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Liquid-gas phase transition in hot asymmetric nuclear matter
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We use a density-dependent relativistic mean field model to study the properties of nuclear systems at finite
temperature. The liquid-gas phase transition of symmetric and asymmetric nuclear matter is discussed. A limiting
pressure plim for hot asymmetric nuclear matter has been found because of the density dependence of the
nucleon–nucleon–ρ meson coupling. It is found that the liquid-gas phase transition cannot take place if p > plim.
The binodal surface for this model is addressed. In addition, we calculated the asymmetry parameter dependence
of the critical temperature.
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I. INTRODUCTION

The study of nuclear interactions under extreme conditions
such as large isospin asymmetry and high temperature is
of considerable interest. The van der Waals behavior of the
nucleon-nucleon interaction is expected to lead to the so-called
liquid-gas phase transition in nuclear matter. So the study of
the liquid-gas phase transition in medium-energy heavy-ion
collisions has attracted much interest for many years [1–8].

It is generally recognized that the liquid-gas phase transition
of a one-component system is of first order. The chemical
potential is continuous at the phase transition point but
its first derivatives (entropy and volume) are discontinuous.
Theoretically, much effort has been devoted to studying the
equation of state for nuclear matter and to discussing the
critical temperature TC . The calculated critical temperature
of symmetric nuclear matter lies in the range 13–24 MeV for
various phenomenological models [2,3].

But for a multicomponent or multiple-conserved-charge
system, as was pointed out by Müller and Serot [4], the liquid-
gas phase transition is suggested to be of second order because
of the greater dimensionality of the binodal surface. Asymmet-
ric nuclear matter has two components, the proton and neutron,
and the two conserved charges, of baryon number and the third
component of isospin, will undergo a continuous second-order
phase transition. Obviously, because of charge independence,
the basic difference between the proton and neutron is
isospin. The isospin-dependent interactions nucleon–nucleon–
ρ mesons play the key role in understanding the liquid-gas
phase transition since the chemical potentials of proton and
neutron may depend on the third component I3 of isospin.

In fact, the chemical potentials of the proton and neutron
depend not only on I3 but also on the NNρ coupling
parameter gρ . Then the coupling parameter gρ is also essential
for studying the liquid-gas phase transition because the
chemical potentials determine the binodal surface directly.
In Ref. [5], Qian and co-workers indicated that the effective
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NN-meson couplings are all dependent on density and tem-
perature from the viewpoint of finite-temperature quantum
field theory. By using thermofield dynamics to calculate the
three-line vertex Feynman diagrams of NNρ interactions, these
researchers argued that the effective coupling gρ decreases
as the nucleon density increases. Without generality, they
introduced an ansatz g′

ρ = gρ(1 − ρB) to discuss the liquid-gas
phase transition. Then a limiting pressure plim was found for a
fixed temperature; the liquid-gas phase transition cannot take
place in asymmetric nuclear matter if p > plim.

It is also necessary to address the liquid-gas phase transition
from different points of view, with different models and
different treatments, because this may open different fields
of vision. Recently relativistic mean field (RMF) theory with
density-dependent (DD) meson-nucleon couplings was devel-
oped by various authors [9–11]. In the density-dependent RMF
theory, the medium dependence of the nucleon-meson vertices
is expressed by the baryon field operators. The nucleon-meson
coupling constants in nuclear matter are adjusted to the
Dirac-Brueckner self-energies. A Lorentz-invariant functional
is defined to project the nuclear matter results onto the
nucleon-meson vertices of the DD-ME1 model.

The organization of this paper is as follows. In the next
section, we give the main formulas for the liquid-gas phase
transition in the DD-ME1 model. In the third section some
numerical results are presented. The last section contains a
summary and discussions.

II. THE MODEL AND ASYMMETRIC NUCLEAR MATTER
AT FINITE TEMPERATURE

Among the existing parametrizations for RMF theory with
DD meson-nucleon coupling, the most frequently used are that
of Typel and Wolter 1999 (TW99) [9] and DD-ME1 [11]. To
illustrate our result, we would like to use the RMF model with
DD-ME1 meson-nucleon coupling to discuss the properties
of the liquid-gas phase transition in nuclear matter. This
model has been proven to be successful in explaining many
experimental properties of both nuclear matter and finite nuclei
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in the mean-field approximation. The Lagrangian density of
the model is

L = ψ̄

[
iγ µ∂µ − M + �σσ − �ωγ µωµ − �ρ

2
γ µ�τ · �ρµ

]
ψ

+ 1

2
∂µσ∂µσ − 1

2
m2

σ σ 2 − 1

4
FµνF

µν + 1

2
m2

ωωµωµ

+ 1

2
m2

ρ �ρµ · �ρµ − 1

4
�Gµν

�Gµν. (1)

The Dirac spinor ψ denotes the nucleon with mass M . mσ , mω,
and mρ are the masses of the σ , ω, and ρ mesons, respectively.
The antisymmetric tensors of the vector mesons take the forms
Fµν = ∂µων − ∂νωµ,

−→
G µν = ∂µ

−→ρ ν − ∂ν
−→ρ µ. �σ , �ω, and �ρ

are the coupling parameters between nucleon and σ meson,
nucleon and ω meson, and nucleon and ρ meson, respectively.
�σ , �ω, and �ρ are assumed to be vertex functions of Lorentz-
scalar bilinear forms of the nucleon operators [9–11]. In most
applications of the density-dependent RMF theory the meson-
nucleon couplings are functions of the vector density

ρv = √
jµjµ with jµ = ψ̄γµψ. (2)

The single-nucleon Dirac equation is derived by variation
of the Lagrangian (1) with respect to ψ̄ :

[γ µ(i∂µ − 
µ) − (M − 
)]ψ = 0 (3)

with the nucleon self-energies defined by the following
relations:


 = �σσ, (4)


µ = �ωωµ + �ρ

2
�τ · �ρµ + 
R

µ . (5)

The density dependence of the coupling constants �σ , �ω, and
�ρ produces the rearrangement contribution 
R

µ to the vector
self-energy,


R
µ = jµ

ρv

(
∂�ω

∂ρv

ψ̄γ νψων + ∂�ρ

∂ρv

ψ̄γ ν �τ
2
ψ · �ρν + ∂�σ

∂ρv

ψ̄ψσ

)
.

(6)

The inclusion of the rearrangement self-energies is essential
for energy-momentum conservation and the thermodynamic
consistency of the model [12].

The field equations are solved in the mean field approxima-
tion for infinite nuclear matter: the meson field operators are
replaced by their expectation values. The expectation values
of σ , ω, and ρ are still denoted as σ , ω, and ρ. Then by using
the standard techniques of statistical mechanics, we get the
thermodynamic potential � at finite temperature as

� = − kBT

(2π )3

∑
N=p,n

∫ ∞

0
d3�k{ln(1 + e−[E∗

N (k)−νN ]/kBT )

+ ln(1 + e−[E∗
N (k)+νN ]/kBT )}

+
{
−1

2
m2

σ σ 2

[
1 + 2

ρB

�σ

∂�σ

∂ρB

]
+ 1

2
m2

ωω2

×
[

1 + 2
ρB

�ω

∂�ω

∂ρB

]
+ 1

2
m2

ρρ
2

[
1 + 2

ρB

�ρ

∂�ρ

∂ρB

]}
, (7)

where E∗
N (k) =

√
M∗

N
2 + �k2 and T is temperature. The quan-

tity νi is related to the usual chemical potential µi by the
equations

νn = µn −
(
�ω + ∂�ω

∂ρB

ρB

)
ω +

(
�ρ

2
+∂�ρ

∂ρB

ρ3

)
ρ + ∂�σ

∂ρB

ρsσ,

(8)

νp = µp −
(

�ω + ∂�ω

∂ρB

ρB

)
ω +

(
−�ρ

2
+ ∂�ρ

∂ρB

ρ3

)
ρ

+ ∂�σ

∂ρB

ρsσ, (9)

where ρ3 = ρp − ρn and ρs is the scalar density. The right-
hand sides of Eqs. (8) and (9) depend on ρ3 and �ρ and their
derivatives with respect to ρB . They play the essential role in
determining the liquid-gas phase transition.

Having obtained the thermodynamic potential, all other
thermodynamic quantities, for example, pressure p, can be
calculated as follows:

p = 1

3

2
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, (10)

where

nN (k) = (exp{[E∗
N (k) − νN ]/kBT } + 1)−1,

n̄N (k) = (exp{[E∗
N (k) + νN ]/kBT } + 1)−1 (N = n, p),

are the nucleon and antinucleon distributions, respectively.
The two-phase coexistence equations are

µL
i

(
T , ρL

i

) = µV
i

(
T , ρV

i

)
, (11)

pL
(
T , ρL

i

) = pV
(
T , ρV

i

)
, (12)

where the subscripts of each phase L and V stand for
liquid and vapor, respectively. The stability conditions are
given by [4]

ρB

(
∂p

∂ρB

)
T ,α

= ρ2
B

(
∂2F

∂ρ2
B

)
T ,α

> 0, (13)

(
∂µp

∂α

)
T ,p

< 0 or

(
∂µn

∂α

)
T ,p

> 0, (14)

where F is the density of free energy, α = (ρn − ρp)/ρB the
asymmetric parameter, and ρB = ρn + ρp.

For the parametrization of the density dependence of the
coupling constants of mesons, we choose [11]

�i(ρB) = �i

(
ρsat

B

)
fi(x) for i = σ, ω, (15)

�ρ(ρB) = �ρ

(
ρsat

B

)
exp [−aρ(x − 1)], (16)
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TABLE I. Parameter set in the DD-ME1 model [11].

mσ 549.5255 cσ 1.5342
mω 783.0000 dσ 0.4661
mρ 763.0000 aω 1.3879
�σ (ρsat

B ) 10.4434 bω 0.8525
�ω(ρsat

B ) 12.8939 cω 1.3566
�ρ(ρsat

B ) 7.6106 dω 0.4957
aσ 1.3854 aρ 0.5008
bω 0.9781

where

fi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
(17)

is a function of x = ρB/ρsat
B . This function is able to fit

very well the normalized couplings derived from different
Dirac-Brueckner calculations of symmetric nuclear matter.
The parameters used in the DD-ME1 model are listed in
Table I.

III. NUMERICAL RESULTS

We first discuss the liquid-gas phase transition of symmetric
nuclear matter. In Fig. 1, we show the pressure of the system
versus nucleon density at different temperatures. At low tem-
perature, the pressure first increases and then decreases with
increasing density. The p-ρB isotherms exhibit the form of
two-phase coexistence, with an unphysical region for each. At
temperature T = 13.2 MeV, there appears a point of inflection,
where ∂p/∂ρB = 0, ∂2p/∂2ρB = 0. This temperature is called
the critical temperature. Symmetric nuclear matter can only be
in the gas phase above this temperature.
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FIG. 1. The pressure of symmetric nuclear matter p versus
nucleon density ρB at different temperatures.
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FIG. 2. Pressure of asymmetric nuclear matter versus baryon
density at temperature T = 10 MeV with various values of α.

Figure 2 shows the pressure versus nucleon density at
T = 10 MeV with different asymmetry parameters α. One
can see that when α is small (say α < 0.4), the pressure
has a minimum. When α is large, the minimum disappears
and the pressure increases monotonically with the increasing
density.

Let us now turn to a disscussion of the phase transition
of asymmetric nuclear matter. For the asymmetric case, the
situation is more complicated. One cannot get the critical
temperature from the p-ρB isotherms. The chemical potentials
of the proton and neutron are different. In Fig. 3, we show the
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FIG. 3. The chemical isobars as a function of α at fixed tempera-
ture T = 10 MeV; a, b, c, d, and e refer to the pressures 0.220, 0.180,
0.120, 0.090, and 0.075 MeV fm−3, respectively.
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FIG. 4. Geometrical construction used to obtain the chemical
potentials and asymmetry parameters in the two-phase coexistence at
temperature T = 10 MeV and p = 0.12 MeV fm−3.

µn,µp isobar as a function of α at temperature T = 10 MeV.
The curves a, b, c, d, and e correspond to the pressures
0.220, 0.180, 0.120, 0.090, and 0.075 MeV fm−3, respectively.
The solid lines are for the proton and the dashed lines for
the neutron. We see that the curves for lower pressures
are more complicated than those for higher pressures. The
Gibbs conditions (13) and (14) for phase equilibrium demand
equal pressures and chemical potentials for two phases with
different concentrations. The desired solutions can be found
by means of the geometrical construction for the case of
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FIG. 5. Calculated variation of the relative populations of neutron
stars including hyperons in the case of attractive 
 potential with
respective to the total baryon density.
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FIG. 6. Same as Fig. 4 but for p = 0.205 MeV fm−3. For clarity,
we enlarged the figure in one area.

p = 0.120 MeV fm−3 shown in Fig. 4, which guarantees
the same pressures and chemical potentials for protons
and neutrons in the two phases with different asymmetry
parameters α. The phase with higher density corresponds to
the liquid phase and the lower-density one to the gas phase.

The pairs of solutions found by the geometrical method
described above yield a binodal surface which is shown in
Fig. 5. The binodal curve is divided into two branches. One
branch corresponds to the high-density (liquid) phase, the
other to the low-density (gas) phase. From Fig. 5, one can see
that there exists a limiting pressure plim = 0.205 MeV fm−3;
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FIG. 7. Density dependence of the coupling between the ρ-meson
and baryon in the density-dependent DD-ME1 parametrization.
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FIG. 8. The critical temperature Tc versus asymmetry parameter α.

when p > plim the rectangle cannot be found by means
of the geometrical construction shown in Fig. 4 and the
coexistence equations have no solution. The last rectangle in
the chemical isobar versus α curves for T = 10 MeV and
plim = 0.205 MeV fm−3 is shown in Fig. 6, where α1 = 0.54
and α3 = 0.74 correspond to the local maximum and the
local minimum of µn, respectively. The pair α1 = 0.54 and
α2 = 0.85 form the end of the binodal surface, as shown in
Fig. 5. The limiting pressure in asymmetric nuclear matter
was first discovered by Qian et al. [5] by introducing the
effective g′

ρ ansatz g′
ρ = gρ(1 − ρB) in the NNρ coupling.

In their calculation, the value of the limiting pressure is
0.130 MeV fm−3. In the DD-ME1 model, the coupling
parameter between the ρ meson and nucleon is proposed
as given in Eq. (16) by Ring and co-workers [11]. In
Fig. 7, we draw gρ as a function of ρB and find that gρ

decreases monotonically with increasing baryon density. In
conclusion, we have shown that the density dependence of
the NNρ interaction is important to the liquid-gas phase
transition. If the coupling parameter between the ρ meson
and nucleon decreases as a function of ρB , a limiting pressure
may exist.

In order to address the liquid-gas phase transition more
clearly, we pay more attention to the binodal curve in Fig. 4

following Ref. [5]. The total asymmetry parameter α is divided
into three regions, namely, [0,α1], [α1,α3], and [α3,α2]. The
physical behavior of isothermal compression in the different
regions is different. In the first region [0,α1], the system begins
in the gas phase, experiences a liquid-gas phase transition,
and ends in the liquid phase.In the second region [α1,α3],
it begins in the gas phase, enters a two-phase region, and
becomes unstable at the limiting pressure, since the chemical
stability condition Eq. (14) is destroyed in this region. In the
third region [α3,α2], the system will end in a stable phase at the
limit pressure as the stability condition Eq. (14) is satisfied.

The α dependence of the critical temperature Tc is shown
in Fig. 8. Tc decreases with increasing α. When α is larger
than 0.87, the system can only be in the gas phase at any
temperature. A liquid-gas phase transition can occur for
nuclear matter with α < 0.87 if the temperature is lower than
the critical temperature.

IV. SUMMARY AND DISCUSSION

In summary, we have used a density-dependent relativistic
mean field model (DD-ME1) to address the properties of
the liquid-gas phase transition of symmetric and asymmetric
nuclear matter. A limiting pressure plim for hot asymmetric nu-
clear matter has been found because of the density dependence
of the nucleon–nucleon–ρ meson coupling. It is found that
the liquid-gas phase transition cannot take place if p >plim.
However, our investigation is limited to infinite nuclear matter.
It is of interest to extend the present study to finite nuclei. We
leave that study for the future.

We should mention that theories not based on mean field
theories find that the liquid-gas phase transition is of first order
rather than second order [13]. The second-order feature seems
to be a property of mean field theory which treats the matter
as uniform. The matter is not uniform in Ref. [13] but it is
clustered. A related study is in progress.
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