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Coulomb effects on edge scattering in elastic nuclear collisions
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We present a qualitative analysis of the effects of the Coulomb force on the edge scattering produced in elastic
nuclear collisions occurring under strong absorption conditions. This analysis is illustrated with several examples
of nucleus-nucleus and antiproton-nucleus elastic scattering.
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To provide some physical insight into nuclear collision
mechanisms such as edge and shadow scattering, it is con-
venient to write the elastic amplitude in the form

f (θ ) = fc(θ ) + fn(θ ), (1)

where fc(θ ) is the Coulomb amplitude. The amplitude fn(θ )
is often called the “nuclear amplitude” although it retains, of
course, a Coulomb dependence. We are concerned with nuclear
collisions occurring under strong absorption conditions. This
means that all partial waves up to a grazing angular momentum
l = lg are absorbed, while all higher ones undergo Coulomb
scattering [1–3].

Under these conditions, the amplitude fn(θ ) has a spe-
cific physical interpretation according to the strength of the
Coulomb effects. These effects are measured by the Sommer-
feld parameter η = Z1Z2e

2

h̄ v
. For |η| � 1, fn(θ ) is interpreted

as the amplitude of the waves scattered by the edge or the
surface of the target. In a semiclassical description, these waves
are associated with the trajectories deviated through angles
close to the grazing angle θg

∼= 2|η|
lg

. These waves produce the
familiar angular dependence [4,5]

|fn(θ )|2 ∝ J 2
0 (lgθ ). (2)

According to whether the description of the collision is quantal
or semiclassical, this J 2

0 (lgθ ) behavior is called edge or glory
scattering, respectively.

For |η| � 1, the Coulomb contribution becomes negligible
outside the nearest forward direction, and the strong absorption
regime leads to a shadow effect. The well-known Fraunhöfer
diffraction angular dependence [1–3]

|f (θ )|2 ∼= |fn(θ )|2 ∝ [J1(lgθ )/lgθ ]2 (3)

originates from this shadow effect. So, when going from large
to small Coulomb effects, |fn(θ )|2 changes from a glory-like
pattern to a Fraunhöfer-like one.

The purpose of this note is to investigate how this change
takes place and mostly how the signature of edge scattering
as given by expression (2) remains. To this end we analyze
several examples of nucleus-nucleus and antiproton-nucleus
elastic collisions covering a range of η values going from
|η| = 8.18 to |η| = 0.23.

For large Coulomb effects (|η| � 1), there are several
model-independent methods [6–8] allowing extraction of

|fn(θ )| from the measured scattering cross section, providing
sufficiently accurate experimental data are available at very
small angles. This is the case for the two examples: 16O + 28Si,
η = 8.18 and 12C + 28Si, η = 5.7 [9].

From the analysis of these data, we are able to identify
clearly for |fn(θ )| the pronounced rise as well as the first
extrema of the J0 Bessel function. One obtains [7,8]

|fn(θ )|2 ≈ |fn(0)|2 J 2
0 (lgθ ), θ � θg, (4)

with |fn(0)| = 43 fm, lg = 32 for 16O on 28Si and |fn(0)| =
22 fm, lg = 28 for 12C on 28Si.

Let us now compare this result with the prediction of an
optical model calculation which fits the measured scattering
cross section dσ/d� = |fc + fn|2. All the numerical calcu-
lations utilize Woods-Saxon form factors in both the real and
the imaginary parts of the optical potential. For 12C + 28Si at
65 MeV and 16O + 28Si at 75 MeV, the parameters [10] are
given in Table I.

The comparison between expression (4) using the param-
eters deduced from the data and the optical model prediction
is displayed in Figs. 1 and 2. The results are plotted versus
x = lgθ ,which allows better identification of the oscillatory
regime as given by expressions (2) or (3). The points are the
measured values of dσ/d� (relative to the Rutherford cross
section dσR/d�) and the broken line is the result of the optical
model fit.The solid and dot-dashed lines are, respectively, the
calculated expressions (|fn(x/lg)|2/|fn(0)|2) and J 2

0 (x). As
one can see in Figs. 1 and 2, the optical model results show a
glory-like behavior over a range of x extending to x ∼= 2 |η|,
i.e., θ ∼= θg .

For small Coulomb effects (|η| � 1), the method used
above to obtain |fn(θ )| from the experimental data fails. So let
us consider the same colliding partners but with small η values:
16O + 28Si, η = 1.82, lg = 144 [11] and 12C + 28Si, η = 3.35,
lg = 51 [12]. The grazing angular momentum is determined, as
usual, by the relation lg ∼= 2π

�θ
where �θ is the angular spacing

between successive maxima (or minima) of the measured ratio
dσ/dσR . Figures 3 and 4 show the experimental data dσ/dσR

(points) for 16O and 12C, respectively, plotted versus x = lgθ .
In each figure, the broken line is the result of the optical model
fit with the potential given in Table I for each collision. The
oscillations of dσ/dσR are clearly reminiscent of a Fraunhöfer
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TABLE I. Selected elastic scattering data and the optical Woods-
Saxon potential parameters used in the calculation.

Collision Energy η V0 rv av W0 rw aw

(MeV) (MeV) (fm) (fm) (MeV) (fm) (fm)

12C+28Si 65 5.75 10.0 1.38 0.484 24.67 1.23 0.413
186.4 3.35 10.0 1.32 0.617 30.3 1.16 0.609

16O+28Si 75 8.18 10.0 1.38 0.456 41.84 1.13 0.575
1503 1.82 100.0 0.892 0.905 50.5 0.992 0.780

p+208Pb 48.6 −1.85 0.0 − − 22.0 1.38 0.5

p+40Ca 179.8 −0.23 40.5 1.10 0.63 111.0 1.10 0.63

diffraction pattern, easily identified by drawing the successive
minima of expression (3)(vertical dashed lines).

To go further we will invoke by optical analogy an extension
of the Babinet’s principle [13] which can be formulated as
follows: the Fraunhöfer diffraction pattern produced by an
opaque screen and the one produced by a narrow slit having
the same shape of its edge, oscillate 180◦ out of phase or
in quadrature, i.e., the maxima of one pattern coincide with
the minima of the other and vice versa. By considering the
asymptotic forms of the Bessel functions J0(lgθ ) and J1(lgθ ),
θ � 1/lg , i.e.,

Jn(lgθ ) ≈
√

2π

lgθ
cos

(
lgθ − n

π

2
− π

4

)
(n = 0, 1), (5)

one can see that edge and Frauhöfer scattering as given
by expressions (2) and (3), respectively, satisfy this phase
rule.
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FIG. 1. Angular distribution of elastic scattering of 16O on 28Si
at E = 75 MeV (η = 8.18). The experimental data dσ/dσR (points)
[9], the optical model fit (broken line), the calculated expression
(|fn(x/lg)/fn(0)|2) (solid line), and J0(x)2 (dot-dashed line) are
drawn.
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FIG. 2. Same as Fig. 1, but for the elastic scattering of 12C on 28Si
at E = 65 MeV (η = 5.7). Experimental data are from Ref. [9].

In Figs. 3 and 4, we now compare the oscillations of the
calculated curve |fn(x/lg)|2 (solid line) with those of the
measured scattering cross section dσ/dσR (points). As seen
in both figures, the phase rule is well satisfied for θ � θg

(x � 2|η|). This shows that |fn|2 still retains a J 2
0 (x)-like

behavior, the fingerprint of edge scattering.
Let us consider now two examples taken from antiproton-

nucleus collisions. The antiprotons are strongly absorbed by
nuclei and are also good candidates to exhibit edge scattering
effects. These examples are [14] p+208Pb at E = 48.6 MeV,
η = −1.85, and lg = 14 and p+40Ca at E = 179.8 MeV, η =
−0.23, and lg = 15. The parameters of the optical potentials
are given in Table I. Figure 5 shows the experimental data
for p+208Pb (points), the optical model fit (broken line), and
|fn(x/lg)|2 (solid line).

The value of η for p+208Pb (|η| = 1.85) is very close to that
for 16O + 28Si (η = 1.82), and therefore it is not surprising
that Figs. 3 and 5 are qualitatively very similar. The results for
p+40Ca are shown in Fig. 6.

One immediately remarks that the signature of the edge
scattering is no longer present and that the curve of |fn|2
behaves now as a Fraunhöfer diffraction pattern in the whole
angular range, in agreement with expression (3).

These results call for the following concluding remarks:
what is the condition to observe the “180◦ out-of-phase rule”
between the oscillations of |fn(θ )|2 and those of |f (θ )|2.
As earlier noted, edge scattering takes place in the angular
domain θ � θg (x � 2 |η|), and on the other hand, both the
first maximum of J0(x)2 and the first minimum of (J1(x)/x)2

occur for x very close to 3.8 (see Figs. 3 and 5). So the
observation of the phase rule requires 2|η| � 3.8, i.e., |η| � 1.
This condition is still well satisfied for 16O + 28Si (η = 1.82)
and p+208Pb (|η| = 1.85), but it is largely violated for p+40Ca
(|η| = 0.23); therefore it is not surprising that the fingerprint
of edge scattering is missing in this case.
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FIG. 3. Angular distribution of elastic scattering of 16O on 28Si at
E = 1503 MeV (η = 1.82). The experimental data dσ/dσR (points)
[11], the optical model fit (broken line), and the calculated |fn(x/lg)|2
mb/Sr (solid line) are drawn. The vertical dashed lines indicate the
successive minima of J1(x)2.
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FIG. 4. Same as Fig. 3, but for the elastic scattering of 12C on 28Si
at E = 186.4 MeV (η = 3.35). Experimental data are from Ref. [12].
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FIG. 5. (Color online) Same as Fig. 3, but for the elastic scattering
of p+208Pb at E = 48.6 MeV (η = −1.85). Experimental data are
from Ref. [14].
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FIG. 6. Angular distribution of elastic scattering of p+40Ca at
E = 179.8 MeV (η = −0.23). The experimental data dσ/d� mb/Sr
(points) [14], the optical model fit (broken line), the calculated
|fn(x/lg)|2 mb/Sr (solid line) are drawn. The vertical dashed lines
indicate the successive minima of J1(x)2.
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