity c is shown in Fig. 4. As shown from the figure, the
coupling between different degrees of freedom reduces the
velocity of neck growth before t = 2 × 10−22 s. This may turn
out to retard the system injecting into the asymmetric fission
valley.

Displayed in Figs. 5 and 6 are the sin probability dis-
tributions, f (sin) calculated by the uncoupled and coupled
Langevin equations at two incident energies. For both cases,
the distributions are located at positions very close to s = 0.
However, for the uncoupled mode the injecting events are
much more spread out in the sin space with the distributions
deviated from the Gaussian function. Besides, our results show
that the quasifissionlike events are unlikely to take place during

FIG. 4. The deterministic velocities of neck growth in a unit of
light velocity c as a function of time for the system 50Ti + 249Cf. The
dashed and solid lines stand for the results of uncoupled and coupled
approaches, respectively.
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FIG. 5. Probability distributions of sin for the system 50Ti + 249Cf
at the incident energies of 235 and 245 MeV, which are represented by
the open and filled circles, respectively. They are calculated with the
uncoupled Langevin equations. The line in the figure is the Gaussian
fit of the data.

the transition period for the mass asymmetric systems such as
50Ti + 249Cf.

III. SYNTHESIS OF SUPERHEAVY NUCLEI 295,296120

Based on the sin distributions obtained, we calculate the
formation cross sections of superheavy nuclei 295,296120. The
models and parameters used here are the same as used in our
previous work [15] except adopting the sin distributions instead
of setting sin = 0. For the sake of completeness, we will repeat
briefly the main points of the formalisms used.

The cross section of a superheavy nucleus produced in a
heavy ion fusion-evaporation reaction is calculated as follows:

σER(E) = πλ̄2
∞∑
l=0

(2l + 1)Pcapt(E, l)PCN(E, l)Pxn(E, l). (6)

FIG. 6. Same as Fig. 5, but calculated by the coupled Langevin
equations.

Here Pcapt is the capture probability of the colliding nuclei after
overcoming the Coulomb barrier and moving up to the contact
point. We calculate Pcapt by means of the approach proposed
by Zagrebaev et al. [23,24]. In their approach, the coupling
between the relative motion of the nuclei and their dynamic as
well as static deformation are taken into account in terms of
a semiphenomenological barrier distribution function method.
The last factor Pxn represents the survival probability of the
excited compound nucleus after evaporation of x neutrons in
the cooling process. We calculate the last factor with a more or
less convenient method; for details see Ref. [25]. Starting from
the injection point, the system diffuses over the saddle-point
hill, and with some probability reaches the compound nucleus
configuration due to the thermal fluctuation. PCN defines this
probability. According to the fusion-by-diffusion model [2,3],
the probability managed to overcome the saddle-point barrier
[2,3] is given by

PCN = 1
2 erfc

(√
B(sin)/T

)
, (7)

where B(sin) is the height of the barrier opposing fusion along
the asymmetric fission valley on the way from the injection
point to the saddle and T is an effective temperature. In our
approach, the thermal fluctuation in the neck growth process
results in a sin distribution. This brings about the height of the
barrier B(sin) as a relevant distribution. Therefore, the fusion
probability should be given by a convolution of function erfc
and the probability f (sin),

PCN = 1

2

∫
erfc

(√
B(sin)/T

)
f (sin)dsin. (8)

In Fig. 7, we plot the predictions of evaporation residue (ER)
cross sections for 3n and 4n evaporation channels in the 50Ti +
249Cf reaction leading to the formation of 296120 and 295120

FIG. 7. Predicted evaporation residue cross sections for the 3n

and 4n evaporation channels in the 50Ti + 249Cf reaction leading to the
formation of 296120 and 295120 isotopes. The dashed and solid lines
are the results of our work calculated by Eqs. (7) and (8), respectively.
The dash-dotted lines stand for the predictions of Zagrebaev and
Greiner [26].
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isotopes. The results of Zagrebaev and Greiner [26] are also
presented in this figure as dash-dotted lines. The dashed lines
in the figure are obtained from the calculations with Eq. (7)
assuming the injection point at the separation distance sin = 0,
while the solid lines are the results calculated by using Eq. (8)
with the sin probability distributions predicted by the coupled
and uncoupled Langevin equations. The results obtained with
these two approaches are indistinguishable in the figure. Our
calculated maximum ER cross sections in 3n and 4n channels
with the sin distributions are 0.1 and 0.065 pb, respectively,
which are more than two times larger than those obtained with
the sin = 0 assumption.

IV. SUMMARY AND CONCLUSIONS

The coupled Langevin equations in two-dimensional col-
lective space have been used to study the dynamics of neck
growth. Special attention is paid to the effects of coupling
between the neck and radial degrees of freedom on the
evolution from dinucleus to mononuleus. In this dynamic
model, the shape of the nuclear surface is specified by
two spheres smoothly joined with a hyperboloidal neck, the
nuclear potential energy of deformation, the inertia, and the
dissipation tensors are given by the finite range liquid-drop
model (FRLDM) [9,10], the Werner-Wheeler approximation
[16,17] for incompressible and irrotational flow, and the
wall-plus-window model [11,12].

The dynamic model is applied for the study of neck
evolution of the mass asymmetric system 50Ti + 249Cf.
We have used the equations in the coupled and uncoupled
approaches. By calculating the velocity of the neck growth
and the transition time distributions, we have found that the
coupling between neck and radial motions reduces the neck
growth velocity and delays the transition from dinuclear to
mononuclear regimes. In addition, by solving these dynamic

equations, we obtained the sin probability distribution at the
injection point in the asymmetric fission valley. In this way, sin

is no longer an adjustable parameter in the fusion-by-diffusion
model. The distributions obtained are located at positions very
close to sin = 0. In addition, our results have shown that the
quasifissionlike events are unlikely to take place during the
transition period for the mass asymmetric systems.

Based on the sin distributions obtained, the evaporation
residue cross sections for 3n and 4n evaporation channels in
the 50Ti + 249Cf reaction leading to the formation of 296120
and 295120 isotopes have been calculated. The maximum ER
cross sections in 3n and 4n channels with the sin distributions
are equal to 0.1 and 0.065 pb, respectively, which are more
than two times larger than those obtained by the original
fusion-by-diffusion model with the sin = 0 assumption [15].
However, the ER cross sections calculated by the coupled and
uncoupled approaches are practically the same.

Along with the elements Z = 118 and 117 produced at
Dubna [27,28], superheavy element Z = 120 may become
the next element to be synthesized. Therefore, the theoretical
predictions of its production cross sections are highly required.
The cross section of 0.1 pb is too small to synthesize
superheavy elements under the present experimental limit for
the registration of the evaporation residual nuclei. However,
as pointed out by Oganessian [29] it is technically possible
to increase the intensity of the projectile beams and use more
effective “on-line” mass separation methods with thicker target
materials. By means of the improved experimental conditions,
superheavy element 120 may be synthesized in the near future.
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