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The R-matrix approach has proved to be very useful in extrapolating the astrophysical factor down to
astrophysically relevant energies, since the majority of measurements are not available in this region. However,
such an approach has to be critically considered when no complete knowledge of the reaction model is available.
To get reliable results in such cases one has to use all the available information from independent sources and,
accordingly, fix or constrain variations of the parameters. In this paper we present a thorough R-matrix analysis
of the 15N(p, γ )16O reaction, which provides a path from the CN cycle to the CNO bi-cycle and CNO tri-cycle.
The measured astrophysical factor for this reaction is dominated by resonant capture through two strong J π = 1−

resonances at ER = 312 and 962 keV and direct capture to the ground state. Recently, a new measurement of the
astrophysical factor for the 15N(p, γ )16O reaction has been published [P. J. LeBlanc et al., Phys. Rev. C 82, 055804
(2010)]. The analysis has been done using the R-matrix approach with unconstrained variation of all parameters
including the asymptotic normalization coefficient (ANC). The best fit has been obtained for the square of the
ANC C2 = 539.2 fm−1, which exceeds the previously measured value by a factor of ≈3. Here we present a
new R-matrix analysis of the Notre Dame–LUNA data with the fixed within the experimental uncertainties
square of the ANC C2 = 200.34 fm−1. Rather than varying the ANC we add the contribution from a background
resonance that effectively takes into account contributions from higher levels. Altogether we present ten fits,
seven unconstrained and three constrained. For the unconstrained fit with the boundary condition Bc = Sc(E2),
where E2 is the energy of the second level, we get S(0) = 39.0 ± 1.1 keVb and normalized χ̃2 = 1.84, i.e.,
the result which is similar to LeBlanc et al. From all our fits we get the range 33.1 � S(0) � 40.1 keVb
which overlaps with the result of LeBlanc et al. We address also the physical interpretation of the fitting
parameters.
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I. INTRODUCTION

Nuclear data are important input into nuclear astrophysics.
When resonances contribute, the analysis of the data usually
is done within the R-matrix approach. The R-matrix analysis
includes fitting parameters, like particle and radiative reduced
widths, resonance energies, channel radii, and boundary
conditions. Often nonresonant processes also contribute to
the reaction mechanism. For example, the radiative capture
amplitude in the R-matrix approach consists of three terms:
the internal resonance amplitude, which describes the radiative
capture as the process in which the incident particle penetrates
through the barrier into the internal region of a target, from
which radiative decay to lower lying levels occurs; the external
resonance amplitude describing the formation of the resonance
in the external region of target with subsequent γ decay;
and the nonresonant direct capture amplitude, which describes
the transition from the initial continuum to a bound state by
emitting γ without formation of resonance. This nonresonant
term in the R-matrix approach is contributed only by the matrix
element in the external region, i.e., at distances larger than the
channel radius, because the internal part of the nonresonant
amplitude is included in the internal resonance amplitude.
The normalization of the last two amplitudes is governed by
the asymptotic normalization coefficient (ANC), which has
been introduced into analysis of nuclear astrophysical data by
one of us (A.M.M.) [1,2]. The ANC is a fundamental nuclear

characteristic of bound states [3] and for resonances the partial
resonance width is also expressed in terms of the ANC [4,5].
The residue of the scattering S matrix in the corresponding
bound state or resonance pole is expressed in terms of the
ANC [4], which provides a model-independent definition of
the ANC. Moreover, the ANC is the only model-independent
information, which can be extracted from nuclear reactions [6].
The ANC can be determined, for example, from peripheral
transfer reactions and has been extensively used in the analysis
of many important astrophysical reactions [7–13].

Thus the presence of the external resonant and nonresonant
direct radiative captures adds an additional parameter into
the R-matrix fit, which is of fundamental importance for
nuclear reactions and nuclear structure [2,3,14]. Usually
the astrophysical factor (or, equivalently, the reaction cross
section) is obtained from the R-matrix analysis by uncon-
strained variations of the fitting parameters until a minimum
of χ̃2 = χ2/N is reached, where N is the number of degrees
of freedom, i.e., the number of the data points included into
the fit minus the number of the fitting parameters. However,
each researcher faces a question: whether a minimum of χ̃2

is always an acceptable fit which provides reliable physical
parameters and correct astrophysical factor. We believe the
answer would be “yes” if the reaction model is complete, i.e.,
all the reaction mechanisms are taken into account. However,
in practice it is hardly possible. Sometimes missing reaction
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mechanisms may not be important, i.e., their contribution is
less than or comparable with the experimental uncertainties,
sometimes it is not the case and even small contributions from
missing reaction mechanisms may be important, especially
when they do interfere with the reaction amplitudes, which
are explicitly taken into account. In this case the fit providing
the minimum of χ̃2 may be misleading because the missing
reaction mechanisms are compensated by adopting unphysical
parameters. What are the best general prescriptions when
one uses the R-matrix fit? First, invoke all available reliable
physical information from independent sources to constrain
the number of fitting parameters or the interval in which they
can be varied. We call it a constrained fit. Second, it is always
wise to add a background contribution when one sees that
a minimum of χ̃2 cannot be reached without a background
if parameters are within physical boundaries. R-matrix for-
malism provides a solid way to take effectively into account
the missing reaction mechanism. Usually, in the R-matrix
approach, the cumulative effect of the higher lying distant
levels is taken into account as a background [15]. Sometimes,
direct mechanisms, which have smooth energy behavior, are
also included in the background. What to take into account
explicitly or as a background depends on the energy behavior
of the corresponding amplitude and its magnitude. Since the
final purpose in the analysis of astrophysical nuclear reactions
is to provide reliable information for nuclear astrophysics we
have to be sure that all the useful independent data have been
included into analysis. Definitely the most reliable information
can be obtained if one performs simultaneous R-matrix fits in
all the open channels or uses available information, which
has been obtained from an analysis of other open channels.
This information allows us to fix or constrain reduced widths
in some open channels. Since the ANCs in many cases
are now available from independent experimental data or
theoretical calculations [14], it is always important to fix or
significantly constrain the variation of the ANC. A serious
disagreement between the ANC found from the R-matrix
fit and the experimentally determined one might signal that
some physical input is missing in the reaction model and
this incomplete knowledge is compensated for by adopting
an unphysical value of the ANC.

A very instructive example is the notorious analysis
of the 14N(p, γ )15O reaction for transition to the ground
state, where the nonresonant capture contribution is also
controlled by the ANC for the 15O(g.s.) → 14N + p [9,16].
The best fit is achieved at C ≈ 11 fm−1/2, but this fit
was not accepted because the recommended ANC value is
7.4 ± 0.5 fm−1/2 [9,16]. The recommended in [16] S(0) =
0.27 ± 0.05 keVb factor corresponds to the fit with the
recommended ANC but the expanded uncertainty is not due
to the best fit at higher ANC but to a possible contribution
of the capture to the channel spin I = 1/2, which interferes
with the 259 keV resonance. It is an important example
when missing physics is taken into account rather than an
unconstrained variation of the ANC, which demonstrates
that it is important to keep track on the boundaries of
variation of the fitting parameters in accordance with the pre-

viously available information about them obtained from other
sources.

As a practical application of the procedures described above
in this paper, we analyze the astrophysical 15N(p, γ )16O reac-
tion, which provides the path to form 16O in stellar hydrogen
burning, thus transforming the CN cycle into the CNO bi-cycle
and CNO tri-cycle. In stellar environments, the 15N(p, γ )16O
reaction proceeds at very low energies, where it is dominated
by the resonant capture to the ground state through the first
two interfering Jπ = 1− s-wave resonances at ER = 312 and
962 keV, where ER is the resonance energy in the center-of-
mass system. There is also a small contribution from direct
capture to the ground state of 16O, which turns out to play
an important role due to the interference with the resonant
amplitudes. In our previous paper [13], the measurement of
the ANC for the 16O → 15N + p was reported. This ANC
has been used to fix the nonresonant contribution to the
15N(p, γ )16O capture and we found that it was impossible to fit
the low-energy data from [17]. Moreover, we underscored that
to fit these experimental data one needs to increase the ANC
almost by an order of magnitude. Our calculated astrophysical
factor using the two-level, two-channel R-matrix approach led
to S(0) = 36.0 ± 6.0 keVb, which is significantly smaller than
S(0) = 64 ± 6 keVb reported in [17] but in agreement with the
older measurements in [18]. Correspondingly, we have found
that for every 2200 ± 300 cycles of the main CN cycle, one
CN catalyst is lost due to the 15N(p, γ )16O reaction, rather
than for every 1200 ± 100 cycles determined from data of
Ref. [17]. Our results were confirmed later by [19]. Recently,
two new measurements of the astrophysical factor for the
15N(p, γ )16O have been published. The first measurement was
performed at the LUNA underground accelerator facility at the
Gran Sasso laboratory [20]. This measurement covered only
the low-energy region, E � 230 keV, where E is the relative
15N − p energy. The second study of 15N(p, γ )16O, which was
just reported in [21], was performed over a wide energy range
at the Notre Dame Nuclear Science Laboratory (NSL) and
the LUNA II facility. The obtained S(0) = 39.6 ± 2.6 keVb
is in a perfect agreement with our prediction S(0) = 36.0 ±
6.0 keVb [13]. However, in the R-matrix fitting of
the experimental data, the ANC was used as an un-
constrained fitting parameter and the best fit with
the normalized χ̃2 = 1.80 was achieved for the square
of the ANC C2 = 539 ± 138 fm−1, which is signif-
icantly higher than our measured value C2 = 192 ±
26 fm−1. Significant deviation of the ANC obtained in [21]
signals that some physical input is missing in the reaction
model and this incomplete knowledge is compensated for by
adopting an unphysical value of the ANC. In the case under
consideration, in the R-matrix approach, the ANC determines
the overall normalization of the nonresonant radiative capture
amplitude and the channel (external) part of the radiative
width amplitudes of both resonances involved. Although the
nonresonant amplitude is small and any sizable impact on
the astrophysical factor can be achieved only by a significant
variation of the ANC, the contribution of the nonresonant
amplitude increases toward low energies, which is the region
of the astrophysical interest.
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It is the goal of this paper to demonstrate that the fit
providing the minimum of χ̃2 is not always acceptable from
the point of view of physics. We will show that, using the
experimentally measured ANC, we can achieve the same
or even better fits than in [21] by adding the background
resonance, which takes effectively into account the cumulative
contributions from distant 1− levels. Our result confirms that
the unphysical value of the ANC obtained in [21] is the result of
neglecting the background contribution. Results of our fits are
compared with the one presented in [21], which was obtained
using the AZURE R-matrix code [22], and it is demonstrated that
some parameters of the fit in [21] significantly deviate from
those found previously. Also the constrained fits, where the
observable particle widths are consistent with the previous fits
of the 15N(p, α)16C reaction, are presented. We demonstrate
how a thorough R-matrix analysis should be done often
applying the procedures used by Barker [19]. Eventually we
obtained a wider interval for S(0) than in [21] and indicate a
still-existing inconsistency in parameters of two 1− resonances
of 16O.

II. ANC

We start with the physical meaning of the ANC, which is
an important input in the analysis of astrophysical reactions.
As we have underscored, in the R-matrix approach the ANC
determines the normalization of the external nonresonant
radiative capture amplitude and the channel radiative reduced
width amplitude [8]. In a single-particle approach, the nucleon
ANC can be expressed in terms of the spectroscopic factor and
the single-particle bound-state wave function of the nucleon
calculated in some adopted mean field:

C2 = S b2, (1)

where S is the spectroscopic factor and b is the single-particle
ANC, i.e., the amplitude of the tail of the single-particle
bound-state wave function. Note that the isospin Clebsch-
Gordan coefficient is absorbed in the spectroscopic factor. For
simplicity, we omit the quantum numbers characterizing the
nucleon bound state. In such an approach we can consider the
ground state of 16O as the bound state (15N p) with the proton
occupying the single-particle orbital 1p1/2. The spectroscopic
factor shows the probability of this configuration in the ground
state of 16O. Due to the identity of nucleons this probability
can be larger than one. In a simple independent particle shell
model the spectroscopic factor of the 1p1/2 state is equal
to the number of protons occupying this orbital, i.e., 2. To
determine the spectroscopic factor from Eq. (1) one needs
to determine the proton bound-state wave function. To this
end we adopt the Woods-Saxon potential with the standard
geometry, r0 = 1.25 fm and diffuseness a = 0.65 fm, and
the spin-orbit potential depth of 6.39 MeV. Assuming that
the proton is in the p1/2 orbital we obtain the single-particle
proton ANC b ≈ 9.96 fm−1/2. If one adopts the ANC from
[21], we obtain the spectroscopic factor S = 5.44 vs S = 2.1
obtained from our C2 = 192 fm−1. Even if we adopt an
unrealistically large radius r0 = 1.50 fm and a = 0.65 fm for
the Woods-Saxon potential, we obtain b = 13.6 fm−1/2 and a
too high spectroscopic factor S = 2.81.

Definitely such a high spectroscopic factor obtained from
the ANC adopted in [21] requires a physical interpretation. In
this aspect it would be useful to present the phenomenological
spectroscopic factors obtained from the analysis of different
reactions. For example, the spectroscopic factor deduced from
the analysis of the 16O(e, e′ p)15N reaction is S = 1.27 ± 0.13
[23,24]. The proton bound-state wave function deduced from
the (e, e′ p) reaction is reproduced by the Woods-Saxon
potential with the geometry r0 = 1.37 fm and a = 0.65 fm.
The single-particle ANC of this bound-state wave function
is b = 11.62 fm−1/2. Using the upper limit of the deduced
spectroscopic factor S = 1.40 we obtain the square of the
proton ANC in the ground state of 16O C2 = 189 fm−1, which
is in a perfect agreement with our result [13]. In our paper [13],
we presented the spectroscopic factors extracted from different
15N(3He, d)16O reactions including our result. Besides our
spectroscopic factor S = 2.1 [13], three other measurements
(see references in [13]) gave S � 1.76. The DWBA reanalysis
of the 16O(d, 3He)15N reaction [25] performed in [24] using
the proton bound-state wave function obtained from the
16O(e, e′ p)15N reaction with r0 = 1.37 fm and a = 0.65 fm
gave an even lower spectroscopic factor S = 1.02. With this
low spectroscopic factor we get C2 ≈ 140 fm−1. Since the
measurements in [25] were done in 1967, the accuracy of the
absolute normalization of the differential cross section in [25]
might be questionable. Spectroscopic factors below 2 have also
been obtained in microscopic calculations [26,27]. Concluding
this discussion, we cannot find any justification for such a high
value of the ANC used in [21] because it leads to an unphysical
spectroscopic factor. We only can come to the conclusion that a
broad variation of the ANC beyond of the experimental limits
has been used in [21] to compensate for missing mechanisms
in the reaction model.

III. R MATRIX

To underscore the role of the ANC in the fitting of
experimental data, in this section we present the expression
for the astrophysical factor in the R-matrix approach, which
we use for the analysis of the experimental data. An important
advantage of our code is that it provides both internal and
channel (external) radiative reduced widths amplitudes. Since
the external radiative width amplitude is normalized in terms
of the ANC its sign is synchronized with the sign of the
nonresonant amplitude, which is also expressed in terms of
the ANC. Hence, the interference pattern is determined by the
relative sign of the internal and external resonance amplitudes
and this sign can be considered as a fitting parameter. It is a
two-level, two-channel R-matrix, which includes the coherent
contribution from two 1− resonances and nonresonant term
describing direct capture. The ANC determines the normal-
ization of the nonresonant capture amplitude, which describes
the external direct capture in the R-matrix approach and the
channel radiative width amplitude, which are important for
the fitting. But, in addition to [21], we add the coherent
contribution from a background resonance rather than varying
the ANC. We can assume that this background pole takes
effectively into account contributions from distant levels with
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Jπ = 1−. The expression for the astrophysical factor in the
R-matrix method for the case under consideration can be
written as [15,28]

S(E)(keVb) = π λ2
N

2

ĴR

Ĵx ĴA

mx + mA

mx mA

931.52 e2 π η 10

×
[ ∑

ν,τ=1,2

(
	

1/2
ν γ (int) ± 	

1/2

ν γ (ext)

)
[A−1]ντ	

1/2
τ p

±MDC + MBG

]
, (2)

where λN = 0.2118 fm is the nucleon Compton wavelength,
931.5 is the atomic mass unit in MeV, Zj and mj are the
charge and mass of particle j , and µij is the reduced mass
of particles i and j . η is the Coulomb parameter in the
initial state of the reaction, Jj is the spin of particle j , and

JR is the spin of the resonance, Ĵ = 2 J + 1. kγ = (E +
ε)/(h̄ c) is the momentum of the emitted photon expressed
in fm−1, E is the relative p − A energy, A is the target, ε

is the proton binding energy of the bound state (Ap), L is
the multipolarity of the electromagnetic transition, A is the
standard level matrix for the two-channel, two-level case [15],
	

1/2
τc = √

2 Plc (kc, rc) γτ c, γτ c is the reduced width amplitude
for the level τ = 1, 2 in the channel c = p, α. Plc (kc, rc) is
the barrier penetrability factor in the channel c, lc is the orbital
angular momentum of the resonance, and kc is the relative
momentum of the particles in the channel c. rc is the R-matrix
channel radius in the channel c, 	

1/2
ν γ (int) = √

2 k
L+1/2
γ γν γ (int),

γν γ (int) is the internal radiative reduced width amplitude for
transition from the level ν to a bound state (the ground state in
the case under consideration), 	

1/2
ν γ (ext) = √

2 k
L+1/2
γ γν γ (ext),

γν γ (ext) is the complex channel (external) radiative reduced
width amplitude for transition from the level ν to a bound state
given by the expression

γν γ (ext) = C

√
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∫ ∞
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p
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Flp (kp, r) and Glp (kp, rp) are the Coulomb regular and singular solutions, W−ηf , lf +1/2(r) is the Whittaker function describing
the radial dependence of the tail of the bound state wave function to which transition occurs after the photon is emitted. ηf is the
Coulomb parameter of the bound state and lf its orbital angular momentum, 〈lp0 L 0| lf 0〉 is the Clebsch-Gordan coefficient,
and U (Llf JiI ; lpJf ) is the normalized Racah coefficient. Ji is the total angular momentum of the system p + A in the initial
state of the radiative capture process, which is equal to the resonance spin, Ji = JR , I is the channel spin. The nonresonant
capture amplitude describing the external direct capture in the R-matrix method is given by

MDC = 2C

√
e2

h̄c
λN

931.5

E
(kγ rp)L+1/2µL

pA

[
Zp

mL
p

+ (−1)L
ZA

mL
A

] √
(L + 1)L̂

L

1

L̂!!

√
Plp (kp,rp)

×W−ηf ,lf +1/2(rp)Flp (kp, rp) Glp (kp, rp)〈lp0 L 0| lf 0〉U (Llf JiI ; lpJf )Int2. (6)

As we can see the channel radiative width amplitudes and
the direct (nonresonant) capture amplitude are proportional to
the same ANC because both describe the peripheral processes
contributed by the tail of the overlap function (in the case
under consideration it is 〈ϕ15N|ϕ16O〉, where ϕi is the bound
state wave function of nucleus i), whose amplitude is the
ANC. Besides, the channel radiative width amplitude γν γ (ext)

contains the proton reduced width amplitude γν p. Hence the
relative sign of γν γ (ext) and MDC depends on the sign of γν p. It
is also worth mentioning that γν γ (int) is a fitting parameter and

γν γ (ext) is a complex quantity because it contains an imaginary
part. The radiative width is given by equation

	νγ = ∣∣	1/2
ν γ (int) − 	

1/2
ν γ (ext)

∣∣2 = 2 k3
γ |γν γ (int) − γν γ (ext)|2 (7)

calculated at the νth resonance energy. Another important
point to underscore is that the signs of 	

1/2
ν γ ext and MDC relative

to 	
1/2
ν γ (int) are synchronized. In all the fits presented below we

use a positive sign because it gives a better fit.
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Finally the background resonance amplitude can be written
as

M(BG) = 	
1/2
γ (BG)	

1/2
p(BG)

E − ER(BG) + i
	(BG)

2

, (8)

where ER(BG) is the resonance energy of the background
resonance,

	
1/2
γ (BG) =

√
2 kL+1/2

γ γγ (BG), (9)

	
1/2
c(BG) = √

2 Plc (kc, rc)γc(BG), (10)

and γγ (BG) is a complex radiative width amplitude for the
decay of the background resonance to a bound state and γc(BG)

is the reduced width amplitude of the background resonance
for the channel c. The total resonance width of the background
resonance is given by 	(BG) = 	p(BG) + 	α(BG), where 	c(BG)

is the partial resonance width in the channel c.
Note that all the energies are in MeV but the astrophysical

factor S(E) is in keVb. The dimension of the reduced
particle width amplitude γνc is MeV1/2 but γν γ has dimension
MeV1/2fm3/2 for L = 1.

IV. ANALYSIS

Altogether we performed seven unconstrained and three
constrained fits with the boundary conditions Bc = Sc(E2) and
Sc(E1). First we present two fits without a background pole.
Then we perform two unconstrained fits called fits A(113), and
two constrained fits called fits B(113). In these fits we use all
113 data points of [21]. We also performed two unconstrained
fits to determine the uncertainty of the parameters and the
astrophysical factor when the experimental data are deviated
from the center by ±1σ . In addition, we performed also
two fits, A(70) and B(70), using only 70 low-energy data
points of [21] in the region of the first resonance. For all the
fits the channel radii in the proton and α channels are rp =
5.03 fm and rα = 7.0 fm, correspondingly, and the ANC C =
14.154 fm−1/2 are kept the same as in [13] and [29] and the
background resonance energy is fixed at ERBG = 5.07 MeV. All
other parameters are varied to get a best fit. For the case under
consideration lp = 0, lf = 1, Jf = 0, JR = 1, and I = 1.

A. Fits without background resonance

We begin our R-matrix fit of the data from [21] using the
reaction model, which is contributed by two 1− resonances
and nonresonant capture. This fit helps us to identify the
importance of the background. In Fig. 1 we demonstrate two
best fits to 113 data points of [21] without any background
pole with the boundary conditions in the channel c = p, α

Bc = Sc(E2), and Bc = Sc(E1). The best fit with Bc =
Sc(E2) is achieved at E2 = 0.956 MeV and E1 = 0.2872
MeV and results in S(0) = 34.2 keVb with χ̃2 = 2.6 and
total χ2 = 273.1. For the fit with Bc = Sc(E1) at E1 =
0.30872 MeV and E2 = 1.0794 MeV we get S(0) =
34.6 keVb with χ̃2 = 2.5 and χ2 = 259.9. Parameters of the

FIG. 1. (Color online) The astrophysical S(E) factor for the
15N(p, γ )16O reaction. The black squares are experimental data from
Ref. [21]. The red solid line is our unconstrained fit with the boundary
condition Bc = Sc(E2 = 0.956 MeV), which takes into account three
interfering amplitudes: two 1− resonances and a nonresonant term.
No background pole is included. The blue dot-dashed line is a similar
fit with the boundary condition Bc = Sc(E1 = 0.30872 MeV). The
ANC is C = 14.154 fm−1/2 as in all other fits.

fits are given in Tables I and II. The only difference from the fit
presented in [21] is that we fixed the ANC at the experimentally
measured value while in [21] the ANC was an unconstrained
fitting parameter. As we can see both fits are quite good
except for the bottom between two resonances and the high
energy tail. Without the background resonance we miss just
a contribution of a few keVb, which is very small compared
to the resonance peaks, which are a few hundred keV. It is a
straightforward indication that, by adding a small contribution
from the background resonance, we can improve the fit and
decrease χ̃2. If we would try to improve the fit by varying
the nonresonant contribution, i.e., the ANC, then, due to very
small nonresonant amplitude, we will be required to make a
significant increase of the ANC. Figure 9(b) from [21] confirms
this conclusion: to get down χ̃2 to the minimum one really
needs to increase significantly the ANC as it has been done
in [21].

B. Unconstrained fits to all the data points

Here, instead of varying the ANC to decrease χ̃2, we
perform two unconstrained fits A(113) to the Notre Dame-
LUNA data [21] adding a background resonance. All 13
parameters except for the ANC, channel radii, and the
background resonance energy are allowed to vary. Performing
such fits with the fixed ANC one can compare the obtained
fitting parameters with the ones determined from the analysis
of other channels. To determine the resonance parameters,
the fits are performed with two boundary conditions. The first
boundary condition has been set up near the second resonance,

044604-5



A. M. MUKHAMEDZHANOV, M. LA COGNATA, AND V. KROHA PHYSICAL REVIEW C 83, 044604 (2011)

TABLE I. Resonance parameters. Parameters of the R-matrix fits to the 15N(p, γ )16O capture 113 data points [21] along with the fitting
parameters from [21,31,32].

Reference γ 2
1 p 	̃1 p γ 2

1 α 	̃1 α 	1 γ γ 2
2 p 	̃2 p γ 2

2 α 	̃2 α 	2 γ

[keV] [keV] [keV] [keV] [eV] [keV] [keV] [keV] [keV] [eV]

[21] 52.8 0.20 13.5 112.0 33.8 309.1 110.6 5.0 40.6 38.7
[19],
Table II, HH(c) 355.2 1.0 10.6 85.8 265.2 98 5.4 40.3
[32],
Resonances in 12C + α scattering 1.1 92 ± 8 9.5 ± 1.7 100 45 ± 18 44 ± 8
Present work, unconstrained fits

A(113) 358.8 1.3 14.4 99.4 7.5 221.6 82.8 7.5 63.2 63.6
Present work, constrained fits

B(113) 259.8 1.0 13.6 99.7 9.3 268.9 98.1 6.0 49.4 54.4
Present work, unconstrained fits

without background resonance 353.3 1.3 14.1 98.3 7.5 231.4 86.0 6.9 58.2 57.6

while the energy of the first level is a fitting parameter. The
found parameters of the second resonance are transformed
using Barker’s transformation [30]. After that we repeat the
fit with the boundary condition near the first resonance. Using
Barker’s transformation [30] we get the resonance parameters
of the first resonance. Such unconstrained fits will allow to
check how reliable extracted parameters are by comparing
them with existing results obtained from previous studies of
the 1− resonances of 16O. We also compare the parameters of
our fit with the ones from [21].

First we have searched for the best fit for the boundary
condition Bc = Sc(E2), E2 is the energy of the second
level which is taken close to the second resonance energy
ER2 = 0.9594 MeV adopted in [21] while the first level is
varied to get the best fit. We find the best fit at E2 = 0.956 MeV
and E1 = 0.1662 MeV. The channel radii, rp = 5.03 fm and
rα = 7.0 fm, and ANC C = 14.154 fm−1/2 have been used
in all the fittings. The energy of the included background
resonance is 5.07 MeV, the proton reduced width amplitude of
the background resonance is γp(BG) = −0.3 MeV1/2, and the
α reduced width amplitude γα(BG) = 0.07 MeV1/2. In the fit
A(113) the search for the best fitting has been performed using
an unconstrained variation of other parameters. Using Barker’s
transformation [22,30] the fitting parameters are transformed
to the ones corresponding to the boundary condition at the
second resonance energy ER2 = 0.9594 MeV adopted in [21].

These parameters are given as the fitting parameters for the
second resonance in Tables I and II. The radiative width for
the background pole is found to be 	γ (BG) = 354.9 eV. After
that we can find the observable partial resonance widths for
the channel c using the standard R-matrix equation [19]

	̃ν c = 2 γ 2
ν c Pc

(
ERν

,rc

)
1 + ∑

c′=p,α

γ 2
ν c′

dSc′
dE

∣∣
E=ERν

, (11)

where ERν
is the resonance energy of the level ν and 	̃ν c is

the observable partial width of the level ν in the channel c.
In the second unconstrained fit A(113), we have searched

for the best fit with the boundary condition Bc = Sc(E1),
where the energy of the first level E1 is near the first resonance
at ER1 = 0.3104 MeV adopted in [21] while the second level
is varied to get the best fit. For this boundary condition we
find the best fit at E1 = 0.30872 MeV and E2 = 1.0576
MeV. The fitting parameters are transformed to the ones
corresponding to the boundary condition at the first resonance
ER1 = 0.3104 MeV adopted in [21] and are shown in Tables I
and II as the fitting parameters for the first resonance. To
get the observable widths we use Eq. (11). The radiative
width for the background pole is found to be 	γ (BG) = 360.5
eV. In Fig. 2 we demonstrate the astrophysical factors S(E)
obtained from these two unconstrained A(113) fits with fixed
ANC C = 14.154 fm−1/2 and the background resonance

TABLE II. Internal and external radiative width amplitudes for the first and second resonances. The amplitudes for the second resonance
at ER2 = 0.9594 MeV (first resonance at ER1 = 0.3104 MeV) are determined from the unconstrained fit A(113) and constrained fit B(113) for
the boundary condition at the second (first) resonance.

Fits γ1 γ (int) [MeV1/2 fm3/2] γ1 γ (ext) [MeV1/2 fm3/2] γ2 γ (int) [MeV1/2 fm3/2] γ2 γ (ext) [MeV1/2 fm3/2]

[21] 0.22 0.19
[19] 0.085 0.24

Unconstrained fits A(113) 0.062 0.061 + i 0.000059 0.28 0.053 + i 0.0041
Constrained fits B(113) 0.085 0.052 + i 0.000054 0.25 0.059 + i 0.0044
Unconstrained fits without
background resonance 0.062 0.060 + i 0.000059 0.26 0.055 + i 0.0042
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FIG. 2. (Color online) The astrophysical S(E) factor for the
15N(p, γ )16O reaction. The black squares are experimental data from
Ref. [21]. The red solid line is our unconstrained R-matrix fit A(113)
with the boundary condition Bc = Sc(E2), which takes into account
four interfering amplitudes: two 1− resonances, a nonresonant term,
and background resonance at 5.07 MeV. The blue dot-dashed line is
our unconstrained R-matrix fit A(113) similar to the previous one but
with the boundary condition Bc = Sc(E1). The magenta dashed line
is the nonresonant S(E) factor for the ANC C = 14.154 fm−1/2.

included. The red solid line is the fit corresponding to the
boundary condition at E2 = 0.956 MeV with the normalized
χ̃2 = 1.84. This fit is practically identical to the one in [21]
resulting in S(0) = 39.0 keVb in agreement with [21]. For
the fit A(113) with the boundary condition at E1 = 0.30872,
the blue dotted-dashed line, we obtain χ̃2 = 1.76 with S(0) =
37.2 keVb. This fit goes slightly lower than the red line at low
energies, better reproducing the low-energy trend of the data.
The magenta dashed line represents the nonresonant S(E)
factor for the ANC C = 14.154 fm−1/2 which has been used
for both fits. This ANC is within the experimental interval
13.86 ± 0.91 fm−1/2 determined from the 15N(3He, d)16O
reaction [13]. Thus adopting a physical ANC we correctly
fix the normalization of the external direct capture amplitude
and the channel radiative width amplitude, and adding
the background pole rather than varying the ANC way

beyond experimental limits [21] we are able to get the
same fit as in [21]. The obtained formal reduced widths and
observable resonance widths for the fits A(113) along with the
corresponding parameters from [21,31,32] are given in Tables I
and II.

We can now compare the results of the fits A(113) with
[21,19], and resonance parameters obtained from 12C + α

scattering [32]. The last datum should be quite accurate,
especially for the first resonance. Note that from different fits
presented in [19] we choose the fit HH (c), Tables II and III,
to the data of [18], because they are pretty close to the data
of [21] in the region of the first resonance and the selected
fit from [19] resulted in S(0) = 35.2 keVb, which agrees with
our results and is close to [21] S(0) = 39.6 ± 2.6 keVb. As it
has been mentioned in [19], there is a significant uncertainty
in the values of the proton and α partial widths for the second
resonance what can also be concluded from compilation [32].
That is why there are no recommended values for these widths
in [19] after an analysis of the 15N(p, α)12C data. One of the
problems is that the 15N(p, α)12C and 15N(p, γ )16O reactions
put a limitation on the ratio γ 2

1α/γ 2
2α and the E1 strength ratio of

the second and first resonances, which should be equal due to
the isospin mixture of two 1− resonances. This isospin mixture
can be written as [17–19]

ψ1 = α |T = 0〉 + β |T = 1〉,
(12)

ψ2 = β |T = 0〉 − α |T = 1〉,
where α2 + β2 = 1. Since the α-particle decays of these
resonances in 16O to the ground state are allowed only due
to the T = 0 components, we have

γ 2
1 α

γ 2
2 α

= α2

β2
. (13)

Correspondingly, the strength of the E1 decays of these
resonances to the ground state is entirely determined by T = 1,
i.e.,

E12

E11
= α2

β2
. (14)

From the fit in [21] one gets the ratio γ 2
1 α/γ 2

2α = 2.7 and
γ 2

1 α/γ 2
2α = 1.96 from [19]. To get the ratio of the E1 intensities

we remind the reader that γν γ (int) ∼ 〈ϕp|Ô|ψν(int)〉|r�rp
, Ô

is the electromagnetic operator, ϕp is the proton bound-state
wave function in 16O and ψν(int) is the internal resonant

TABLE III. Resonance parameters. Parameters of the unconstrained A(70) and constrained B(70) fits to the 70 data points of the 15N(p, γ )16O
process [21]. Physical meaning of the parameters and the procedure are similar to the one described in the caption for Table I. Note that for
both fits A(70) and B(70) we present the parameters only for the first resonance because the boundary condition is adopted at the energy of the
first level.

Fit γ 2
1 p [keV] 	̃1 p [keV] γ 2

1 α [keV] 	̃1 α [keV] 	1 γ [eV]

fit A(70),
Bc = Sc(E1 = 0.30872 MeV) 358.9 1.4 14.3 98.9 6.9
fit B(70),
Bc = Sc(E1 = 0.30872 MeV) 260.2 1.0 13.6 99.7 9.0
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wave function of the νth resonance given by a standing
wave satisfying Eq. (12). Then the ratio of the E1 intensities
can be estimated from the ratio of γ 2

ν γ (int) assuming the
dominance of the internal contribution to the electromagnetic
transition matrix element. From [21] we get γ 2

2 γ (int)/γ
2
1 γ (int) =

0.66 and γ 2
2 γ (int)/γ

2
1 γ (int) = 7.97 from [19]. If we use the

E1 intensity ratio of the total radiative widths we get
from [21] E12/E11 = (	2 γ /k3

2 γ )/(	1 γ /k3
1 γ ) = 0.98, where

kν γ = (ERν
+ ε)/h̄ c is the momentum of the emitted photon

for transition from the resonance ν with the resonance energy
ERν

to the ground state with the proton binding energy
ε. Thus the ratio of the α-reduced widths from [21] is
reasonably consistent with findings in [19,29], while the ratio
of the radiative resonance widths is too small compared to
all the previous estimations due to too high radiative width
of the first resonance which was estimated to be around
10 eV [18,32,33]. The proton partial width 	̃2p = 110 keV
in [21] is higher than the previous estimations [19,31,32],
while our 82.8 keV is lower. Note that we do not include
estimations from the analysis of the data of [17].

The partial widths for the first resonance are better known
than for the second one. According to [19] and [31], 	̃1p =
1.1 keV and 1.0 keV, correspondingly, and 	̃1 α = 92 ± 8 keV
and different previous estimations are pretty close to these
values [32]. Note that all the widths are in the center-of-mass
system. All three partial widths obtained in [21] disagree
with other results, in particular, with the 12C + α resonance
scattering data [32]. It is impossible to explain a too low
value of 	̃1p = 0.2 keV and too high values of 	1 γ = 33.8 eV
and 	̃1 α = 112 keV [21], which are beyond the boundaries
of the existing estimations. Our unconstrained fits A(113)
are not satisfactory also, although they better agree with the
previous estimations for the first resonance. The quoted value
	1γ = 12 ± 2 eV in [32] was taken from [17], while [18]
obtained from a single level analysis (only the first resonance
was included) that 	1γ = 8 eV, and from the two-level
analysis 	1γ = 12.8 eV. Our 	1γ = 7.5 eV is significantly
lower than the corresponding value in [21], but agrees with
	1 γ = 9.5 ± 1.7 eV determined from the 12C + α resonance
scattering [32] and pretty close to other estimations [18,33].
However, our 	2 γ = 63.6 eV is higher than 	2 γ = 32 ± 5 eV
[33], 38.7 eV [21], and 44 ± 8 eV obtained from the branching
ratio [32] but lower than 88 eV [18]. Our 	̃1α = 99.4 keV is in
a perfect agreement with the estimation 92 ± 8 keV [19] and
with other estimations [32]. However, our γ 2

1 α/γ 2
2 α = 1.92 is

much smaller than (	2 γ /k3
2 γ )/(	1 γ /k3

1 γ ) = 7.2.
Thus unphysical ANC in [21] leads inevitably to significant

deviations of other resonance parameters, especially for the
first resonance, while our unconstrained fits with correct ANC
produce better resonance parameters, although they are also
not perfect.

C. Constrained fits to all data points

Due to the above-mentioned problems with the uncon-
strained fits A(113) we performed two constrained fits B(113).
The goal of these fits is to demonstrate that fixing some

parameters at values obtained from previous works, we still
can get as good fits as unconstrained ones but with better
physical parameters.

Once again we did two different fits corresponding to
two boundary conditions with parameters given in Tables I
and II. In the constrained fits B(113) the procedure is the
same as described before for the unconstrained fits. In these
fits, in addition to the fixed channel radii in the proton and
α channels, rp = 5.03 fm and rα = 7.0 fm, the ANC C =
14.154 fm−1/2 and the background resonance energy ERBG =
5.07 MeV, we also fix γν c, c = p, α, when the boundary
condition is chosen near the resonance energy ERν

. These
reduced widths are taken from the analysis of the direct
15N(p, α)12C data [19,29,33] and indirect Trojan Horse data
[29]. First, we adopt the boundary condition near the second
resonance at E2 = 0.956 MeV with the energy of the first
level E1 = 0.170 MeV. For the best fit we get χ̃2 = 1.93 and
S(0) = 38.8 keVb. The radiative width for the background
pole is found to be 	γ (BG) = 129.3 eV.

To determine the parameters for the first resonance we use
the boundary condition Bc = Sc(E1) near the first resonance
E1 = 0.30872 MeV and found from the fit the second energy
level E2 = 1.0576 MeV. The rest is the same as in fit A(113).
The radiative width for the background resonance is 	γ (BG) =
283.1 eV. For the best constrained fit with the boundary
condition at the first resonance we get S(0) = 37.2 keVb with
χ̃2 = 1.74. We note that the total χ2 for the unconstrained fit
A(113) with the boundary condition Bc = Sc(E1) is slightly
smaller than for the corresponding constrained fit B(113).
However, because for the constrained fit the number of the
fitting parameters is smaller than for the unconstrained one, the
normalized χ̃2 for the constrained fit is slightly smaller than for
the unconstrained. The parameters given in Tables I and II are
obtained for the boundary conditions at the resonance energies
adopted in [21]. Barker’s transformation [30] to get the fitting
parameters at the energy of the first resonance practically did
not change them because of the proximity of our adopted first
level E1 = 0.30872 MeV and the first resonance energy ER1 =
0.3104 MeV adopted in [21]. In Fig. 3 the S(E) factors are
shown for both constrained fits B(113). Note that the blue
dot-dashed line, which gives smaller S(0) than the red solid
line, better reproduces the low-energy experimental trend.
The constrained fits B(113) have parameters which better
agree with the previous estimations [19,32] than unconstrained
fits A(113). In particular, 	̃2 α is lower and agrees with the
12C + α analysis [32]. All other observable partial widths
also agree very well with the previous estimations from the
analysis of different open channels [32] and, in particular, the
radiative width for the first resonance is in better agreement
with [32]. However, our 	2 γ = 54.4 eV, although lower
than in the fit A(113), is still high and remains the only
problem to get consistency with previous estimations [32].
Correspondingly, the ratio (	2 γ /k3

2 γ )/(	1 γ /k3
1 γ ) = 5.0 is

still too high compared to γ 2
1 α/γ 2

2 α = 2.3 which is fixed in
agreement with 15N(p, α)12C [19,29]. Thus, even with the
constrained fits, which prove consistent with the previous
estimations, we are not able to satisfy the isospin mixing
equations still having too high 	2 γ or too high γ2 α .
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FIG. 3. (Color online) The astrophysical S(E) factor for the
15N(p, γ )16O. The red solid line is the constrained fit B(113) with the
boundary condition Bc = Sc(E2 = 0.956 MeV), the blue dot-dashed
line is the constrained fit B(113) with the boundary condition
Bc = Sc(E1 = 0.30872 MeV). The black squares are experimental
data from Ref. [21]. The ANC is C = 14.154 fm−1/2.

D. Band for unconstrained fit

In this section we estimate the uncertainty of the parameters
and the astrophysical factor S(E) by fitting to the lower
and upper limits of the experimental data. These limits are
obtained by taking into account ±1 σ deviation from the
center of the experimental data. In Fig. 4, in the logarithmic
scale for both axes, we show the band between upper and
lower limits of the astrophysical factor S(E) obtained from
the unconstrained fit A(113) with the boundary condition
Bc = Sc(E2) at E2 = 0.956 MeV for the energy region E <

1.7 MeV. The upper (lower) limit with S(0) = 40.1 keVb
[S(0) = 37.9 keVb] and χ̃2 = 3.0 (χ̃2 = 2.6) of the band
corresponds to the fitting of the experimental data which
deviate by 1σ up (down) from the center which corresponds to
S(0) = 39.0 keVb with χ̃2 = 1.84. Thus, taking into account
the experimental uncertainties given in [21], we can conclude
that our unconstrained fit A(113) with the boundary condition
Bc = Sc(E2) results in S(0) = 39.0 ± 1.1 keVb. However, the
logarithmic scales for both axes show the problem with the
fitting at low energies, where the fit A(113) with the boundary
condition Bc = Sc(E2) deviates from the experimental trend.
A similar trend is present in the fit of [21]. The reason for this
trend is that our fits and the fit in [21] have been performed
minimizing the weighted χ2 with the weights �−2

i , where �i

is the experimental uncertainty at point i. Since the relative
experimental uncertainties at low energies are larger than in
the region between the two resonances and at higher energies,
the weighted fit underestimates the importance of the low-
energy region, which is the most crucial for determination of
the S(0) astrophysical factor.

FIG. 4. (Color online) The astrophysical S(E) factor for the
15N(p, γ )16O. The band for the astrophysical factor S(E) obtained
from the unconstrained fit A(113) with the boundary condition
Bc = Sc(E2). The upper and lower limits of the band correspond
to the fitting of the experimental data, which deviate by 1σ up and
down from the center, correspondingly. Note that the borders of the
band have practically the same particle-reduced width amplitudes
γν c for the first and second levels. The proton partial width for the
second resonance within the band is 	̃2 p = 82.8 ± 0.6 keV, the α-
particle partial width for the second resonance 	̃2 α = 63.2 ± 0.9 keV,
the radiative width of the second resonance 	2 γ = 63.6 ± 2.4 eV,
and the radiative width of the background pole 	γ (BG) = 354.9 ±
23.6 eV. The black squares are experimental data from Ref. [21].

E. Fits to 70 data points

To increase the weight of the low-energy points we present
also two fits to 70 low-energy data points in the region of
the first resonance rather than to all 113 data points: the
unconstrained fit A(70) with Bc = Sc(E1) and the constrained
fit B(70) with the boundary condition Bc = Sc(E1). If the
reaction model is complete, definitely only the full energy
region fit makes sense. However, in the case under consid-
eration we add the background resonance to compensate for
the missing contributions from the higher levels. That is why
we would like to demonstrate the results of the fit when only
the data points of the first resonance region are included. We
note that in [19,29] two fits to the data were also presented:
the fit to the full data set (71 data points) and the fit to the
region of the first resonance (32 data points). New fits to 70
data points are shown in Fig. 5 and parameters are given in
Tables III and IV. We use the the logarithmic scale for the

TABLE IV. χ̃ 2 and S(0) astrophysical factors for the
15N(p, γ )16O capture process obtained from the unconstrained fit
A(70) and constrained fit B(70).

Fits χ̃ 2 S(0) [keVb]

Fit A(70), Bc = Sc(E1 = 0.30872MeV) 1.50 37.7
Fit B(70), Bc = Sc(E1 = 0.30872MeV) 1.51 37.1
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FIG. 5. (Color online) The astrophysical S(E) factor for the
15N(p, γ )16O reaction in the low-energy region including the first
resonance (70 data points). The black squares are the experimental
data from Ref. [21]. The red solid line is the unconstrained fit A(70)
for the boundary condition Bc = Sc(E1 = 0.30872 MeV); for this fit
E2 = 1.056 MeV, γ2 γ (int) = 0.056 MeVfm3/2, γ2 γ (ext) = 0.0607 +
i 0.000059 MeVfm3/2. The blue dot-dashed line is the constrained
fit B(70) with the boundary condition Bc = Sc(E1 = 0.30872 MeV);
for this fit E2 = 1.05 MeV, γ2 γ (int) = 0.082 MeVfm3/2, γ2 γ (ext) =
0.052 + i 0.000051 MeVfm3/2. The ANC is C = 14.154 fm−1/2.

energy axis and linear scale for the S(E) factor to see more
clearly the low-energy behavior of the astrophysical factors.

It is worth mentioning that both fits to 70 data points favor
a lower value of the S(0) factors, i.e., the same tendency which
we have observed for the corresponding fits to 113 data points.
The parameters of both fits are similar to the ones of the fits
for 113 data points and the S(0) factors are in the interval
determined from the full data set fits.

V. ASTROPHYSICAL FACTORS

In Table V we present χ̃2 and S(0) astrophysical factors
for all our fits to 113 data points and the fit from [21].

TABLE V. χ̃ 2 and S(0) astrophysical factors for the 15N(p, γ )16O
capture process obtained from our fits and from the fit in [21].

Fits χ̃ 2 S(0) [keVb]

Ref. [21] 1.80 39.6 ± 2.6
Fit A(113), Bc = Sc(E2) 1.84 39.0 ± 1.1
Fit A(113), Bc = Sc(E1) 1.76 37.2 ± 1.0
Fit B(113), Bc = Sc(E2) 1.93 38.8 ± 1.1
Fit B(113), Bc = Sc(E1) 1.74 37.2 ± 1.0
Fit without background resonance
Bc = Sc(E2) 2.58 34.1 ± 1.0
Fit without background resonance
Bc = Sc(E1) 2.45 34.6 ± 1.0

The uncertainties of our S(0) factors are obtained by a
fitting to the upper (lower) border of the data obtained by
adding (subtracting) the experimental uncertainties to the
experimental astrophysical factor at each point. A similar
procedure has been used to determine the band shown in Fig. 4.

As we can see from Table V five different fits result in
quite stable S(0) factors ranging in the interval 33.1 � S(0) �
40.1 keVb. The unconstrained fit A(113) and constrained fit
B(113) with Bc = Sc(E1) give the minimum χ̃2 among all
our fits with S(0) = 37.2 ± 1.0 keVb. which overlaps with
the result reported in [21]. However, as we have discussed,
the constrained fits B(113) yield fitting parameters including
a correct ANC value, which are more consistent with the
previous estimations. In any case, our both best fits better
reproduce the low-energy slope of the S(E) astrophysical
factor than the unconstrained fit A(113) with Bc = Sc(E2),
see Fig. 4, and the fit of [21], which tend away from the
low-energy data, and a lower value of the S(0) will be quite
plausible when lower energy data become available. We also
included into the list of the fits two fits performed without
a background resonance, because their χ̃2 deviate from the
minimum χ̃2 by < 1. These fits provide the lowest S(0) better
reproducing the low-energy behavior of the S(E) factor than
the ones with higher S(0).

VI. SUMMARY

Determination of the S(0) factor for the 15N(p, γ )16O
radiative capture is one of the goal of our fits. Although the new
measurements of this reaction [21] are a real success and a very
important contribution to the study of this reaction, we believe
that it would be difficult to give a more accurate S(0) value
than the range 33.1 � S(0) � 40.1 keVb determined from our
fits without further measurements down to lower energies than
those achieved in [21]. To get more accurate uncertainties
of the S(0) factor a better estimate of energy uncertainties
would be also useful. From our fits we determine the interval
of the astrophysical factors at the effective energy E =
23.44 keV, 36.0 keVb � S(E = 23.44 keV) � 44.46 keVb.
Assuming the astrophysical factor 84.1 ± 5.9 MeVb for the
competing reaction 15N(p, α)12C [29] we find that for every
2080+410

−330 cycles of the main CN cycle one CN catalyst is lost
due to the 15N(p, γ )16O reaction.

But what is even more important is the question of whether
the minimum of χ̃2 is always an acceptable fit. Definitely, the
answer is “yes” if our knowledge about the reaction model
is complete. But it is assumed that the best fit is achieved
under constrained variations of the fitting parameters within
the accepted boundaries obtained from the available physical
information. This question elevates when the input physics is
not complete. It is another goal of our analysis to demonstrate
that, due to our incomplete knowledge of the reaction model, it
is not canonical that a fit, which provides minimum of χ̃2, is the
best from the point of view of physics. We have demonstrated
here that it is possible to achieve the same or an even better
fit and similar final S(0) factors as in [21] by adopting the
ANC measured from the transfer reaction rather than using an
unconstrained variation of the ANC. But, even if the ANC
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is fixed within the experimental boundaries, the question
remains about the interpretation of other fitting parameters.
We have demonstrated problems with the interpretation of the
parameters of the fits A and the fit in [21]. Trying to improve the
interpretation we fixed some parameters, which are available
from the analysis of the 15N(p, α)12C reaction, and we are able
to achieve even better fit than in [21] and better agreement
of the fitting parameters with the previous measurements
of the 15N(p, γ )16O, 15N(p, α)12C, 15N(p, p)15N processes
and 12C + α resonance scattering [32]. However still, even
our constrained fits are not fully satisfactory because we
got a too high value of the radiative width of the second

resonance or a too high value of γ 2
2 α . This issue remains to be

resolved.
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