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Ab initio many-body calculations of deuteron-4He scattering and 6Li states
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We extend the ab initio no-core shell model/resonating-group method (NCSM/RGM) to projectile-target
binary-cluster states where the projectile is a deuteron. We discuss the formalism in detail and give algebraic
expressions for the integration kernels. Using a soft similarity-renormalization-group evolved chiral nucleon-
nucleon potential, we calculate deuteron-4He scattering and investigate 6Li bound and unbound states. Virtual
three-body breakup effects are obtained in an approximated way by including excited pseudostates of the deuteron
in the calculation. We compare our results to experiment and to a standard NCSM calculation for 6Li.
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I. INTRODUCTION

Ab initio many-body calculations of nuclear scattering and
reactions pose a challenge to nuclear theory. For A = 3 and 4
nucleon systems, the Faddeev [1] and Faddeev-Yakubovsky [2]
as well as the hyperspherical harmonics (HH) [3] or the Alt,
Grassberger and Sandhas (AGS) [4] methods are applicable
and successful. For systems with more than four nucleons, only
very few approaches presently exist, among which the Green’s
function Monte Carlo method has been applied recently to the
calculation of n-4He scattering [5].

Recently, we combined the resonating-group method
(RGM) [6–11] and the ab initio no-core shell model (NCSM)
[12], into a new many-body approach [13–15] (ab initio
NCSM/RGM) capable of treating bound and scattering states
of light nuclei in a unified formalism, starting from the fun-
damental internucleon interactions. So far, applications have
been limited to the description of projectile-target scattering
where the projectile is a single nucleon. In particular, we
first studied the n -3H, n -4He, p -3,4He, and n -10Be scattering
processes [13,14] and later also the n-7Li and p-7Be scattering
as well as nucleon scattering on 12C and 16O [15]. In the present
paper we extend the formalism to the case of a two-nucleon
projectile and perform calculations for deuteron-4He (or d-α)
scattering. Simultaneously, we investigate the d-α bound state
and compare our results to a standard NCSM calculation for
6Li. It should be emphasized that the present formalism is
general and applicable to any other target nucleus, i.e., to any
deuteron-nucleus system.

The deuteron is weakly bound and can be easily deformed.
Its polarization and virtual breakup cannot be neglected even at
very low energies. A proper treatment of these effects requires
the inclusion of three-body continuum states: neutron-proton-
nucleus. This is very challenging. Even though the extension of
the RGM formalism to include three-body clusters is feasible
[16,17], in this first application we limit ourselves to two-
body clusters only and approximate virtual three-body breakup
effects by discretizing the continuum with excited deuteron
pseudostates.

Deuteron-4He scattering was investigated within the binary-
cluster RGM formalism in the past [18–20]. However, the
present investigation is the first that uses accurate nucleon-

nucleon (NN ) interactions (i.e., such that fit the NN phase
shifts with high precision) and many-body cluster wave
functions obtained consistently from the same Hamiltonian.
We do not fit or adjust any parameters; rather we systematically
investigate the convergence of our results with respect to the
size of the harmonic oscillator (HO) basis used to expand
the cluster wave functions and localized parts of the RGM
integration kernels as well as with respect to the number of
deuteron pseudostates and/or 4He excited states included in
the calculation. We compare our results to a standard ab initio
NCSM calculation for 6Li that uses the same NN potential.
In this study, we employ a similarity renormalization group
(SRG) [21,22] evolved chiral next-to-next-to-next-to-leading
order (N3LO) NN potential [23] (SRG-N3LO) that is soft
enough for us to reach convergence within about 12–14h̄�

HO excitations in the basis expansion.
In Sec. II, we briefly overview the general features of the

NCSM/RGM formalism and present algebraic expressions
for the NCSM/RGM integration kernels when the projectile
nucleus has mass number a = 2. The matrix elements of
the norm kernel are given in this section, while those of the
Hamiltonian kernel are presented in the Appendix. In Sec. III,
we discuss our results for d-α scattering and bound-state
calculations. We show the calculated phase shifts and cross
sections and compare the deuteron-4He results to 6Li ab initio
NCSM calculations with the same Hamiltonian. Conclusions
and outlook are given in Sec. IV.

II. FORMALISM

In the present paper we apply the NCSM/RGM formalism
introduced in Ref. [14] to the description of deuteron-nucleus
collisions. While the derivation of the integration kernels was
specialized for projectile-target basis states with a single-
nucleon projectile, the theoretical framework presented in
Ref. [14] is general and fully applicable to the present case. In
this section we briefly revisit the NCSM/RGM formalism and
provide algebraic expressions of the integration kernels for the
specific case of a two-nucleon projectile.

Following the notation of Ref. [14], the wave function for
a scattering process involving a two-nucleon projectile and a
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target nucleus can be cast in the form

|�Jπ T 〉 =
∑

ν

∫
dr r2 gJπ T

ν (r)

r
Âν

∣∣�Jπ T
νr

〉
, (1)

through an expansion over binary-cluster channel states of
channel spin s, relative angular momentum �, total angular
momentum J , parity π , and isospin T ,∣∣�Jπ T

νr

〉 = [(∣∣A − 2 α1I
π1

1 T1
〉∣∣2 α2I

π2
2 T2

〉)(sT )

×Y�(r̂A−2,2)
](Jπ T ) δ(r − rA−2,2)

rrA−2,2
. (2)

The above basis states are uniquely identified by the channel
index ν = {A − 2 α1I

π1
1 T1; 2 α2I

π2
2 T2; s�}. The internal wave

functions of the colliding nuclei contain A − 2 and 2 nucleons
(A > 2), respectively, are antisymmetric under exchange of
internal nucleons, and depend on translationally invariant
internal coordinates. They are eigenstates of H(A−2) and H(2),
the (A − 2)- and two-nucleon intrinsic Hamiltonians (with Ii ,
πi , Ti , and αi denoting, respectively, spin, parity, isospin and
additional quantum numbers of the ith cluster). The cluster’s
centers of mass are separated by the relative vector (�ri being
the position vector of the ith nucleon)

�rA−2,2 = rA−2,2r̂A−2,2 = 1

A − 2

A−2∑
i=1

�ri − 1

2

A∑
j=A−1

�rj . (3)

In Eq. (2), the residual antisymmetrization for exchange of
nucleons pertaining to different clusters is guaranteed by the
antisymmetrizer for the (A − 2, 2) partition

Âν ≡ Â(A−2,2)

= C

[
1 −

A−2∑
i=1

A∑
k=A−1

P̂i,k +
A−2∑

i<j=1

P̂i,A−1P̂j,A

]
, (4)

where C is the normalization constant
√

2
A(A−1) . The unknown

relative-motion wave functions gJπ T
ν (r) can be determined by

solving the many-body Schrödinger equation in the Hilbert
space spanned by the basis states Âν |�Jπ T

νr 〉:∑
ν

∫
drr2[HJπ T

ν ′ν (r ′, r) − E N Jπ T
ν ′ν (r ′, r)

]gJπ T
ν (r)

r
= 0, (5)

where

HJπ T
ν ′ν (r ′, r) = 〈

�Jπ T
ν ′r ′ |Âν ′H Âν |�Jπ T

νr

〉
, (6)

N Jπ T
ν ′ν (r ′, r) = 〈

�Jπ T
ν ′r ′ |Âν ′Âν |�Jπ T

νr

〉
(7)

are the Hamiltonian and norm kernels, respectively. Here E is
the total energy in the center-of-mass (c.m.) frame, and H is
the intrinsic A-nucleon microscopic Hamiltonian, for which it
is useful to use the decomposition, e.g.,

H = Trel(r) + Vrel + V̄C(r) + H(A−2) + H(2). (8)

Further, Trel(r) is the relative kinetic energy and Vrel is the sum
of all interactions between nucleons belonging to different
clusters after subtraction of the average Coulomb interaction
between them, explicitly singled out in the term V̄C(r) =
Z1νZ2νe

2/r , where Z1ν and Z2ν are the charge numbers of
the clusters in channel ν:

Vrel =
A−2∑
i=1

A∑
j=A−1

Vij − V̄C(r). (9)

The Vij interaction consists of the strong and Coulomb parts.
Thanks to the subtraction of V̄C(r), the overall Coulomb
contribution presents an r−2 behavior, as the distance r

between the two clusters increases. Therefore, Vrel is localized
also in the presence of the Coulomb force. In this paper,
we limit our calculations to the use of a two-nucleon
interaction only, but the formalism can be generalized to
include the three-nucleon interaction in a straightforward
way.

A. Norm kernel

For definitions and details regarding the derivations out-
lined in this and the next section we refer the interested reader
to Secs. IIC1 and IIC2 of Ref. [14].

Because the wave functions of both (A − 2)-nucleon and
two-nucleon clusters are antisymmetric under exchange of
internal nucleons, the norm kernel (7) for the same, (A − 2, 2),
mass partition in both the initial and final state can be
written as

N Jπ T
ν ′ν (r ′, r) = 〈

�Jπ T
ν ′r ′

∣∣Â2
(A−2,2)

∣∣�Jπ T
νr

〉
(10)

= δν ′ν
δ(r ′ − r)

r ′r
+

∑
n′n

Rn′�′(r ′)Rn�(r)

[
− 2(A − 2)

〈
�Jπ T

ν ′n′
∣∣P̂A−2,A

∣∣�Jπ T
νn

〉

+ (A − 2)(A − 3)

2

〈
�Jπ T

ν ′n′
∣∣P̂A−2,APA−3,A−1

∣∣�Jπ T
νn

〉]
, (11)

where |�Jπ T
νn 〉 is the translationally invariant HO channel state

introduced in Eq. (23) of Ref. [14], here for clarity:∣∣�Jπ T
νn

〉 = [(∣∣A − 2 α1I
π1

1 T1
〉∣∣2 α2I

π2
2 T2

〉)(sT )

×Y�(r̂A−2,2)
](Jπ T )

Rn�(rA−2,2). (12)

Three terms contribute to the norm kernel (10): a direct term,
in which initial and final states are identical, corresponding
to diagram (a) of Fig. 1; a one-nucleon exchange term,
corresponding to diagram (b) of Fig. 1; and, finally, a two-
nucleon exchange term, corresponding to diagram (c) of Fig. 1.
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FIG. 1. (Color online) Diagrammatic representation of (a) “di-
rect,” (b) “one-nucleon-exchange,” and (c) “two-nucleon-exchange”
components of the norm kernel. The groups of circled lines represent
the (A − 2)- and two-nucleon clusters. Bottom and upper parts of the
diagram represent initial and final states, respectively.

In this paper, the localized parts of the integration kernels
(6) and (7) are obtained in two steps. First, matrix elements of
translationally invariant operators (for the norm kernel P̂A−2,A

and P̂A−2,AP̂A−3,A−1) are calculated in the Slater-determinant
(SD) basis, in which the eigenstates of the (A − 2)-nucleon
fragment are expanded in HO Slater determinants:∣∣�Jπ T

νn

〉
SD = [

(|A − 2 α1I1T1〉SD|2 α2I2T2〉)(sT )

×Y�

(
R̂(2)

c.m.

)](Jπ T )
Rn�

(
R(2)

c.m.

)
. (13)

Second, the corresponding translationally invariant matrix ele-
ments on the basis (12) are recovered through a transformation
as described in Sec. IIC2 of Ref. [14], Eq. (32). Here we recall
that the eigenstates of the (A − 2)-nucleon fragment in the SD
basis,〈�r1· · · �rA−2σ1· · · σA−2τ1· · · τA−2|A − 2 α1I

π1
1 T1

〉
SD, (14)

are related to the translationally invariant eigenstates by the
expression

|A − 2 α1I1T1〉SD = |A − 2 α1I1T1〉ϕ00
( �R(A−2)

c.m.

)
, (15)

and the c.m. coordinates introduced in Eqs. (13) and (15) are
given by

�R(A−2)
c.m. =

√
1

A − 2

A−2∑
i=1

�ri ; �R(2)
c.m. =

√
1

2

A∑
i=A−1

�ri . (16)

The calculation of matrix elements in the basis (13) is most
efficiently achieved by first performing a transformation to a
new SD basis:∣∣�Jπ T

νn 〉SD

=
∑{

I1 I2 s

� J j

}{
� Lab �2

s2 I2 I

} ⎧⎨
⎩

�a �b Lab

1
2

1
2 s2

ja jb I

⎫⎬
⎭

× (−1)I1+J+�+�2+T2 ŝ Î Î2 ŝ2 ĵa ĵb L̂2
ab

× 〈na�anb�bLab | n�n2�2Lab〉d=1

× 〈n2�2s2I2T2 | 2 α2I2T2〉
∣∣�Jπ T

κab

〉
SD, (17)

where the sum runs over the quantum numbers n2, �2, s2,
na, �a, ja , nb, �b, jb, Lab, and I , 〈n2�2s2I2T2|2 α2I2T2〉 is the
projectile wave function expanded in the relative-coordinate
HO basis, ŝ = √

2s+1 etc., and 〈na�anb�bLab|n�n2�2Lab〉d=1

indicates an HO bracket for two particles with identical masses.
In addition, we introduced the cumulative quantum number
κab ≡ {A − 2 α1I1T1; na�aja

1
2 ; nb�bjb

1
2 ; IT2} and the new SD

channel states∣∣�Jπ T
κab

〉
SD = [|A − 2 α1I1T1〉SD (ϕna�aja

1
2
(�rAσAτA)

×ϕnb�bjb
1
2
(�rA−1σA−1τA−1))(IT2)

](Jπ T )
. (18)

Using the basis states of Eq. (18) to evaluate the matrix
elements of the transposition operators appearing in Eq. (10)
results in the following expressions:

SD

〈
�Jπ T

κ ′
ab

∣∣P̂A−2,A

∣∣�Jπ T
κab

〉
SD

= δb,b′
1

A − 2

∑
Kτ

{
I1 K I ′

1

I ′ J I

} {
ja j ′

a K

I ′ I jb

}{
T1 τ T ′

1

T ′
2 T T2

}{
1
2

1
2 τ

T ′
2 T2

1
2

}

× (−1)I+I ′−I1−J+jb−ja+K (−1)T2+T ′
2−T1−T +τ Î Î ′ K̂ T̂2 T̂ ′

2 τ̂

× SD

〈
A − 2 α′

1I
′
1T

′
1|||

(
a†

aãa′
)(Kτ )|||A − 2 α1I1T1

〉
SD (19)

and

SD

〈
�Jπ T

κ ′
ab

∣∣P̂A−2,AP̂A−3,A−1

∣∣�Jπ T
κab

〉
SD

= 1

(A − 2)(A − 3)

∑
Kτ

{
I1 K I ′

1

I ′ J I

}{
T1 τ T ′

1

T ′
2 T T2

}

×(−1)I1+I+I ′+J+j ′
a+j ′

b (−1)T1+T2+T ′
2+T +1 K̂ τ̂

×SD〈A − 2 α′
1I

′
1T

′
1|||((a†

aa
†
b)(IT2)(ãb′ ãa′ )(I ′T ′

2))(Kτ )|||A − 2 α1I1T1〉SD, (20)

where the indexes a and b represent the sets of single-particle quantum numbers {na�aja
1
2 } and {nb�bjb

1
2 }, respectively,

such that a
†
a ≡ a

†
na�aja

1
2

etc., a′ and b′ are analogous indexes associated with the primed quantum numbers, κ ′
ab = {A −

2 α′
1I

′
1T

′
1; a′; b′; I ′T ′

2}, and, finally, ãn�jm 1
2 mt

= (−1)j−m+ 1
2 −mt an�j−m 1

2 −mt
. In addition, we note that Eqs. (19) and (20) depend on

the one- and two-body density matrix elements (OBDME and TBDME), respectively, of the target nucleus.
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B. Hamiltonian kernel

The Hamiltonian kernel (6) for the same, (A − 2, 2), mass partition in both the initial and final states can be cast in the form

HJπ T
ν ′ν (r ′, r) = 〈

�Jπ T
ν ′r ′

∣∣Â(A−2,2)H Â(A−2,2)

∣∣�Jπ T
νr

〉 = 〈
�Jπ T

ν ′r ′
∣∣H Â2

(A−2,2)

∣∣�Jπ T
νr

〉 = [
Trel(r

′)+V̄C(r ′)

+E
I ′

1T
′

1

α′
1

+ E
I ′

2T
′

2

α′
2

]
N Jπ T

ν ′ν (r ′, r) + VJπ T
ν ′ν (r ′, r), (21)

where the potential kernel is defined by

VJπ T
ν ′ν (r ′, r) = 〈

�Jπ T
ν ′r ′

∣∣VrelÂ2
(A−2,2)

∣∣�Jπ T
νr

〉
(22)

=
∑
n′n

Rn′�′(r ′)Rn�(r)
[
2(A − 2)

〈
�Jπ T

ν ′n′
∣∣VA−2,A−1(1 − P̂A−2,A−1)

∣∣�Jπ T
νn

〉
− 2(A − 2)

〈
�Jπ T

ν ′n′
∣∣VA−2,AP̂A−2,A−1

∣∣�Jπ T
νn

〉 − 2(A − 2)(A − 3)
〈
�Jπ T

ν ′n′
∣∣VA−3,A(1 − P̂A−3,A) P̂A−2,A−1

∣∣�Jπ T
νn

〉
− 2(A − 2)(A − 3)

〈
�Jπ T

ν ′n′
∣∣VA−3,A−1P̂A−2,A−1

∣∣�Jπ T
νn

〉
+ (A − 2)(A − 3)(A − 4)

〈
�Jπ T

ν ′n′
∣∣VA,A−4P̂A−2,A−1P̂A−3,A

∣∣�Jπ T
νn

〉]
. (23)

Clearly, for the (A − 2,2) partition the potential kernel presents a much more complicated expression than the norm kernel. We
identify five separate terms corresponding to the seven diagrams presented in Fig. 2. The first “direct-potential” term on the
right-hand side (rhs) of Eq. (23) corresponds to diagrams (a) and (b), the second term corresponds to diagram (c), while diagrams
(d) and (e) represent the third term. The last two terms are then depicted schematically by diagrams (f) and (g), respectively.
Matrix elements of each of these terms in the basis (18) are given in the Appendix. The first two terms, (A1) and (A2), depend
on the OBDME of the target nucleus; the second two terms, (A3) and (A4), depend on the TBDME of the target nucleus; and,
finally, the last term, (A5), depends on the three-body density of the target nucleus. The three-body density matrix elements can
be obviously recoupled in different ways. Here, we selected a particular angular-momentum coupling that results in the simplest
expression for our Hamiltonian kernel matrix element. In general, it is a challenge to compute three-body density matrix elements,
in particular due to their rapidly increasing number in the multi-major-shell basis spaces. However, since in the present paper
we focus on the A = 6, d-4He, and 6Li systems, we can take advantage of the completeness of the (A − 5)-body eigenstates and
rewrite the expression (A5) in the form

SD

〈
�Jπ T

κ ′
ab

∣∣VA,A−4P̂A−2,A−1P̂A−3,A

∣∣�Jπ T
κab

〉
SD

= 1

2

1

(A − 2)(A − 3)(A − 4)

∑ {
Jde j ′

b X

I ′ j ′
e j ′

a

} {
Tde

1
2 τX

T ′
2

1
2

1
2

}⎧⎪⎨
⎪⎩

I1 I J

X j ′
e I ′

Iβ Y I ′
1

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

T1 T2 T

τX
1
2 T ′

2

Tβ τY T ′
1

⎫⎪⎬
⎪⎭

× Î ′ X̂ Ŷ Ĵde T̂ ′
2 τ̂X τ̂Y T̂de(−1)I

′+Jde+J−I ′
1+je−jd (−1)T

′
2+Tde+T −T ′

1

× SD〈A − 2 α′
1I

′
1T

′
1|||((a†

aa
†
b)(IT2)a

†
e′ )(YτY )|||A − 5 βIβTβ〉SD SD〈A − 5 βIβTβ |||(ãb′(ãeãd )(JdeTde))(Xτx )|||A − 2 α1I1T1〉SD

×√
1 + δa′,e′

√
1 + δd,e 〈a′e′JdeTde|V |d e JdeTde〉, (24)

where the sum runs over the quantum numbers β, Iβ, Tβ , d ≡ nd�djd
1
2 etc., e, e′, Jde, Tde, X, Y, τX, and τY . For the present

case of A = 6, the states |A − 5 βIβTβ〉SD reduce to the HO single particle states |nβlβjβ
1
2 〉 and the reduced matrix elements in

Eq. (24) that involve 4He eigenstates are straightforward to calculate.
We also note that the terms (A1) and (A3) are symmetric, while the remaining ones, (A2), (A4), and (A5), are not. Therefore, we
introduce a Hermitized NCSM/RGM Hamiltonian, as discussed in detail in Ref. [14], using ÂH Â = 1

2 (Â2H + H Â2) (see Eq.
(42) in Ref. [14]).

III. APPLICATION TO THE DEUTERON-4He SYSTEM

The deuteron-nucleus formalism presented in the previous
section is completely general. The simplest system to which
it can be applied is deuteron-4He for two reasons. First,
the complicated calculation of the target three-body density
needed to compute the last term on the right-hand side
of Eq. (23), given by Eq. (A5), becomes straightforward
for A = 5 and 6 (that is, for 3H, 3He, and 4He targets)
using the completeness of the (A − 5)-nucleon eigenstates as
demonstrated in Eq. (24). Second, the 4He nucleus is tightly

bound with its first excited state at Ex ≈ 20 MeV. A solution
of the coupled-channel equations (5) obtained limiting the
target states to the ground state (g.s.) is already a very good
approximation for the d-α system.

To test the formalism, we use a soft SRG-N3LO NN po-
tential with evolution parameter � = 1.5 fm−1. With this low
value of �, our calculations reach convergence at Nmax ≈ 12.
We note, however, that a somewhat higher value of �

would result in a better agreement with experimental data as
discussed later. We benchmark our d-α NCSM/RGM results
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FIG. 2. (Color online) Diagrammatic representation of “direct po-
tential” [(a) and (b)] and “exchange-potential” [(c)–(g)] components
of the potential kernel. The groups of circled lines represent the
(A − 2)- and two-nucleon clusters. Bottom and upper parts of the
diagram represent initial and final states, respectively.

with standard NCSM calculations for 6Li. Any differences can
then be attributed to missing degrees of freedom rather than to
the model space truncation.

Our calculation starts with the NCSM diagonalization of
the Hamiltonian in the Nmaxh̄� HO basis for d and 4He.
Obtained eigenenergies and eigenfunctions serve then as input
in Eq. (5). First, one-, two-, and three-body densities are
calculated from the 4He wave functions, then the integration
kernels are calculated. The localized parts of the integration
kernels are expanded in the same Nmax (or Nmax + 1 depending
on parity) HO basis space as the cluster eigenstates. The same
HO frequency is used in all calculations. The wave functions
of the d-α relative motion are found by solving (5) with either
bound-state or scattering-state boundary conditions by means
of the microscopic R-matrix method on a Lagrange mesh [24]
(with additional details given in Ref. [14], Sec. II F).

A. Bound-state calculations

Our results for the ground states of the deuteron, 4He, and
6Li are presented in Table I. The convergence of the NCSM
calculations can be judged from Fig. 3, where we show both
absolute and excitation energies of 6Li as well as the d + α

threshold. The 4He convergence is excellent and that of 6Li
very good. The 6Li excited states are resonances, but within
the NCSM calculation they are approximated by eigenstates
expanded in the HO basis. The 4He is slightly underbound

TABLE I. Calculated g.s. energies of 2H, 4He, and 6Li obtained
by using the SRG-N3LO NN potential with � = 1.5 fm−1 compared
to the corresponding experimental values. The NCSM calculations
for 2H, 4He, and 6Li were performed in Nmax = 12, 12, and 10 basis
space, respectively. The NCSM/RGM calculation included 4He and
2H ground states and seven deuteron pseudostates in each of the
3S1-3D1 and 3D3-3G3 channels, as well as five pseudostates in the
3D2 channel. The HO frequency of h̄� = 14 MeV was used.

Eg.s. (MeV) 2H 4He 6Li (NCSM/RGM) 6Li (NCSM)

Calc. −2.20 −28.22 −32.25 −32.87
Expt. −2.22 −28.30 −31.99 −31.99
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FIG. 3. (Color online) Absolute (a) and excitation (b) energies of
6Li calculated within the NCSM compared to experiment. The dashed
lines in the top panel (a) indicate the calculated NCSM (Nmax =
8, 10, 12) and experimental d-α thresholds. The SRG-N3LO NN

potential with � = 1.5 fm−1 and the HO frequency of h̄� = 14 MeV
were used.

while the 6Li is overbound by about 0.9 MeV due to the
choice of a low � value and the neglect of the SRG-induced
three-body interaction [25]. We note that in the NN -only
calculations of Ref. [25], selecting � ≈ 2 fm−1 results in 4He
and 6Li binding energies closer to experimental values. The
excited states are correctly ordered except for the reversal
of the 2+1 and the 1+

2 0 states. The splitting of the 2+0 and
the 3+0 states is underestimated, a sign of weak spin-orbit
interaction, most likely due to the neglect of the initial chiral
three-nucleon interaction. One more feature to notice is the
drop of the 2+0 and 1+

2 0 excitation energies with increasing
Nmax. This is a consequence of the fact that these states are
broader resonances compared to the 3+0 or the T = 1 states.

The variation with respect to Nmax of the 6Li g.s. energy
calculated within the NCSM/RGM is similar to that of 4He.
The Nmax = 12 model space is sufficient to reach convergence.
However, the deuteron is weakly bound: Its polarization and
virtual breakup cannot be neglected. This is demonstrated in
Fig. 4. The NCSM/RGM calculation limited to the deuteron
ground state binds 6Li by only about 200 keV, contrary to
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TABLE II. Calculated 2H g.s. and pseudostate energies obtained
using the SRG-N3LO NN potential with � = 1.5 fm−1 in the Nmax =
12 basis space and HO frequency of h̄� = 14 MeV. In our largest
calculations, seven pseudostates were included in the two coupled
channels and five pseudostates were included in the 3D2 channel.

E (MeV) 3S1-3D1
3D2

3D3-3G3

g.s. −2.20 – –
1∗ 4.50 7.53 7.61
2∗ 7.69 18.81 15.72
3∗ 15.20 35.05 19.32
4∗ 19.74 57.28 33.13
5∗ 31.90 87.88 36.47
6∗ 37.60 – 57.01
7∗ 55.95 – 60.13

the NCSM result of 2.4 MeV using the same Hamiltonian.
To include deuteron polarization and virtual breakup properly
one would have to extend the NCSM/RGM formalism to a
three-cluster basis: n-p-α. This is quite challenging. In the
present work, we discretize the continuum by including excited
deuteron pseudostates in the NCSM/RGM coupled-channel
equations. The pseudostates are obtained in the NCSM diag-
onalization. In Table II, we present the pseudostate energies
obtained in the Nmax = 12 basis. The 6Li g.s. convergence
with respect to the number of d pseudostates Nd∗ included
in the calculation is shown in Fig. 4. The S-wave-dominated
(odd Nd∗ ) pseudostates in the 3S1-3D1 channel have a quite
dramatic influence on the 6Li binding energy. The pseudostates
in the 3D2 and 3D3-3G3 channels are less important for the
ground state but have a significant effect on the 2+ and the
3+ 6Li resonances. By including seven or nine pseudostates,
we reach convergence with respect to the number of d∗ in
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3G3 channels included in the calculation. Diamond symbols: All
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energy (dashed line) are also shown. Details of the calculations are
described in the caption of Table I.
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FIG. 5. (Color online) Ground-state wave function of 6Li as
a function of the separation between deuteron and 4He clusters.
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ponents are shown. The symbol d∗ (d (n∗)) denotes the first (nth)
deuteron pseudostate of the 3S1-3D1 channel, while d ′∗ denotes the
lowest deuteron pseudostate of the 3D3-3G3 channel. Details of the
calculation are described in the caption of Fig. 9.

the channels considered here (for the g.s. energy, the Nd∗ = 7
and 9 results are within 30 keV of each other). Still, the 6Li
NCSM calculation contains more correlations as it produces
a lower g.s. energy by about 600 keV, or 2%. This can be
seen from Table I and Fig. 4. The missing correlations in the
NCSM/RGM calculation most likely include excitations of
the 4He (of which we have included here only the ground
state), as well as deuteron excitations in other channels and/or,
alternatively, excitations of the type 1N -5N configurations as
discussed in Ref. [26]. To estimate to which degree excited
states of the 4He target would influence our NCSM/RGM
results for the 6Li g.s. energy, we performed a calculation
that included the g.s. and first excited 0+ state of 4He as well
as the deuteron g.s. and seven d∗ pseudostates in the 3S1-3D1

channel. The binding energy increased by 71 keV compared
to the calculation with the same number of deuteron states but
only the ground state of 4He. This is a non-negligible effect
and, based on our previous study of the n-4He system [14], it is
plausible that the addition of the next five or so lowest excited
states of 4He would provide an extra ∼ 500 keV of binding.
Unfortunately, such a calculation is currently out of reach.

Finally, we note that, contrary to the NCSM calculations,
the NCSM/RGM bound state has the proper asymptotic
behavior of a Whittaker function with respect to the d + α

threshold. In Fig. 5, we can see that the S wave extends well
beyond 10 fm. This plot of the NCSM/RGM wave function
can be compared with Fig. 6 of Ref. [27]. There the overlap
functions [g(r)/r] of the 6Li ground state with d + 4He cluster
states obtained within the standard NCSM vanish beyond
about 8 fm.

B. Scattering calculations

By solving the NCSM/RGM coupled-channel equations (5)
for positive energies, we obtain the wave functions of the
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relative motion of the clusters and the scattering matrix for
each considered JπT channel. The scattering matrix can then
be used to calculate cross sections and other observables.

In Figs. 6–9 we present our calculated diagonal S- and D-
wave phase shifts. First, we study the phase-shift convergence
with respect to the size of the HO basis expansion for the
cluster wave functions and localized parts of the integration
kernels. In Fig. 6, we show phase shifts obtained, respectively,
in the Nmax = 12 (solid line), Nmax = 10 (dashed line), and
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FIG. 6. (Color online) Calculated d-4He S- and D-wave phase
shifts. Solid, dashed, and dotted lines correspond to the Nmax =
12, 10, and 8 basis sizes, respectively. Results in the top panel (a)
were obtained by considering only the ground state of the deuteron
projectile. In the middle panel (b), calculations incorporate seven
additional deuteron pseudostates in the 3S1-3D1 channel. In the
bottom panel (c), up to seven deuteron pseudostates were included
also in the 3D2 and 3D3-3G3 channels. The SRG-N3LO NN potential
with � = 1.5 fm−1 and the HO frequency of h̄� = 14 MeV were
used.
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SRG-N3LO NN potential with � = 1.5 fm−1, the Nmax = 12 basis
size, and the HO frequency of h̄� = 14 MeV were used.

Nmax = 8 (dotted line) model spaces. The curves in the top
panel include only the ground states of d and 4He, while
the middle and bottom panels show results including up to
seven deuteron pseudostates in the 3S1-3D1 and 3D2 and
3D3-3G3 channels. The Nmax = 10 and Nmax = 12 lines are
on top of each other in the JπT = 1+0 channels while some
small change in the phase shifts is still visible in the 2+0
and the 3+0 channels. These differences become smaller in
calculations with the pseudostates. Overall, the convergence
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FIG. 8. (Color online) Calculated d-4He S- and D-wave phase
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channels. Solid lines correspond to calculations with one deuteron
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Dashed lines identify results obtained with only one deuteron
pseudostate in the 3S1-3D1 channel. Dotted-liness are the solution
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SRG-N3LO NN potential with � = 1.5 fm−1, the Nmax = 12 basis
size, and the HO frequency of h̄� = 14 MeV were used.
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FIG. 9. (Color online) Calculated d-4He S- and D-wave phase
shifts compared to experimental data from Refs. [28] (circles) and
[29] (diamonds). Up to seven deuteron pseudostates were included in
each of the 3S1-3D1 and 3D3-3G3 channels and five pseudostates in
the 3D2 channel. The SRG-N3LO NN potential with � = 1.5 fm−1,
Nmax = 12 basis size, and HO frequency of h̄� = 14 MeV were used.

is satisfactory. At this stage an Nmax = 14 calculation would
be computationally very challenging. Figure 7 demonstrates
the phase shift convergence with respect to the number of
pseudostates included in the coupled-channel NCSM/RGM
equations. It is clear that, similar to the bound-state calcu-
lation, for the d∗ channels considered here convergence is
reached with seven pseudostates. The relative contribution
of pseudostates from the three d∗ channels considered here
can be judged from Fig. 8. The 3S1-3D1 pseudostates affect
all S and D waves. In contrast, the 3D2 and the 3D3-3G3

pseudostates have a considerable effect only on the 3D2 and
3D3 waves. Note that the solid lines in Fig. 8 correspond
to the dotted lines in Fig. 7. Our calculated diagonal S-
and D-wave phase shifts are compared to the phase shifts
extracted from experimental data in Refs. [28] and [29] in
Fig. 9. The calculation corresponds to the largest basis space
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FIG. 10. (Color online) Calculated d-4He P - and F -wave phase
shifts. Details of the calculation are given in the caption of Fig. 9.
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FIG. 11. (Color online) The d-4He differential cross section at
the deuteron laboratory energies of 2.935, 6.965, 8.971, and 12 MeV.
The experimental data (symbols) are from Refs. [30] and [31]. The
calculations (lines) are as described in Fig. 9. Partial waves up to
J = 6 were included.

(Namx = 12) and the highest number of deuteron pseudostates
that we employed in this work. Our S-wave and 3D3-wave
results compare well with the experimental data. However,
the 3D1 and in particular the 3D2 phase shifts overestimate
the experimental ones. The position of our calculated 2+0
resonance is below the experimental one by almost 1 MeV.
The splitting between the D waves is underestimated. Clearly,
the strength of the spin-orbit interaction in the calculation is
smaller than it should be. This is most likely due to the neglect
of the three-nucleon forces in our calculations, those induced
by the SRG transformation and, more importantly, the initial
chiral effective field theory three-nucleon interaction.

Our calculated P - and F -wave phase shifts are presented
in Fig. 10. While the F waves monotonically increase, the P

waves exhibit more structure and, in particular, 3P0 changes
sign and becomes negative beyond the center-of-mass energy
Ekin > 2 MeV.

In Fig. 11, we compare our calculated differential cross
section to the experimental data of Refs. [30] and [31] for four
deuteron laboratory energies in the range Ed ≈ 3–12 MeV.
Our calculation overpredicts the measured cross section at
Ed = 2.94 MeV, most likely a consequence of the incorrect
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FIG. 12. (Color online) Influence of deuteron pseudostates from
different channels on the d-4He differential cross section at the
deuteron laboratory energy of 6.965 MeV. The experimental data
(symbols) are from Ref. [30]. The solid line corresponds to the
calculation described in Fig. 9. The dashed-dotted line indicates the
results obtained with seven deuteron pseudostates in the 3S1-3D1 and
3D3-3G3 channels. The dashed curve is the solution of the calculation
with seven deuteron pseudostates only in the 3S1-3D1 channel. Partial
waves up to J = 6 were included.

position of the calculated 2+0 resonance (see Fig. 9). However,
for the intermediate energies, Ed = 6.97 and 8.97 MeV, the
agreement with the measured data is reasonable. At Ed = 12
MeV the differences become larger. We also note that our
calculated cross section underestimates the data in the range
θc.m. ≈ 20◦–45◦. It should be kept in mind that in our calcula-
tions the deuteron breakup is accounted for only by using the
pseudostates rather than as a three-body final state. To shed
light on the influence of the pseudostates on the cross sections,
we show in Fig. 12 results for Ed = 6.97 MeV obtained with
pseudostates in different channels. With the pseudostates only
in the 3S1-3D1 channel, the cross section is not well described
beyond 50◦. The inclusion of the pseudostates in the 3D3-3G3

channel improves the agreement with the data somewhat. By
adding the pseudostates in the 3D2 channel, the agreement
with the data beyond 50◦ is quite reasonable but at the forward
angles, from 20◦ to 45◦, the agreement with the data is spoiled.
The NN interaction that we employed is not the optimal one as
explained earlier: A low value of � = 1.5 fm−1 was selected to
facilitate a fast convergence and a straightforward comparison
to the standard NCSM calculation. As seen in Fig. 9, this
potential overestimates the 2+0 D-wave phase shifts compared
to the data. The pseudostates from the 3D2 channel enhance
this overestimation, as visible in Fig. 8. This is the likely cause
of the worsening of the cross-section agreement with the data
at forward angles when the 3D2 pseudostates are added to the
NCSM/RGM basis.

The g.s. and the T = 0 resonance-state energies obtained
within the NCSM and the NCSM/RGM are compared to each
other and to experimental values in Fig. 13. The present
NCSM/RGM resonance energies correspond to the energies
where the diagonal phase shifts cross 90◦. The calculation
is as described in Table I and Fig. 9. We plot the absolute
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FIG. 13. (Color online) Energies of 6Li states calculated within
NCSM and NCSM/RGM compared to each other and to experimental
data. Absolute energies (a), excitations energies (b), and energies
with respect to calculated and experimental d-4He threshold (c) are
presented. Details of the calculations are given in Table I.

values of the energies as well as the excitation energies
and the energies relative to the calculated and experimental
thresholds. Overall, the NCSM calculation produces more
binding by about 600 keV, as already discussed in the previous
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section. The NCSM/RGM generates excitation energies for
the resonances systematically lower than the corresponding
NCSM results. There is in particular a significant shift for the
2+0 state. At the same time, as can be seen from the bottom
panel (b) of Fig. 3, the excitation energies of the 2+0 and
the 1+0 states show a slower convergence rate with respect to
the size of the HO basis expansion. This is a consequence of
the inadequacy of the HO basis for the description of broader
resonances. In this regard, the NCSM/RGM calculation is
clearly superior.

IV. CONCLUSIONS

In this paper, we extended the ab initio NCSM/RGM
approach to projectile-target binary-cluster states where the
projectile is a deuteron. We gave details on the new aspects
of the formalism and presented algebraic expressions for the
integration kernels for the specific case in which the target
wave functions are expanded in the SD HO basis. Among
the new features, the dependence of the Hamiltonian kernel
upon the three-body density of the target makes calculations
technically challenging, due to the rapidly increasing number
of matrix elements with the size of the multi-major-shell basis.

To test our formalism, we performed calculations for the
bound and scattering states of the d-α system. In this case
the three-body density calculation can be performed in a
straightforward way using a closure relation. As the deuteron
is weakly bound, its polarization and breakup cannot be
neglected. A proper treatment would require the inclusion
in the NCSM/RGM formalism of three-body final states:
n-p-α. Although extensions of the approach in this direction
are possible, this is quite challenging and has not been
explored yet. In this first application, we approximated the
three-body continuum by using deuteron pseudostates. We
compared our d-4He results to experimental data as well
as to a standard NCSM calculation for 6Li using the same
Hamiltonian. To facilitate benchmarking with the standard
NCSM, we employed a soft SRG-N3LO NN potential with
a low evolution parameter � = 1.5 fm−1. In this way, we
were able to reach convergence at Nmax ≈ 12. The differences
between the NCSM/RGM and the NCSM results are then due
to omitted correlations rather than to the adopted HO basis
size. Interestingly, the NCSM calculation produced a 6Li g.s.
energy lower by about 2%. This means that internal excitations
of the 4He target, neglected in our NCSM/RGM calculation,
play some role and/or that the pseudostate approximation of
the three-body continuum is not completely adequate. On
the other hand, the NCSM/RGM calculation generates lower
excitation energies for the broader resonances that present
a slower convergence rate with respect to the HO basis
expansion.

Overall, the NCSM/RGM calculation is superior to the
standard NCSM one because it generates wave functions with
proper boundary conditions for the bound state and, further,
describes resonances and scattering states. However, to include
all relevant excitations is a challenge. Therefore, clearly the
way forward is a unification of the two approaches. This
can be accomplished by coupling the present NCSM/RGM

basis, consisting of binary-cluster channels with just a few
lowest excited states of projectile and target, with the NCSM
eigenstates of the composite system as outlined in Ref. [32].
We note that this kind of approach was already considered in
the original RGM paper [6]. Work on this unified approach is
under way.

Our immediate plans include the application of the
NCSM/RGM formalism to the 3H(d,n)4He and 3He(d,p)4He
fusion reactions. This requires working in a NCSM/RGM
model space including both n-4He (p-4He) and d-3H (d-3He)
channel states, that is, a deuteron-nucleon (d,N) transfer
formalism which combines the deuteron-nucleus (presented
here) and nucleon-nucleus (presented in Ref. [14]) formalisms
as well as the integration kernels resulting from the coupling
between the (A − 1, 1) and (A − 2, 2) mass partitions, which
will be the subject of a forthcoming publication. Our prelimi-
nary 3He(d,p)4He S-factor results were discussed in Ref. [33].

The use of SRG-evolved NN interaction facilitates
the convergence of the NCSM/RGM calculations with re-
spect to the HO basis expansion. On the other hand,
due to the softness of these interactions, radii of heav-
ier nuclei become underestimated. Therefore, it is es-
sential to further develop the NCSM/RGM formalism in
order to handle three-nucleon interactions, both genuine
and SRG-evolution induced, in bound-state and scattering
calculations.

To apply the present deuteron-nucleus formalism to heavier
target nuclei, i.e., heavy p-shell nuclei and beyond, it be-
comes necessary to utilize the recently developed importance-
truncated NCSM [34,35]. This gives us the ability to use large
Nmax model spaces, which in the NCSM/RGM approach are
of vital importance not just for the convergence of the target
and projectile eigenstates but also for the convergence of the
localized parts of the integration kernels [15].

Finally, our future plans also include a further general-
ization of the formalism to projectile-target binary-cluster
states with three-nucleon (3H, 3He) and four-nucleon (4He)
projectiles. Calculations of the integrations kernels for the
three-nucleon projectile case are under way.
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APPENDIX: HAMILTONIAN KERNEL MATRIX
ELEMENTS

Here we present matrix elements of the potential kernel
(22) in the basis states (18). For the first term on the rhs of
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Eq. (23), we obtain

SD

〈
�Jπ T

κ ′
ab

∣∣VA−2,A−1(1 − P̂A−2,A−1)
∣∣�Jπ T

κab

〉
SD

= δa,a′
1

A − 2

∑
c c′

∑
JbcTbc

∑
K τ

{
I1 K I ′

1

I ′ J I

}{
jb j ′

b K

I ′ I ja

} {
j ′
b j ′

c Jbc

jc jb K

}{
T1 τ T ′

1

T ′
2 T T2

}{
1
2

1
2 τ

T ′
2 T2

1
2

}{
1
2

1
2 Tbc

1
2

1
2 τ

}

× (−1)Jbc+ja+j ′
c+K−I1−J (−1)Tbc+τ+1−T1−T Î Î ′ K̂ T̂2 T̂ ′

2 τ̂ Ĵ 2
bc T̂ 2

bc

× SD〈A − 2 α′
1I

′
1T

′
1|||(a†

c′ ãc)(Kτ )|||A − 2 α1I1T1〉SD

√
1 + δb′,c′

√
1 + δb,c 〈b′c′JbcTbc|V |b c JbcTbc〉, (A1)

where we abbreviate a ≡ nalaja
1
2 etc. We note that the matrix elements of the interaction V in the antisymmetrized and normalized

two-body basis are evaluated using just the first term of Eq. (9), i.e., Vij = VN (ij ) + e2(1+τ z
i )(1+τ z

j )

4|�ri−�rj | (with VN the nuclear part) as
the average Coulomb interaction is taken care of with the help of Eq. (43) in Ref [14]. For the second term on the rhs of Eq. (23)
we derive

SD

〈
�Jπ T

κ ′
ab

∣∣VA−2,AP̂A−2,A−1

∣∣�Jπ T
κab

〉
SD

= 1

2

1

A − 2

∑
c′Kτ

{
I1 K I ′

1

I ′ J I

} {
j ′
c j ′

b K

I ′ I j ′
a

}{
T1 τ T ′

1

T ′
2 T T2

}{
1
2

1
2 τ

T ′
2 T2

1
2

}
(−1)j

′
b+j ′

a+K−I1−J (−1)τ+1−T1−T Î Î ′ K̂ T̂2 T̂ ′
2 τ̂

× SD

〈
A − 2 α′

1I
′
1T

′
1|||

(
a
†
c′ ãb′

)(Kτ )|||A − 2 α1I1T1
〉
SD

√
1 + δa′,c′

√
1 + δa,b 〈a′c′IT2|V |a b IT2〉. (A2)

For the third term we get

SD

〈
�Jπ T

κ ′
ab

∣∣VA−3,A(1 − P̂A−3,A)P̂A−2,A−1

∣∣�Jπ T
κab

〉
SD

= 1

(A − 2)(A − 3)

∑
d d ′

∑
JadTad

∑
K1K2K

∑
τ1τ2τ

{
I1 K I ′

1

I ′ J I

} {
T1 τ T ′

1

T ′
2 T T2

} ⎧⎪⎨
⎪⎩

K1 K2 jd ja

K j ′
b Jad jb

I I ′ j ′
a j ′

d

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

τ1 τ2
1
2

1
2

τ 1
2 Tad

1
2

T2 T ′
2

1
2

1
2

⎫⎪⎬
⎪⎭

× (−1)I1+J+jb−jd+Jad (−1)T1+T +Tad Î Î ′ K̂ K̂1 K̂2 T̂2 T̂ ′
2 τ̂ τ̂1 τ̂2 Ĵ 2

ad T̂ 2
ad

× SD〈A − 2 α′
1I

′
1T

′
1|||((a†

ba
†
d ′ )(K1τ1)(ãd ãb′ )(K2τ2))(Kτ )|||A − 2 α1I1T1〉SD

×√
1 + δa′,d ′

√
1 + δa,d 〈a′d ′JadTad |V |a d JadTad〉, (A3)

with the 12 − j symbols of the first kind [36] in the notation and the definition given in Appendix A of Ref. [27]. The matrix
element of the fourth term on the rhs of Eq. (23) is obtained in the form

SD

〈
�Jπ T

κ ′
ab

∣∣VA−3,A−1P̂A−2,A−1

∣∣�Jπ T
κab

〉
SD

= δa,a′
1

2

1

(A − 2)(A − 3)

∑
c d d ′

∑
Jbd′Tbd′

∑
JcdTcd

∑
K τ

{
I1 K I ′

1

I ′ J I

} {
jb j ′

b K

I ′ I ja

} {
j ′
b j ′

d Jcd

Jbd ′ K jb

} {
T1 τ T ′

1

T ′
2 T T2

} {
1
2

1
2 τ

T ′
2 T2

1
2

}

×
{

1
2

1
2 Tcd

Tbd ′ τ 1
2

}
(−1)ja+jb+jc+jd+j ′

b+j ′
d+I1+J (−1)1+T1+T Î Î ′ K̂ T̂2 T̂ ′

2 τ̂ Ĵcd Ĵbd ′ T̂cd T̂bd ′

× SD〈A − 2 α′
1I

′
1T

′
1|||((a†

ba
†
d ′ )(Jbd′Tbd′ )(ãd ãc)(JcdTcd ))(Kτ )|||A − 2 α1I1T1〉SD

×√
1 + δb′,d ′

√
1 + δc,d 〈b′d ′JcdTcd |V |c d JcdTcd〉. (A4)

Finally, for the last term on the rhs of Eq. (23) we find

SD

〈
�Jπ T

κ ′
ab

∣∣VA,A−4P̂A−2,A−1P̂A−3,A

∣∣�Jπ T
κab

〉
SD

= 1

2

1

(A − 2)(A − 3)(A − 4)

∑
d e e′

∑
JdeTde

∑
K1τ1

∑
K τ

{
I1 K I ′

1

I ′ J I

} {
T1 τ T ′

1

T ′
2 T T2

} {
Jde j ′

e j ′
a

jb′ I ′ K1

}{
Tde

1
2

1
2

1
2 T ′

2 τ1

}

× (−1)I−I1−J+K1+je+jd+j ′
b+j ′

a (−1)T2−T1−T +τ1 K̂ τ̂ K̂1 Ĵde τ̂1 T̂de

× SD〈A − 2 α′
1I

′
1T

′
1|||((a†

aa
†
b)(IT2)((a†

e′ ãb′ )(K1τ1)(ãeãd )(JdeTde))(I ′T ′
2))(Kτ )|||A − 2 α1I1T1〉SD

×√
1 + δa′,e′

√
1 + δd,e 〈a′e′JdeTde|V |d e JdeTde〉. (A5)
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[15] P. Navrátil, R. Roth, and S. Quaglioni, Phys. Rev. C 82, 034609

(2010).
[16] P. Descouvemont, C. Daniel, and D. Baye, Phys. Rev. C 67,

044309 (2003).
[17] D. Baye, P. Capel, P. Descouvemont, and Y. Suzuki, Phys. Rev.

C 79, 024607 (2009).
[18] D. R. Thompson and Y. C. Tang, Phys. Rev. C 8, 1649 (1973).

[19] H. Kanada, T. Kaneko, and Y. C. Tang, Nucl. Phys. A 389, 285
(1982).

[20] H. Kanada, T. Kaneko, S. Saito, and Y. C. Tang, Nucl. Phys. A
444, 209 (1985).

[21] S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Phys. Rev. C 75,
061001 (2007).

[22] R. Roth, S. Reinhardt, and H. Hergert, Phys. Rev. C 77, 064003
(2008).

[23] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001(R)
(2003).

[24] M. Hesse, J.-M. Sparenberg, F. Van Raemdonck, and D. Baye,
Nucl. Phys. A 640, 37 (1998); M. Hesse, J. Roland, and D. Baye,
ibid. 709, 184 (2002).
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[33] P. Navrátil, S. Quaglioni, and R. Roth, arXiv:1009.3965 [nucl-

th].
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