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We present a technique that treats, without approximations, the continuum part of the excitation spectrum
in random phase approximation calculations with finite-range interactions. The interaction used in Hartree-
Fock calculations to generate the single-particle basis is also used in continuum random phase approximation
calculations. We show results for electric dipole and quadrupole excitations in 16O, 22O, 24O, 40Ca, 48Ca, and
52Ca nuclei. We compare our results with those of the traditional discrete random phase approximation, with
continuum independent-particle model results, and with results obtained by a phenomenological random phase
approximation approach. We study the relevance of the continuum, of the residual interaction, and of the
self-consistency. We also compare our results with the available total photoabsorption cross-section data.
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I. INTRODUCTION

In the next few years, radioactive ion beam facilities will
provide a large number of data on unstable nuclei. The
description of the structure of these nuclei is a challenge for
nuclear many-body theories, which have been tested mainly
on stable nuclei.

The starting point of our description of nuclear systems
is the many-body Schrödinger equation with a two-body
potential built to describe elastic nucleon-nucleon (NN) cross
sections and deuteron properties [1,2]. To this two-body po-
tential we add a three-body force whose parameters are chosen
to reproduce the 3H binding energy [3,4]. Modern microscopic
calculations, which solve the many-body Schrödinger equation
without approximations, describe well the structure of nuclear
few-body systems as well as that of light nuclei [5,6]. These
results establish the validity of the nonrelativistic description
of atomic nuclei. Unfortunately, the computational complexity
of these microscopic calculations hinders their application to
medium and heavy nuclei.

In recent years, there have been great advances in theories
that solve the many-body Schrödinger equation with micro-
scopic interactions by doing well-controlled approximations
[7–12]. The results are very promising but the calculations are
still computationally rather involved. Probably, the develop-
ment of these approaches will not be rapid enough to cover the
requirements for the description of the data that will appear
in the near-future. We think that, for this purpose, effective
theories will play a fundamental role.

Effective theories search for solutions of the many-body
Schrödinger equation in a subspace of the full Hilbert space.
Usually this subspace is chosen to be formed by Slater
determinants. This restriction requires modification of the NN
interaction to reproduce the energy eigenvalues of the micro-
scopic theory. By using Feshbach’s projection techniques, it is
possible to obtain a formal expression that relates microscopic
and effective interactions [13]. In common practice, the
effective interaction is parametrized, and the values of the
parameters are chosen to reproduce some experimental data.

For example, in the Jülich approach [14,15], which we
call here the phenomenological random phase approximation
(RPA) approach, single-particle (s.p.) wave functions are
produced by a Woods-Saxon potential whose parameters are
chosen to reproduce, at best, charge radii and s.p. energies
near the Fermi level of the nucleus under investigation. The
values of the interaction parameters are selected to reproduce
the excitation energy of some particularly collective state, for
example, in the 208Pb nucleus, that of the low-lying 3− state.
The phenomenological approach was successfully applied in
the 1980s to describe and predict the excitation of the low-lying
spectrum and of the giant resonances, mainly in doubly
magic nuclei. This phenomenological approach, based on the
Landau-Migdal theory of finite Fermi systems [16], requires
the knowledge of quite a number of observables to select the
RPA input parameters, that is, the s.p. basis and the effective
interaction. The philosophy of the approach requires changing
the input for every nucleus considered, therefore, despite its
success, the phenomenological RPA approach is not suitable
for prediction the structure of experimentally unknown nuclei.

For this purpose, self-consistent RPA approaches are more
useful. In these approaches, s.p. wave functions and energies
are obtained by solving the Hartree-Fock (HF) equations.
Because the effective interaction used in HF is also used
in the RPA calculation, this type of calculations is called
self-consistent. In self-consistent approaches the values of the
parameters of the effective interaction are chosen to reproduce
binding energies and charge radii of a large number of nuclei.
This fit produces an effective interaction to be used in all
regions of the nuclear chart, including those so far unexplored
by experiments.

Self-consistent RPA approaches have greater prediction
power than phenomenological approaches, but they require
a higher level of accuracy and stability of the calculations.
For example, the dimension of the s.p. configuration space,
beyond a certain size, is not a problem in the phenomenological
approach, as the effects of the truncation of the s.p. basis are
taken into account by changing the values of the interaction
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parameters. This procedure cannot be used anymore in
self-consistent approaches, as the interaction parameters are
chosen once, forever, in HF calculations. This drawback of
the self-consistent RPA approach is avoided if the full s.p.
configuration space is used in the calculation. This implies
proper treatment of the continuum part of the s.p. spectrum.

Self-consistent RPA approaches that consider the contin-
uum had already been proposed in the second half of the
1970s [17–23], but they are applicable only if zero-range
interactions are used. In this case the continuum RPA (CRPA)
equations simplify, as direct and exchange matrix elements
assume the same expressions; that is, they are proportional.

Zero-range effective interactions have the great merit of
simplifying the calculations. There are, however, various
drawbacks regarding their use, many of them discussed in
Ref. [24], where the D1 parameterization of the finite-range
Gogny interaction was proposed. Here we would like to
mention some other aspects more directly related to the present
work. In RPA calculations zero-range interactions produce
more collectivity than finite-range interactions. The difference
becomes larger with an increasing value of the momentum
transfer [25]. In addition, finite-range interactions provide a
better description of unnatural parity excitations [15,26,27].
Finally, finite-range interactions are more directly comparable
with microscopic NN force.

The reasons presented above motivated our work. We devel-
oped a formalism capable of solving the CRPA equations with
finite-range interactions. The main problem we had to face was
the treatment of the exchange terms of the interaction matrix
elements. In the literature there are few examples of CRPA
calculations done with finite-range interactions [28,29] and to
the best of our knowledge, only a single case of self-consistent
CRPA calculation [30]. The relativistic self-consistent calcu-
lations in Ref. [31] use finite-range interactions, but in the
so-called Hartree approximation where the exchange terms are
neglected. Our approach, which is described in Sec. II, follows
the lines of that proposed by the Jülich group at the beginning
of the 1990s [29]. There are, however, important differences
owing to the different manner of generating the s.p. bases.
They are produced by using a Woods-Saxon potential in the
Jülich case but with an HF calculation in our approach.

Details and basic ingredients of the calculations, such as
interactions, expansion basis, and test of convergence, are
presented in Sec. III. A selected set of results is discussed in
Sec. IV. We have calculated charge conserving excitations
in three oxygen isotopes and in three calcium isotopes. We
compare our CRPA results with those obtained from discrete
RPA calculations, with results of the phenomenological RPA
approach, and also with results obtained by switching off the
residual interaction in the RPA calculations. Following the
notation in Ref. [32] we label the results of the latter type of
calculations the independent-particle model (IPM). In Sec. V
we summarize the main results of our work and draw our
conclusions.

II. FORMALISM

The RPA theory describes the excited state of a many-body
system as a linear combination of particle-hole (ph) and hole-

particle (hp) excitations. This implies the existence of an s.p.
basis that, in our calculations, is generated by solving the HF
equations:

H[φk(r)] = − h̄2

2m
∇2φk(r) + U(r)φk(r)

−
∫

d3r ′W(r, r′)φk(r′) = εkφk(r), (1)

where we have indicated by H and φk the s.p. Hamilto-
nian and wave function, respectively, with U the Hartree
potential,

U(r) =
8∑

α=1

∑
j�F

∫
d3r ′φ∗

j (r′)Vα(r, r′)φj (r′), (2)

with W the Fock-Dirac potential,

W(r, r′) =
8∑

α=1

∑
j�F

φ∗
j (r′)Vα(r, r′)φj (r), (3)

and with εk the energy eigenvalue of the kth s.p. state. In the
above expressions, the sums of the s.p. states are restricted to
those with an energy lower than the Fermi energy, that is, to
the hole states.

In our calculations we consider a two-body NN interaction
of the form

Vα(ri , rj ) = vα(|ri − rj |)Oα
i,j , with α = 1, 2, . . . , 8, (4)

where vα are scalar functions of the distance between the two
interacting nucleons, and Oα indicates the type of operator
dependence:

Oα
i,j : 1, τ (i) · τ (j ), σ (i) · σ (j ), σ (i) · σ (j )τ (i) · τ (j ),

S(i, j ), S(i, j )τ (i) · τ (j ), lij · sij , lij · sijτ (i) · τ (j ).

(5)

In the above expression we have indicated by σ the Pauli matrix
operator acting on the spin variable, with τ the analogous
operator for the isospin and with

S(i, j ) = 3
[σ (i) · (ri − rj )][σ (j ) · (ri − rj )]

(ri − rj )2
− σ (i) · σ (j )

(6)

the usual tensor operator. The terms α = 7, 8 indicate the spin-
orbit contributions of the force. We include these last terms
only in the HF calculations and we consider them in a zero-
range approximation as done in Ref. [24].

We solve the HF equations in a spherical basis, and we
express the s.p. wave functions as

φt
k(r) = φt

nljm(r) = Rt
nlj (r)

∑
sµ

〈
lµ

1

2
s

∣∣∣∣jm

〉
Ylµ(�)χs. (7)

In the above equation, we have indicated by n, l, j, and m

the principal quantum number, the orbital angular momentum,
the total angular momentum, and its z-axis projection, respec-
tively. We use r to indicate the distance from the center of
the nucleus and � to indicate the usual angular coordinates
of the polar spherical system. The symbol 〈|〉 indicates the
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Clebsch-Gordan coefficient, Ylµ is the spherical harmonics,
and χs is the Pauli spinor for the spin. We call t the third
component of the isospin and we use the convention t = 1/2
for protons and t = −1/2 for neutrons. The radial part of the
s.p. wave function satisfies the closure relation∑
εi<εF

δik Ri(r) R∗
i (r ′) +

∑∫
εk

Rk(r, εk)R∗
k (r ′, εk) = δ(r − r ′),

(8)

where we have introduced the symbol∑∫
εk

≡
∑

εF�εk�0

+
∫ ∞

0
dεk (9)

to indicate a sum and an integration on all the s.p. energies
above the Fermi surface. In the following, we indicate
explicitly the dependence on the s.p. energies εk , which can
assume both discrete and continuum values. We use the index
h to indicate all the quantum numbers identifying a hole s.p.
state, energy included, while the symbol p indicates all the
quantum numbers of the particle state, except the s.p. energy
εp.

A nuclear excited state |ν〉 ≡ |J,�,ω〉 is characterized by
its total angular momentum J , parity �, and excitation energy
ω. In the CRPA theory, the expression of the operator that,
applied to the ground state, generates the excited state |ν〉 can
be expressed as

Q†
ν =

∑
ph

∑∫
εp

[
Xν

ph(εp)a†
p(εp)ah − Y ν

ph(εp)a†
hap(εp)

]
, (10)

where we have indicated by a† and a the usual particle
creation and annihilation operators, and X and Y are the
RPA amplitudes. The CRPA secular equations whose solution
provides the values of X and Y can be written as

(εp − εh − ω)Xν
ph(εp) +

∑
p′h′

∑∫
εp′

[
vJ

ph,p′h′(εp, εp′ )Xν
p′h′(εp′ )

+uJ
ph,p′h′(εp, εp′ )Y ν

p′h′(εp′)
] = 0,

(11)

(εp − εh + ω)Y ν
ph(εp) +

∑
p′h′

∑∫
εp′

[
vJ∗

ph,p′h′(εp, εp′ )Y ν
p′h′(εp)

+uJ∗
ph,p′h′(εp, εp′ )Xν

p′h′(εp′)
] = 0.

(12)

In the above equations, the interaction terms have been defined
as

vJ
ph,p′h′(εp, εp′ ) = v

J,dir
ph,p′h′(εp, εp′ ) − v

J,exc
ph,p′h′(εp, εp′ ) (13)

and

uJ
ph,p′h′(εp, εp′ ) = (−1)jp′+jh′ −J vJ

ph,h′p′(εp, εp′ ), (14)

with

v
J,dir
ph,p′h′(εp, εp′ ) =

∫
dr1 r2

1

∫
dr2r

2
2 R∗

p(r1, εp)R∗
h′(r2)

×V
J,dir
ph,p′h′(r1, r2)Rh(r1)Rp′(r2, εp′ ), (15)

v
J,exc
ph,p′h′(εp, εp′ ) =

∫
dr1 r2

1

∫
dr2 r2

2 R∗
p(r1, εp)R∗

h′(r2)

×V
J,exc
ph,p′h′(r1, r2)Rp′(r1, εp′ )Rh(r2). (16)

In an analogous way, according to Eq. (14), we define
the corresponding u functions. We have used the following
definitions for the quantities related to the interaction:

V
J,dir
ph,p′h′(r1, r2) =

6∑
α=1

Vα(r1, r2)AJ,α,dir
ph,p′h′, (17)

V
J,exc
ph,p′h′(r1, r2) =

6∑
α=1

Vα(r1, r2)AJ,α,exc
ph,p′h′ , (18)

AJ,α,dir
ph,p′h′ =

∑
K

(−1)jh+jp′+KK̂

{
jp jh J

jp′ jh′ K

}
×〈jpjh′K‖Vα(�)‖jhjp′K〉, (19)

AJ,α,exc
ph,p′h′ =

∑
K

K̂

{
jp jh J

jp′ jh′ K

}
×〈jpjh′K‖Vα(�)‖jp′jhK〉. (20)

Here for the angular momentum quantum numbers we used
the notation â = √

2a + 1. The terms in curly braces are the
Racah 6j symbol, and the double bars indicate the reduced
matrix element as defined by the Wigner-Eckart theorem. In
our work we adopt the phase conventions of Ref. [33].

In the above equations we have factorized the two-body NN
interaction, Eq. (4), in a radial part Vα(r1, r2), depending only
on the moduli of the positions of the two interacting nucleons,
and in an angular and operator-dependent part, Vα(�). We
have done this factorization by using the Fourier-transformed
expression of the NN interaction.

Our method of solving the CRPA equations consists in
reformulating the secular equations, (11) and (12), with new
unknown functions that do not have an explicit dependence on
the continuous particle energy εp. This is the same approach
adopted in Refs. [28] and [29], but in our case the s.p. wave
functions are generated by an HF calculation. For this reason,
we present here, in some detail, the various steps leading to
the new CRPA secular equations. The new unknowns are the
channel functions f and g, defined as

f ν
ph(r) =

∑∫
εp

Xν
ph(εp)Rp(r, εp) (21)

and

gν
ph(r) =

∑∫
εp

Y ν∗
ph(εp) Rp(r, εp). (22)

The first step of this procedure consists in multiplying
Eqs. (11) and (12) by Rp(r, εp), the radial part of the particle
wave function. Considering Eq. (1), we obtain, for the left-hand
side of Eq. (11),

(εp − εh − ω)Rp(r, εp)Xν
ph(εp)

= H
[
Rp(r, εp)Xν

ph(εp)
] − (εh + ω)Rp(r, εp)Xν

ph(εp).

(23)
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The second step in the procedure is to integrate on εp, the
particle energy. For the first term on the right-hand side of the
above equation we obtain, again using Eq. (1),∑∫

εp

H
[
Rp(r, εp)Xν

ph(εp)
]

= − h̄2

2m
∇2

∑∫
εp

Rp(r, εp)Xν
ph(εp)

+U(r)
∑∫

εp

Rp(r, εp)Xν
ph(εp)

−
∫

d3r ′W(r, r′)
∑∫

εp

Rp(r, εp)Xν
ph(εp)

= − h̄2

2m
∇2f ν

ph(r) + U(r)f ν
ph(r)

−
∫

d3r ′W(r, r′)f ν
ph(r ′)

= H
[
f ν

ph(r)
]
. (24)

In the above equation we have indicated by ∇2 the usual
Laplace operator where the differential terms related to θ and φ

have already been applied to the spherical harmonics providing
the correct eigenvalue. Therefore, in our writing, we imply that
only the derivations on r should be done.

The operations described above are applied to all the terms
in Eqs. (11) and (12). As an example of our calculations, we
write the contribution of the first interaction term in Eq. (11):∑∫

εp

Rp(r, εp)
∑
p′h′

∑∫
εp′

vJ
ph,p′h′(εp, εp′ )Xν

p′h′(ε′
p)

=
∑∫

εp

Rp(r, εp)
∑
p′h′

∑∫
εp′

∫
dr1 r2

1

×
∫

dr2 r2
2 R∗

p(r1, εp)R∗
h′(r2)

× [
V

J,dir
ph,p′h′(r1, r2)Rh(r1)Rp′(r2, εp′ )

−V
J,exc
ph,p′h′(r1, r2)Rp′(r1, εp′ )Rh(r2)

]
Xν

p′h′(εp′)

=
∑∫

εp

Rp(r, εp)
∑
p′h′

∫
dr1r

2
1

∫
dr2 r2

2 R∗
p(r1, εp)

×R∗
h′(r2)

[
V

J,dir
ph,p′h′(r1, r2)Rh(r1) f ν

p′h′(r2)

−V
J,exc
ph,p′h′(r, r2)f ν

p′h′(r1)Rh(r2)
]

=
∑
p′h′

∫
dr2 r2

2 R∗
h′(r2)

[
V

J,dir
ph,p′h′(r, r2)Rh(r)f ν

p′h′(r2)

−V
J,exc
ph,p′h′(r, r2)f ν

p′h′(r)Rh(r2)
] + T (r). (25)

In the above equation we have used the definition (21) and the
closure relation (8) and we have defined the term

T (r) = −
∑
εi<εF

δipRi(r)
∫

dr1 r2
1 R∗

i (r1)
∫

dr2 r2
2

∑
p′h′

R∗
h′(r2)

× [
V

J,dir
ph,p′h′(r1, r2)Rh(r1)fp′h′(r2)

−V
J,exc
ph,p′h′(r1, r2)fp′h′(r1)Rh(r2)

]
, (26)

where, to simplify the writing, we have dropped the depen-
dence of f on ν ≡ (J,�,ω).

We write a new set of CRPA secular equations where the
unknowns are the channel functions f and g:

H[fph(r)] − (εh + ω)fph(r)

= −FJ
ph(r) +

∑
εi<εF

δipRi(r)
∫

dr1 r2
1 R∗

i (r1)FJ
ph(r1), (27)

H[fph(r)] − (εh − ω)gph(r)

= −GJ
ph(r) +

∑
εi<εF

δipRi(r)
∫

dr1 r2
1 R∗

i (r1)GJ
ph(r1), (28)

where we have defined

FJ
ph(r) =

∑
p′h′

∫
dr2 r2

2

{
R∗

h′(r2)
[
V

J,dir
ph,p′h′(r, r2)Rh(r)fp′h′(r2)

−V
J,exc
ph,p′h′(r, r2)fp′h′(r)Rh(r2)

]
+ g∗

p′h′(r2)
[
U

J,dir
ph,p′h′(r, r2)Rh(r) Rh′(r2)

−U
J,exc
ph,p′h′(r, r2)Rh′(r)Rh(r2)

]}
, (29)

and GJ
ph is obtained from the above equation by interchanging

the f and g channel functions. The relation between the U

and the V symbols is analogous to that of the u and v symbols
in Eq. (14). The last terms on the right-hand side of Eqs. (27)
and (28) are zero if there are no hole states having the same
angular momenta l and j of the particle state considered.

We have changed a set of algebraic equations with un-
knowns depending on the continuous variable εp into a set
of integrodifferential equations with unknowns depending on
the distance from the center of coordinates. The solution of
this problem requires the imposition of the proper boundary
conditions. If the excitation energy ω is above the nucleon
emission threshold, in some of the ph excitation pairs
compatible with the angular momentum and the parity of the
final state, the particle has positive energy. We call these ph

pairs open channels and those pairs where the particle is in a
discrete state, closed channels.

After fixing the angular momentum J and the parity � of
the excited state, for each value of the excitation energy ω, we
solve Eqs. (27) and (28) a number of times equal to the number
of open channels. Every time we impose a different boundary
condition, that is, that the particle is emitted only in a specific
channel, which we call the elastic channel and label p0h0. For
an open ph channel, we impose that the outgoing asymptotic
behavior of the channel function f

p0h0
ph is

f
p0h0
ph (r → ∞) → Rp0 (r, εp)δp,p0δh,h0 + λH−

p (εh + ω, r),

(30)

where λ is a complex normalization constant and H−
p (εh +

ω, r) is an ingoing Coulomb function or a Hankel function in
the case of a proton or neutron channel, respectively. The s.p.
wave function Rp is an eigenfunction of the HF Hamiltonian
(1) for positive energy and is calculated as described in
Appendix B.

044324-4



SELF-CONSISTENT CONTINUUM RANDOM-PHASE . . . PHYSICAL REVIEW C 83, 044324 (2011)

In the case of a closed channel, the asymptotic behavior is
given by a decreasing exponential function

f
p0h0
ph (r → ∞) → 1

r
exp

[
−r

(
2m|εh + ω|

h̄2

) 1
2
]
, (31)

as in the case of the channel functions g
p0h0
ph ,

g
p0h0
ph (r → ∞) → 1

r
exp

[
−r

(
2m|εh − ω|

h̄2

) 1
2
]
. (32)

We solve the CRPA secular equations, (27) and (28), by
using a procedure similar to that presented in Ref. [29]. The
channel functions f and g are expanded on a basis of Sturmian
functions �

µ
p that obey the required boundary conditions,

Eqs. (30)–(32).
The Sturmian functions �

µ
p are defined as eigenstates of

the differential equation [34–38][
− h̄2

2m

d2

dr2
− h̄2

m

1

r

d

dr
+ h̄2

2m

lp(lp + 1)

r2
− εp

]
�µ

p(r)

= −U
µ

p(r)�µ
p(r), (33)

where m is the particle mass, lp is the orbital quantum number,
and U

µ

p(r) is a complex square well potential of the form

U
µ

p(r) =
{

β
µ
p + iγ

µ
p if r � a,

0 if r > a,
(34)

with β
µ
p and γ

µ
p real constants. The requirement of continuity

of �
µ
p at r = a implies that only a discrete set of values of

β
µ
p and γ

µ
p should be considered. In this set of solutions, the

index µ is related to the number of nodes of the Sturm-Bessel
function �

µ
p in the region 0 � r � a. When the value of the

index µ increases by one unity, an additional node appears in
the wave function at r � a. The definition of the Sturm-Bessel
functions given above implies the orthogonality relation(

βµ
p + iγ µ

p

) ∫ a

0
dr r2�µ

p(r)�ν
p(r) = δµν. (35)

Because, in general, the Sturm-Bessel functions are not
orthogonal to the wave functions of the s.p. hole states, we find
it more useful to consider a set of orthogonalized functions that
we construct as

�̃µ
p(r) = �µ

p(r) −
∑
εi<εF

δipR∗
i (r)

∫
dr ′ r ′2Ri(r

′)�µ
p(r ′), (36)

where by δip we indicate that in the sum, li = lp and ji = jp.
By using this set of orthogonalized Sturmian functions we
express the channel functions f

p0h0
ph and g

p0h0
ph as

f
p0h0
ph (r) = Rp0 (r, εp0 )δpp0δhh0 +

∑
µ

c
µ+
ph �̃µ+

p (r), (37)

g
p0h0
ph (r) =

∑
µ

c
µ−
ph �̃µ−

p (r), (38)

where the superscripts + and − indicate that the Sturmian
functions are calculated for εp = εh + ω and εp = εh − ω,
respectively. To simplify the writing we drop the explicit
dependence on the open channel label p0h0 of all the c

µ±
ph

expansion coefficients.
We insert expressions (37) and (38) in the secular equations,

(27) and (28), and following the steps presented in Appendix A,
we obtain a system of linear equations whose unknowns
are the expansion coefficients c

µ±
ph . The new CRPA secular

equations are

∑
µ

∑
p′h′

{[
δpp′δhh′

(
δµν − 〈(

�ν+
p

)∗∣∣U ∣∣�µ+
p

〉 + 〈(
�ν+

p

)∗
I
∣∣W∣∣I�µ+

p

〉 + ∑
εi<εF

δip(εi − εh − ω)
〈(
�ν+

p

)∗∣∣Ri

〉〈
(Ri)

∗∣∣�µ+
p

〉)

− (〈(
�̃ν+

p

)∗
Rh′

∣∣V J,dir
ph,p′h′

∣∣Rh�̃
µ+
p′

〉 − 〈(
�̃ν+

p

)∗
Rh′

∣∣V J,exc
ph,p′h′

∣∣�̃µ+
p′ Rh

〉)]
c
µ+
p′h′

− (〈(
�̃ν+

p

)∗
�̃

µ−
p′

∣∣UJ,dir
ph,p′h′

∣∣RhRh′
〉 − 〈(

�̃ν+
p

)∗
�̃

µ−
p′

∣∣UJ,exc
ph,p′h′

∣∣Rh′Rh

〉)(
c
µ−
p′h′

)∗
}

= 〈(
�̃ν+

p

)∗
Rh0

∣∣V J,dir
ph,p0h0

∣∣RhRp0

(
εp0

)〉 − 〈(
�̃ν+

p

)∗
Rh0

∣∣V J,exc
ph,p0h0

∣∣Rp0

(
εp0

)
Rh

〉
, (39)∑

µ

∑
p′h′

{[
δpp′δhh′

(
δµν − 〈(

�ν−
p

)∗∣∣U ∣∣�µ−
p

〉 + 〈(
�ν−

p

)∗
I
∣∣W∣∣I�µ−

p

〉 + ∑
εi<εF

δip(εi − εh + ω)
〈(
�ν−

p

)∗∣∣Ri

〉〈
(Ri)

∗∣∣�µ−
p

〉)

− (〈(
�̃ν−

p

)∗
Rh′

∣∣V J,dir
ph,p′h′

∣∣Rh�̃
µ−
p′

〉 − 〈(
�̃ν−

p

)∗
Rh′

∣∣V J,exc
ph,p′h′

∣∣�̃µ−
p′ Rh

〉)]
c
µ−
p′h′

− (〈(
�̃ν−

p

)∗
�̃

µ+
p′

∣∣UJ,dir
ph,p′h′ |RhRh′ 〉 − 〈(

�̃ν−
p

)∗
�̃

µ+
p′

∣∣UJ,exc
ph,p′h′ |Rh′Rh〉

)(
c
µ+
p′h′

)∗
}

= 〈(
�̃ν−

p

)∗
Rp0

(
εp0

)∣∣UJ,dir
ph,p0h0

∣∣RhRh0

〉 − 〈(
�̃ν−

p

)∗
Rp0 (εp0

)∣∣UJ,exc
ph,p0h0

∣∣Rh0Rh

〉
. (40)
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In the above expressions, with the bra and ket integration
convention we indicate integrations on radial variables only.
The number of these integrations is given by the number of
the functions inserted between the bra and the ket symbols.
For this reason we have inserted the symbol I, indicating the
identity function.

Summarizing, we have converted the CRPA secular equa-
tions, (11) and (12), into a set of algebraical equations whose
unknowns are the expansion coefficients c

µ

ph. These equations
have a solution for each value of the excitation energy ω above
the nucleon emission threshold.

The solution of the secular CRPA equations provides the
channel functions f and g, and this allows us to calculate the
transition matrix elements induced by an operator TJ . If the
operator TJ inducing the transition is of the one-body type of
the form

TJM (r) =
A∑

i=1

FJ (ri)θJM (�i)δ(ri − r), (41)

where we have separated the dependence on the radial and
angular parts of the operator, for the transition matrix element
we obtain the expression

〈J‖TJ ‖0〉p0h0

=
∑
ph

[
〈jp‖θJ ‖jh〉

∫
drr2

(
f

p0h0
ph (r)

)∗
FJ (r)Rh(r)

+ (−1)J+jp−jh〈jh‖θJ ‖jp〉
∫

dr r2 R∗
h(r)FJ (r)gp0h0

ph (r)

]
,

(42)

where we indicate by the double bar the reduced matrix
elements of the angular coordinates, as defined in Ref. [33].

In this paper we present results regarding nuclear excita-
tions induced by photons. We consider here only natural-parity,
electric excitations, and we use the following expression for
the operator TJ :

TJM =
A∑

i=1

Zeff
i rJ

i YJM (�i)δ(ri − r), (43)

where Zeff
i is the effective charge

Zeff
i =

{(
N
A

)
1
2 [1 + τ3(i)] − (

Z
A

)
1
2 [1 − τ3(i)] if J� = 1−,

1
2 [1 + τ3(i)] otherwise.

(44)

The second of these expressions is obtained by using an
approximation valid for the medium-heavy nuclei we are
studying [39]. In the above equation A, Z, and N are the mass,
proton, and neutron numbers, respectively, and τ3(i) = 1 for
protons and −1 for neutrons. For a given excitation energy
ω and electric transition EJ , we calculate the B value as the
incoherent sum on every open channel p0h0:

B(ω,EJ : 0 → J ) =
∑
p0h0

∣∣〈ω, J‖TJ ‖0〉p0h0

∣∣2
. (45)

We obtain the total photoabsorption cross section from the B

value by using the expression [40]

σ (ω, 0 → J ) = 8π3 J + 1

J

e2

[(2J + 1)!!]2

( ω

h̄c

)2J−1

×B(ω,EJ : 0 → J ), (46)

where we have indicated by e the elementary charge.

III. DETAILS OF THE CALCULATIONS

The formalism developed in the previous section leads to a
set of algebraic equations whose unknowns are the expansion
coefficients c

µ±
ph . The number of coefficients, and therefore the

dimensions of the complex matrix to diagonalize, is an input
of our approach.

Because the expansion on a basis of Sturmian functions is a
technical artifact, the solution of the CRPA secular equations
must be independent of the number of expansion coefficients.
We tested the convergence of our results by controlling the
values of the total photoabsorption cross section in 16O and
40Ca nuclei. We reached stability up to the fifth significant
figure with 10 expansion coefficients, independently of the
multipolarity and of the energy of the excitation.

In our calculations we have used two different parametriza-
tions of the Gogny interaction, the more traditional D1S
force [41] and the new D1M force [42], obtained from a fit to
about 2000 nuclear binding energies and 700 charge radii. The
D1S and D1M forces describe the empirical saturation point
of symmetric nuclear matter and reproduce rather well the
behavior of the equations of state calculated with microscopic
approaches [43,44]. The situation for pure neutron matter is
different, because the behavior of the D1S equation of state
at high densities is unphysical. The D1M force produces
an equation of state that has a plausible behavior at higher
densities, even though it does not reproduce the results of
modern microscopic calculations.

In Fig. 1 we show the D1S and D1M forces in momentum
space, and we compare them with the bare Argonne V8’
interaction [3]. The scalar, v1 [Fig. 1(a)], isospin, v2 [Fig. 1(b)],
spin, v3 [Fig. 1(c)], and spin-isospin, v4 [Fig. 1(d)], channels
are shown. The dotted lines were obtained by multiplying
the Argonne V8’ terms with the scalar part of the correlation
function obtained in the finite-nuclei correlated basis function
calculations in Ref. [10]. To be precise, we have used the
correlation function obtained for the 48Ca nucleus. In any
case, these correlation functions are rather similar for all
nuclei considered (see Fig. 21 in Ref. [10]). The large
differences between microscopic and effective interactions
shown in Fig. 1 indicate that the effective interactions take
into account a large number of effects explicitly treated
in microscopic calculations. The effects originated by the
short-range correlations are only a limited part of them. It
is interesting to notice, in the spin, isospin, and spin-isospin
channels, the extremely large values of the D1M interaction,
with respect to those of the other forces.

In the next section we compare self-consistent CRPA
results with those of phenomenological calculations. The s.p.
wave functions of the phenomenological calculations were
obtained using Woods-Saxon wells, whose parameters are
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FIG. 1. Comparison between the interac-
tions used in our calculations and the micro-
scopic Argonne V8’ interaction in the scalar
channel, v1, spin channel, v2, isospin channel,
v3, and spin-isospin channel, v4. Dotted lines,
labeled FHNC, were obtained by multiplying the
Argonne V8’ terms with the scalar part of the
correlation function obtained in correlated basis
function calculations [10].

given in Ref. [10]. The residual interaction is a zero-range,
density-dependent, Landau-Migdal force whose parameters
are those chosen in Ref. [45].

We have investigated nuclei where the hole s.p. levels are
fully occupied. This eliminates deformations and minimizes
pairing effects.

IV. RESULTS

A. Oxygen

We have studied three oxygen isotopes, the doubly magic
16O nucleus and the 22O and 24O isotopes. In our model, the
heavier isotopes are obtained from the 16O core by filling,
respectively, the neutron 1d5/2 and the 2s1/2 s.p. levels. The
ground-state properties of these three isotopes, obtained in HF
calculations with the D1S and D1M interactions, are presented
in Table I and in Figs. 2 and 3.

We report in Table I the binding energies per nucleon,
E/A, and the s.p. energies of the three oxygen isotopes.
The agreement with the experimental binding energies, whose
values are given in the table title, is within a few percent. We
observe that the D1M interaction is slightly less attractive
than the D1S one. In any case, these are relatively small
differences and we may state that, despite the fact that the
two interactions are rather different, as shown in Fig. 1, they
give very similar descriptions of the binding and s.p. energies
of the three nuclei considered. The results in Table I show that
the proton s.p. states become more bound with an increasing
number of neutrons.

In Fig. 2(a) we show the 16O charge distributions obtained in
HF calculations where the D1S and D1M forces were used, and
we compare them with the empirical charge distribution taken
from Ref. [46]. Our charge distributions have been obtained
by folding the proton distributions with a dipole proton elec-
tromagnetic form factor. We have verified that more modern,

TABLE I. Nuclear binding energies per nucleon, E/A, and s.p. energies of the three oxygen isotopes considered, calculated within the
HF approach by using the D1S and D1M interactions. All quantities are expressed in MeV. Values of the experimental binding energies are
–7.976, –7.365 and –7.016 MeV for 16O, 22O, and 24O, respectively.

D1S D1M
16O 22O 24O 16O 22O 24O

E/A −8.093 −7.372 −7.012 −7.955 −7.254 −6.912
Protons

1s1/2 −35.37 −46.43 −48.64 −32.74 −43.38 −45.65
1p3/2 −18.58 −29.89 −32.32 −17.63 −28.71 −31.18
1p1/2 −12.49 −23.99 −25.97 −11.91 −23.60 −25.60

Neutrons
1s1/2 −38.61 −41.02 −41.11 −36.00 −38.32 −38.46
1p3/2 −21.82 −22.11 −22.43 −20.91 −20.72 −21.15
1p1/2 −15.63 −18.53 −17.22 −15.10 −17.35 −16.29
1d5/2 −6.56 −7.01 −6.34 −6.85
2s1/2 −4.13 −4.09
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FIG. 2. (a) Charge density distributions of the 16O nucleus. The
shaded area represents the empirical density distribution [46]. The
other lines show the distributions obtained in HF calculations with
the D1S and D1M interactions (solid and dashed lines, respectively)
and that obtained with the Woods-Saxon potential from Ref. [10]
(dotted line). (b) Elastic electron scattering cross sections calculated
in the distorted-wave Born approximation by using the charge
distributions shown in (a) as a function of the scattering angle θ . The
empirical charge distribution plotted in (a) (shaded area) was obtained
from a fit to the data taken from Refs. [48] and [49]. Numbers indicate
electron energy values.

and accurate, form factors do not produce sizable differences
in our results. Our calculations describe well the empirical
charge density on the surface but they underestimate it
in the center of the nucleus. We show in Fig. 2(b) the
elastic electron scattering cross section calculated in the
distorted-wave Born approximation [47] by using the charge
distributions shown in Fig. 2(a). We compared our results with
the data in Refs. [48] and [49]. The differences between theo-
retical and empirical densities show up in the cross sections at
large momentum transfer. The charge distribution obtained
with the Woods-Saxon potential by using the parameters
from Ref. [10] does not do a better job of describing the
empirical density, which is now overestimated in the nuclear
center.

In Fig. 3, we show the proton, neutron, and matter
distributions, ρp, ρn, and ρm, respectively, for the three oxygen
isotopes we have considered. The matter distribution is the
sum of the proton and neutron ones. We do not see relevant
differences between the results obtained with the two different
interactions. The shapes of the neutron distributions show
the effects of the filling of the s.p. levels, which are empty
in the lighter isotopes. In the 22O nucleus the 1d5/2 level,
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FIG. 3. Proton ρp , neutron ρn, and matter ρm distributions for the
three oxygen isotopes considered, obtained in HF calculations with
the D1S and D1M interactions.

empty in 16O , is completely occupied. This level gives a
contribution mainly on the surface. The rms radius of the
neutron distribution changes from 2.64 fm in 16O to 3.00 fm
in 22O for the D1S interaction and from 2.61 fm to 2.97 fm
for the D1M interaction. The situation is different in 24O,
where the new s.p. level to be occupied is the 2s1/2. In
this case, the main effect is in the center of the nucleus.
The values of the neutron distributions rms radii are 3.17
and 3.12 fm for the D1S and D1M interaction, respectively.
This is a relatively small change on the neutron distribution
surface.

The proton distributions are interesting, as there is no
change in the occupation of the s.p. levels in the different
isotopes, therefore all the differences are produced by the
interaction between protons and neutrons. In Figs. 3(a)
and 3(d) we show the proton distributions of the three oxygen
isotopes. We note that the increase in the neutron number
produces a change in the interior of the nucleus. The proton
1s1/2 s.p. wave function becomes wider the heavier the isotope
is, and because the normalization is conserved, the value of the
wave function at the center of the nucleus becomes smaller.
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The rms radius of these distributions changes from 2.20 fm in
16O to 2.45 fm in 24O almost independently of the interaction
used. The relevant lowering of the proton distribution in the
nuclear center is produced to compensate the increase in the
neutron density [see Figs. 3(b) and 3(e)]. In Figs. 3(c) and 3(f)
we also show the matter distributions and we observe that the
differences between the various isotopes are smaller than those
shown separately by the proton and neutron distributions.

So far, we have presented HF results that are related to
the ground-state properties of the three oxygen isotopes. We
now discuss the excitation spectra obtained by our CRPA
calculations. The first point we have investigated is related
to the relevance of the proper treatment of the continuum in
the self-consistent CRPA calculations. Our study has been
conducted by comparing our CRPA results with the results
of discrete RPA calculations, such as those in Ref. [27].
This is the same strategy adopted in Ref. [30] and, within
a relativistic framework, in Ref. [50]. The discrete set of s.p.
states is obtained by solving the HF equations in a box with
bound-state boundary conditions. For all oxygen isotopes we
use a box radius of 12 fm. Larger values of this radius do not
change the binding and s.p. energies up to the fifth significant
figure. There is not such a stability for the unbound, εp > 0,
s.p. wave functions and energies. We have controlled the
stability of the RPA results by selecting the maximum value
of the particle-hole excitation energy, εmax

ph , used in the RPA
calculation. For a given total angular momentum and parity of

the excitation, this value determines the number of s.p. states
forming the configuration space of the discrete calculation.

The quantity we have considered for these convergence
tests is the centroid energy, which we calculate as

〈ω〉J =
∫ ωmax

ωmin
dω ωB(ω,EJ : 0 → J )∫ ωmax

ωmin
dω B(ω,EJ : 0 → J )

. (47)

We have studied the convergence for the 1− and 2+
excitations in all the nuclei we have investigated, and we
have found that the change from εmax

ph = 200 MeV to εmax
ph =

250 MeV modifies the value of the centroid energies for less
than 1 part in 1000. All the discrete RPA results we present
here were obtained by using εmax

ph = 250 MeV. Our choice
ensures the convergence of discretized RPA calculations done
in the HF basis, which was generated by using a specific value
of box size.

In Fig. 4 we compare the total photoabsorption cross
sections calculated for the excitation of the 1− resonance in the
three oxygen isotopes studied. Vertical bars show the discrete
RPA results; solid lines, those of CRPA calculations. In the
upper panels we present the results obtained with the D1S
interaction, and in the lower panels those obtained with the
D1M interaction.

In the 16O nucleus, the agreement between the results of the
two different calculations is rather good. Discrete results have
their maxima in the same position of those of the continuous
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FIG. 5. Same as Fig. 4, for the 2+ multipole excitation.

solutions. There are peaks around 30, 35, and 40 MeV which
do not have corresponding partners in the CRPA cross sections.
The D1M cross sections are slightly smaller, again, indicating
that this interaction is less attractive than the D1S force. The
situation is more complicated in 22O. Discrete and continuum
results have similar structures, but the positions of the peaks are
slightly different. In any case, the cross sections show a richer
structure than in the 16O case. This situation is worsening in
24O, where the peaks of the continuous cross sections do not
correspond to those of the discrete calculation.

We show in Fig. 5 analogous results for the excitation of
the 2+ resonance. In this case the results of the discrete RPA
are rather different from those of the CRPA, even in the 16O
nucleus. The discrete calculations show clusters of peaks not
present in the continuous calculations.

We report in Table II the centroid energies of the elec-
tromagnetic responses obtained in discrete and continuum
RPA calculations. We have considered for ωmin the values
corresponding to the continuum thresholds. The 1− resonances
have been integrated up to ωmax = 60 MeV, and the 2+
resonances up to ωmax = 120 MeV. The relative differences
between these centroid energies are smaller than 2% in the 1−
case. In the case of the 2+ excitation we reach the maximum
value of a 4% relative difference between the D1M results in
16O.

While the 1− response to photon excitations is essentially of
pure isovector (IV) character, the 2+ response is a combination
of isoscalar (IS) and IV modes. For the 2+ excitation we
have separated the IS and IV responses by including in the

expression of the B(EJ ) value in Eq. (45) the operators

T IS
JM =

A∑
i=1

rJ
i YJM (�i), (48)

T IV
JM =

A∑
i=1

rJ
i YJM (�i)τ3(i), (49)

with J = 2. We show in Fig. 6 the IS and IV responses for the
2+ excitation of all three oxygen isotopes we have investigated,
obtained by using the D1S and the D1M interactions. The

TABLE II. Centroid energies (in MeV), Eq. (47), for the 1− and
2+ electromagnetic excitations in the three oxygen isotopes studied,
obtained with discrete (RPA) and continuum (CRPA) calculations.

16O 22O 24O

1−

RPA-D1S 26.34 24.87 22.82
CRPA-D1S 27.17 25.11 23.07
RPA-D1M 26.36 24.72 22.81
CRPA-D1M 27.23 25.04 23.20

2+

RPA-D1S 28.43 32.91 31.58
CRPA-D1S 30.47 33.47 32.20
RPA-D1M 28.19 32.26 30.93
CRPA-D1M 30.51 33.06 31.06
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FIG. 6. Isoscalar (IS) and isovector (IV) strengths of the 2+ excitation mode for the oxygen isotopes studied.

IS responses are concentrated at lower energies and show a
sharp peak, while the IV responses are broader and have less
pronounced maxima at higher energies. In the 16O nucleus the
IS quadrupole resonance has been identified in α scattering
processes at a peak energy of about 21 MeV [51], to be
compared with the peak energies of 21.7 and 21.6 MeV
obtained with the D1S and D1M forces, respectively. The
centroid energies of our calculations for the 16O nucleus,
calculated for ωmax = 100 MeV are 22.94 and 23.13 MeV
for D1S and D1M interactions, respectively. If we consider
ωmax = 40 MeV, we obtain 22.12 and 22.24 MeV for these
centroid energies.

Another point we have investigated is related to the effects
of the residual interaction in CRPA calculations. In Fig. 7 the
CRPA results (solid and dashed curves) are compared with the
IPM results (dotted and dashed-dotted curves), obtained by
switching off the residual interaction in the CRPA calculation,
and with the data in Ref. [52]. Because more than 90% of the
contribution to the total photoabsorption cross section is given
by the 1− excitation, we compare the data with the results of
this excitation mode. The contribution of the 2+ excitation to
the photoabsorption cross section is shown in Fig. 7(c), and
it is one order of magnitude smaller than the contribution of
the 1− mode. In the lower panels we present the sum rule
exhaustion functions,

SR(ω) =
∫ ω

0
dω′ σ (ω′), (50)

calculated for the cross sections shown in the upper panels.
The results obtained with the D1S interaction do not show

significant differences with respect to those obtained with

the D1M interaction. Evidently, only the CRPA calculations
predict the presence, and also the positions, of the resonances.
The positions of the peaks are well reproduced for both
multipole excitations by the CRPA calculations, while the IPM
results do not give a good description of the data. The sum rule
functions obtained with the IPM calculations are smaller than
those with the CRPA. The differences are larger for the 1−
excitation than for the 2+ excitation. This may be caused by
the different isospin character of the two excitations, which, as
we have already pointed out, is mainly IV in the 1− mode and
a combination of IS and IV in the 2+ mode. In the 1− case, the
energies of the peaks of the CRPA cross sections are higher
than those of the IPM results. This is because the residual
interactions are repulsive in the IV channel. The situation is
inverted for the lower energy peaks of the 2+ excitation mode.
The CRPA cross sections present peaks at lower energies
than those of the IPM calculations. This indicates that the
interactions are attractive in the IS channel. The other, wider,
2+ resonances peaked at energies of about 42 MeV and have,
instead, an IV character, and their energies are slightly higher
than those of the IPM calculations.

Comparison of the CRPA results with the photoabsorption
data emphasizes the well-known limitations of the RPA
description of the giant resonances. The strength is too
concentrated in the peak region, and the data show a wider
energy distribution. The sum rule functions in Fig. 7(b) further
confirm these deficiencies. Even though experimental and
CRPA curves seem to have the same limiting values, the
CRPA curves saturate much earlier than the experimental
one. Again, the strength is too concentrated in the resonance
region.
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Experimental data (filled squares) are from
Ref. [52]. (b, d) Sum rule exhaustion functions,
Eq. (50), for the two multipole excitations. The
gray area indicates the same function calculated
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lines show CRPA results obtained with the
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wave functions, respectively. Horizontal lines
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by using a nuclear matter estimate of the
enhancement factor. The value of the TRK sum
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The saturation value given by the Thomas-Reiche-Khun
(TRK) sum rule is 240 mb MeV. The isospin dependence of
our interactions is responsible for the fact that our calculations
saturate at higher values. The calculation of the enhancement
factor κ of the TRK sum rule is rather involved for finite-range
interactions [53]. We use the values of κ for the D1S and
D1M interactions obtained by a nuclear matter estimate [30].
We obtain κ = 0.65 for the D1S interaction and κ = 0.50 for
the D1M force. These values correspond in 16O to sum rule
limiting values of 396 and 360 mb MeV for the D1S and D1M
interaction, respectively. As we show in Fig. 7(b), these values
are compatible with the results we obtain with our CRPA
calculations.

Another issue we have investigated is the capacity of a
phenomenological CRPA approach to predict the excitation
spectra of experimentally unknown nuclei. For this reason
we have calculated the 1− and 2+ excitations of the three
oxygen isotopes by using the phenomenological approach
from Refs. [54] and [55]. In the phenomenological calculations
we solved the CRPA equations without exchange terms by
using a zero-range Landau-Migdal force, whose parameters
are those in Ref. [45]. In this approach the s.p. wave functions
are generated by solving the one-body Schrödinger equation
with a Woods-Saxon potential. For all oxygen isotopes, we
used the parameters of the Woods-Saxon potential of 16O given
in Ref. [10]. In Fig. 8 we compare our self-consistent CRPA
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where a Landau-Migdal interaction was
used (dotted lines).

044324-12



SELF-CONSISTENT CONTINUUM RANDOM-PHASE . . . PHYSICAL REVIEW C 83, 044324 (2011)

TABLE III. Nuclear binding energies per nucleon, E/A, and s.p. energies of the three calcium isotopes considered, calculated within the
HF approach by using the D1S and D1M interactions. All quantities are expressed in MeV. Values of experimental binding energies are −8.551,
−8.666, and −8.396 MeV for 40Ca, 48Ca, and 52Ca, respectively.

D1S D1M
40Ca 48Ca 52Ca 40Ca 48Ca 52Ca

E/A −8.579 −8.639 −8.344 −8.462 −8.537 −8.260
Protons

1s1/2 −44.82 −51.31 −54.01 −41.01 −46.90 −49.35
1p3/2 −30.04 −37.61 −40.02 −27.84 −34.91 −37.16
1p1/2 −26.05 −33.89 −35.76 −24.14 −31.74 −33.60
1d5/2 −16.02 −23.89 −26.37 −15.15 −22.65 −25.07
2s1/2 −10.52 −17.12 −20.93 −9.91 −16.17 −19.98
1d3/2 −9.18 −16.96 −19.29 −8.75 −16.54 −18.82

Neutrons
1s1/2 −52.07 −53.20 −53.14 −48.44 −49.57 −49.52
1p3/2 −37.09 −37.89 −37.88 −35.00 −35.60 −35.71
1p1/2 −33.01 −35.32 −34.46 −31.21 −33.23 −32.56
1d5/2 −22.96 −22.92 −23.09 −22.15 −21.84 −22.13
2s1/2 −17.54 −18.27 −17.40 −17.03 −17.69 −17.89
1d3/2 −15.95 −17.83 −18.85 −15.57 −17.09 −16.83
1f7/2 −9.39 −9.76 −9.25 −9.71
2p3/2 −5.49 −5.50

results with those of the phenomenological approach, which
are indicated by dotted lines.

The phenomenological results compare rather well with
experimental data [52] and with our self-consistent CRPA
results in the case of the 1− excitation of the 16O nucleus.
The position of the peak coincides with that obtained in
the self-consistent calculations, and all of them are rather
close to the experimental one. We remark, however, that the
global strength of the phenomenological result is smaller than
that produced in the self-consistent approach. The reasonable

agreement between the CRPA results obtained in the case of the
1− excitation in 16O is peculiar, as all the other cases show large
differences between phenomenological and self-consistent
results. The phenomenological calculation predicts the IS 2+
excitation of 16O at 21 MeV energy, but it fails in describing
the IV excitation at higher energies. The differences in the
results between the phenomenological and the self-consistent
calculations in the other two oxygen isotopes are large. The
total strengths of the phenomenological cross sections are
much smaller than those of the self-consistent ones. A great
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and D1M interactions.

portion of the resonance structure of the self-consistent cross
sections is absent in the phenomenological results.

B. Calcium

The same type of investigation done for the oxygen isotopes
was repeated for three calcium isotopes: 40Ca, 48Ca, and 52Ca.
The ground-state properties of these nuclei are presented in
Table III and in Figs. 9 and 10. In Table III we list the values
of the binding and s.p. energies. As in the case of oxygen, the
agreement with the experimental binding energies is within a
few percent. To be precise, we remark that the D1S results are
slightly better than those obtained with the D1M force. Also, in
these calculations the D1M force shows less attraction than the
D1S interaction. As in the case of oxygen, the proton s.p. levels
become more bound with an increasing number of neutrons.

In the upper panels in Fig. 9 we show the charge distribu-
tions of 40Ca and 48Ca nuclei. We use these charge distributions
to calculate the elastic electron scattering cross sections in the
distorted-wave Born approximation. These cross sections are
compared with the experimental data [49,56–59] in the lower

panels in Fig. 9. We also show there, with the dotted lines, the
charge densities and associated cross sections obtained from
phenomenological calculations done using the Woods-Saxon
potential with the parameters given in Ref. [10]. The shaded
areas showing the empirical densities are taken from the
compilation in Ref. [46]. The results of our HF calculations
show a better agreement with the data than those of the
phenomenological calculations.

The proton, neutron, and matter distributions of the three
calcium isotopes are shown in Fig. 10. The main features
pointed out in the discussion done for the oxygen isotopes are
also present in this case, where there are, however, remarkable
differences in the details. In the oxygen isotopes the 2s1/2

state was occupied only by the neutrons in the 24O nucleus.
In the calcium isotopes we have considered, the 2s1/2 state
is always occupied in both proton and neutron cases. 48Ca
is obtained from the 40Ca nucleus by filling the neutron
1f7/2 state, and 52Ca, by filling, in addition, the neutron
2p3/2 state. In Fig. 10(b) it is shown that the filling of the
1f7/2 state increases the neutron surface and leaves practically
unmodified the density at the center of the nucleus. The filling
of the 2p3/2 state modifies the neutron density mainly around
2.0 fm, but it also produces a small lowering at the nuclear
center. These modifications change the proton densities at the
nuclear center as shown in Fig. 10(a). The matter distributions
obtained with the D1S interaction, and shown in Fig. 10(c),
are rather smooth in the nuclear interior. The D1M interaction
generates narrow s waves in 40Ca and this produces a large
proton distribution in the nuclear center. The corresponding
neutron distribution [Fig. 10(e)] has a hole in the center, and
this compensates for the peak of the proton distribution and
produces a matter distribution rather smooth. The same type
of considerations can also be made for the distributions of the
52Ca isotope. In general, we observe that, as in the oxygen case,
the HF calculations find optimal matter distributions that are
rather smooth, even though the separated proton and neutron
densities may show some rapid changes.

A comparison between discrete and CRPA results is done
in Figs. 11 and 12 for 1− and 2+ multipole excitations,
respectively. As in the oxygen case, we show the contributions
to the total photoabsorption cross sections. The agreement
between the results of discrete and those of CRPA calculations
is not as good as in the oxygen case. Both types of calculations
produce resonances, and, the total strengths predicted by the
discrete RPA are similar to those predicted by the CRPA.
For calcium isotopes, this result is common to all the nuclei,
interactions, and multipole excitations we have investigated.

Table IV lists the centroid energies of the electromagnetic
responses obtained in discrete and CRPA calculations. As
we did for the oxygen isotopes, we have taken for ωmin

the values corresponding to the continuum thresholds for
the various calcium isotopes. The 1− resonances have been
integrated up to ωmax = 40 MeV, and the 2+ resonances up
to ωmax = 100 MeV. The relative differences between these
centroid energies are smaller than 1% for the 1− excitations
and reach a value of about 6% for the 2+ states. We studied
separately the centroid energies of the IS and IV components
of the 2+ excitations. By selecting the same values of ωmin and
ωmax, we reproduce the energy differences in Ref. [30].
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FIG. 11. Same as Fig. 4, for the three calcium isotopes. Note that the vertical scale for 40Ca is half that for 48Ca and of 52Ca.

The structure of the electromagnetic 2+ strength distribu-
tions is analogous to that of the oxygen isotopes. They are
characterized by a narrow IS peak at lower energies, here
around 17–18 MeV, and a much wider IV resonance at higher
energies. The IS and IV 2+ responses are shown separately
in Fig. 13 for the three calcium isotopes we are studying and
for the two interactions we are using. The peak of the IS 2+
resonance has been identified in 40Ca at 17.7 ± 0.2 MeV in α

scattering processes [60]. This value should be compared with
the peak energy of 17.4 MeV in CRPA calculations done with
both D1S and D1M forces. The presence of an IV 2+ resonance

TABLE IV. Centroid energies (in MeV), Eq. (47), for the 1−

and 2+ electromagnetic excitations in the various calcium isotopes.
Discrete RPA results were obtained using εmax

ph = 250 MeV.

40Ca 48Ca 52Ca

1−

RPA-D1S 22.37 22.27 20.56
CRPA-D1S 21.89 22.40 20.63
RPA-D1M 22.10 21.86 20.24
CRPA-D1M 22.42 21.77 20.33

2+

RPA-D1S 24.66 27.34 26.84
CRPA-D1S 25.02 26.89 26.14
RPA-D1M 24.39 26.70 26.12
CRPA-D1M 27.36 26.29 25.49

in 40Ca around 32 MeV has been reported in an analysis of
radiative neutron capture data [61]. Our calculations produce
wide, and fragmented, IV resonances. We see peaks around 32
MeV but also around 35 MeV.

In Fig. 14 we compare our 40Ca CRPA results with the
total photoabsorption data from Ref. [52] and with the result
of the IPM calculations. The same observations done for the
oxygen case are valid here also. The IPM results are unable
to describe the experimental cross section. The sum rule
functions, Eq. (50), shown in Figs. 14(b) and 14(d), confirm
what we have observed in the oxygen case. The strengths of
the IPM results are much smaller than those of the CRPA
calculations. In the 1− case, the CRPA sum rule function
reaches the empirical value but too early with respect to
the empirical behavior. This indicates that the strength is too
concentrated in the resonance region.

The value of the traditional TRK sum rule is 600 mb MeV,
much lower than the limiting values obtained by our CRPA
calculations. The nuclear matter estimates of the enhancement
factors give limiting values of the sum rules of 990 and
900 mb MeV for the D1S and D1M interactions, respectively.
We show in Fig. 14(b) that these values are compatible with
our CRPA results.

Also in the case of the calcium isotopes we have com-
pared our self-consistent CRPA results, with those of the
phenomenological approach. We obtain results analogous to
those shown in the oxygen case. The phenomenological results
show less strength and structure than the self-consistent ones.
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V. CONCLUSIONS

In this article we have presented a technique to solve
the CRPA equations in a self-consistent framework. In our
calculations we used Gogny-like finite-range interactions
containing zero-range density-dependent terms. Also, the
spin-orbit term, used only in the HF calculations, is of the
zero-range type. We have shown results for A = 16, 22, and
24 oxygen isotopes and for A = 40, 48, and 52 calcium
isotopes. We have compared our results with the available
experimental total photoabsorption data. We have studied the
need for a proper treatment of the continuum by comparing our
results with those obtained by discrete RPA calculations. The
need for a self-consistent approach has been investigated by
conducting a comparison with the results of phenomenological
CRPA calculations.

We summarize here the main results of our study.

(i) The D1S and D1M forces are very different when
compared in the various interaction channels [Eq. (5)].
However, they produce very similar results, both in HF
and in CRPA calculations.

(ii) In the HF calculations the global matter distribution,
given by the sum of the proton and neutron distribu-
tions, is modified to obtain the minimization of the total
energy of the system. We have shown in Figs. 3 and 10
that the HF minimization procedure produces rather
smooth matter distributions, even though separately the
proton and neutron densities may vary strongly.

(iii) With the increasing number of neutrons, the proton
s.p. states become more bound, as shown in Tables I
and III. This effect is not relevant for charge conserving
excitations, those treated in this work, but it may have
consequences in charge exchange excitations.

(iv) IPM calculations of the nuclear responses are unable to
provide the proper strength of the multipole excitation.

This confirms the well-known fact that IPM calcula-
tions do not predict the presence of giant resonances in
the nuclear excitation spectrum.

(v) The comparison with discrete RPA results shows the
need for a correct treatment of the continuum in self-
consistent calculations. In discrete calculations we have
used s.p. configuration spaces large enough to ensure
the stability of the results in the low-lying states and
in the giant resonance excitation regions. Discrete RPA
calculations can reproduce some bulk properties of the
excitation, the centroid energies, for example, but they
fail in the detailed description. Discrete RPA responses
show clustering of excited states that the CRPA strength
distributions do not have.

(vi) The phenomenological CRPA results are similar to
those of the self-consistent CRPA calculations in 16O
and 40Ca. The input parameters of the phenomeno-
logical calculations have been chosen to reproduce
some experimental quantities in these nuclei. On the
contrary, when we applied this approach to the other
isotopes, we found results that are rather different
from those obtained with the self-consistent approach.
This indicates the inadequacy of the phenomenological
approach in the study of nuclei lying in experimentally
unexplored parts of the nuclear isotope chart.

(vii) Self-consistent CRPA calculations describe rather well
the experimental positions of the giant resonance peaks,
for both the 1− and the 2+ excitations. In contrast,
the strength distributions are incorrect, as they are
concentrated in the peak region, while the experimental
distributions are wider. This is a well-known deficiency
of the RPA description of nuclear giant resonances.
There are strong indications that the problem could
be solved by considering the excitation of 2p-2h pairs
[62–64].
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The work presented here is the first step in a project aiming
to apply a self-consistent computational scheme to many other
observables and nuclei. The next step in our work will be the
study of unnatural parity excitations, and for this investigation
we shall consider a tensor term in the interaction [65]. It has
been shown that this term slightly affects the ground-state
properties, [66,67] but it has more relevant effects on the
spectrum of magnetic states [26,27]. The study of charge
exchange excitations will be the following step.
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APPENDIX A: EXPANSION OF CRPA EQUATIONS
ON THE BASIS OF STURMIAN FUNCTIONS

In this Appendix we derive Eqs. (39) and (40) by inserting
expansions (37) and (38) of the f and g functions on the
Sturmian function basis in the CRPA secular equations, (27)
and (28). We insert expression (37) in the first term in Eq. (27),
and by using definition (36) of the orthogonalized Sturmian
functions and the fact that Rp(r, εp) is an eigenfunction of
the s.p. Hamiltonian H [see Eq. (1)] for the eigenvalue εp =
εh + ω, we obtain

H
[
f

p0h0
ph (r)

] − (εh + ω)f p0h0
ph (r)

= H
[
Rp0 (r, εp)δpp0δhh0 +

∑
µ

c
µ+
ph �̃µ+

p (r)

]

− (εh + ω)

[
Rp0 (r, εp)δpp0δhh0 +

∑
µ

c
µ+
ph �̃µ+

p (r)

]

=
∑

µ

c
µ+
ph

{
H

[
�µ+

p (r)
] − (εh + ω)�µ+

p (r)

−
∑
εi<εF

δip(εi − εh − ω)Ri(r)
∫

dr ′r ′2Ri(r
′)�µ+

p (r ′)

}
.

(A1)

The sum of the last term is limited to the states below the Fermi
surface having the same orbital and total angular momentum
of the particle state. Using the definition of the Sturm-Bessel
functions given in Eq. (33), we obtain for the above expression

H
[
f

p0h0
ph (r)

] − (εh + ω)f p0h0
ph (r)

= −
∑

µ

c
µ+
ph

{[
U

µ

p(r) − U(r)
]
�µ+

p (r)

+
∫

dr ′r ′2W(r, r ′)�µ+
p (r ′)

+
∑
εi<εF

δip(εi − εh − ω)Ri(r)

×
∫

dr ′r ′2Ri(r
′)�µ+

p (r ′)

}
, (A2)

where we have used the fact that, from Eqs. (1) and (33), we
have

H
[
�µ+

p (r)
] − [U(r) + εp]�µ+

p (r)

+
∫

dr ′ r ′2W(r, r ′)�µ+
p (r ′) = −U

µ

p(r)�µ+
p (r). (A3)

Multiplying the above expression by r2 �ν+
p (r) and integrating

on r , we obtain∫
dr r2�ν+

p (r)
{
H
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f
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ph (r)

] − (εh + ω)f p0h0
ph (r)

}
= −

∑
µ

c
µ+
ph

{
δµν −

∫
dr r2�ν+

p (r)

×
[
U(r)�µ+

p (r) −
∫

dr ′ r ′2W(r, r ′)�µ+
p (r ′)

−
∑
εi<εF

δip(εi − εh − ω)Ri(r)
∫

dr ′ r ′2 Ri(r
′)�µ+

p (r ′)

]}

≡ −
∑

µ

c
µ+
ph

{
δµν − 〈(

�ν+
p

)∗∣∣U ∣∣�µ+
p

〉
+ 〈(

�ν+
p

)∗
I
∣∣W∣∣I�µ+

p

〉 + ∑
εi<εF

δip(εi − εh − ω)

× 〈(
�ν+

p

)∗∣∣Ri

〉〈
(Ri)

∗∣∣�µ+
p

〉}
, (A4)

where we have used the orthogonality relation, (35). The
number of radial integrations is given by the number of
functions indicated in the bra and ket symbols. For this reason,
in the terms with W we have inserted I to indicate the identity
function.

For the right-hand side of Eq. (27), using the orthogonality
relation, (36), we obtain∫

dr r2 �ν+
p (r)

×
[

− FJ
ph(r) +

∑
εi<εF

δipRi(r)
∫

dr ′ r ′2R∗
i (r ′)FJ

ph(r ′)

]

= −
∫

dr r2

[
�̃ν+

p (r) +
∑
εi<εF

δipR∗
i (r)

×
∫

dr ′ r ′2Ri(r
′)�ν

p(r ′)

]
FJ

ph(r) +
∫

dr r2�ν+
p (r)

×
∑
εi<εF

δip Ri(r)
∫

dr ′ r ′2 R∗
i (r ′)FJ

ph(r ′)

= −
∫

dr r2 �̃ν+
p (r)FJ

ph(r). (A5)
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Now using Eqs. (29), (37), and (38) we have

−
∫

dr r2�̃ν+
p (r)FJ

ph(r) = −
∫

dr r2 �̃ν+
p (r)

∑
p′h′

∫
dr ′ r ′2{R∗

h′(r ′)
[
V

J,dir
ph,p′h′(r, r ′)Rh(r)f ν

p′h′(r ′) − V
J,exc
ph,p′h′(r, r ′)f ν

p′h′(r)Rh(r ′)
]

+ g∗
p′h′(r ′)

[
U

J,dir
ph,p′h′(r, r ′)Rh(r)Rh′(r ′) − U

J,exc
ph,p′h′(r, r ′)Rh′(r)Rh(r ′)

]}
= −

∫
dr r2�̃ν+

p (r)
∑
p′h′

∫
dr ′ r ′2

{
R∗

h′(r ′)V J,dir
ph,p′h′(r, r ′)Rh(r)

[
Rp0 (r ′, εp0 )δp′p0δh′h0

+
∑

µ

c
µ+
p′h′�̃

µ+
p′ (r ′)

]
− R∗

h′(r ′) V
J,exc
ph,p′h′(r, r ′)

[
Rp0 (r, εp0 ) δp′p0 δh′h0 +

∑
µ

c
µ+
p′h′ �̃

µ+
p′ (r)

]
Rh(r ′)

+
∑

µ

(
c
µ−
p′h′

)∗(
�̃

µ−
p′ (r ′)

)∗[
U

J,dir
ph,p′h′(r, r ′)Rh(r)Rh′(r ′) − U

J,exc
ph,p′h′(r, r ′)Rh′(r)Rh(r ′)

]}
= −〈(

�̃ν+
p

)∗
Rh0

∣∣V J,dir
ph,p0h0

∣∣RhRp0

(
εp0

)〉 − ∑
p′h′

∑
µ

c
µ+
p′h′

〈(
�̃ν+

p

)∗
Rh′

∣∣V J,dir
ph,p′h′

∣∣Rh�̃
µ+
p′

〉
+ 〈(

�̃ν+
p

)∗
Rh0

∣∣V J,exc
ph,p0h0

∣∣Rp0

(
εp0

)
Rh

〉 + ∑
p′h′

∑
µ

c
µ+
p′h′

〈(
�̃ν+

p

)∗
Rh′

∣∣V J,exc
ph,p′h′

∣∣�̃µ+
p′ Rh

〉
−

∑
p′h′

∑
µ

(
c
µ−
p′h′

)∗[〈(
�̃ν+

p

)∗
�̃

µ−
p′

∣∣UJ,dir
ph,p′h′ |RhRh′ 〉 − 〈(

�̃ν+
p

)∗
�̃

µ−
p′

∣∣UJ,exc
ph,p′h′ |Rh′Rh〉

]
. (A6)

Putting together Eqs. (A4) and (A6), we find a new
expression of the CRPA secular equation, (27):∑

µ

∑
p′h′

{[
δpp′δhh′

(
δµν − 〈(

�ν+
p

)∗∣∣U ∣∣�µ+
p

〉
+ 〈(

�ν+
p

)∗
I
∣∣W∣∣I�µ+

p

〉 + ∑
εi<εF

δip (εi − εh − ω)

× 〈(
�ν+

p

)∗∣∣Ri

〉〈
(Ri)

∗∣∣�µ+
p

〉)
− (〈(

�̃ν+
p

)∗
Rh′

∣∣V J,dir
ph,p′h′

∣∣Rh�̃
µ+
p′

〉
− 〈(

�̃ν+
p

)∗
Rh′

∣∣V J,exc
ph,p′h′

∣∣�̃µ+
p′ Rh

〉)]
c
µ+
p′h′

− (〈(
�̃ν+

p

)∗
�̃

µ−
p′

∣∣UJ,dir
ph,p′h′ |RhRh′ 〉

− 〈(
�̃ν+

p

)∗
�̃

µ−
p′

∣∣UJ,exc
ph,p′h′ |Rh′Rh〉

)(
c
µ−
p′h′

)∗
}

= 〈(
�̃ν+

p

)∗
Rh0

∣∣V J,dir
ph,p0h0

∣∣RhRp0

(
εp0

)〉
− 〈(

�̃ν+
p

)∗
Rh0

∣∣V J,exc
ph,p0h0

∣∣Rp0

(
εp0

)
Rh

〉
. (A7)

A similar equation can be obtained from Eq. (28) for the g

channel function.

APPENDIX B: CONTINUUM WAVE FUNCTION
WITH HF POTENTIAL

We use an expansion on the Sturm-Bessel function basis to
calculate the s.p. wave function for εp > 0 with HF mean-field
potential. The explicit expression of the differential equation

to be solved for the reduced radial part of the wave function
up(r) = r Rp(r, εp) is

− h̄2

2m

(
d2

dr2
− lp(lp + 1)

r2

)
up(r) + U(r)up(r)

−
∫

dr ′ r ′W(r, r ′)up(r ′) = εp up(r), (B1)

where U and W have been defined in Eqs. (2) and (3),
respectively.

We express the solution of the above equation as

up(r)

r
= jlp (kpr) +

∑
µ

cµ
p ,�µ

p (r) (B2)

where jlp (kpr) is a spherical Bessel function, with kp the wave
number corresponding to εp. Using the definition, Eq. (33),
of the Sturm-Bessel functions and their orthogonality relation,
Eq. (35), we obtain the following nonhomogeneous system:

∑
µ

[
δµν −

∫
dr r2�ν

p(r)U(r)�µ
p(r)

+
∫

dr r2�ν
p(r)

∫
dr ′ r ′2W(r, r ′)�µ

p(r ′)

]
cµ
p

=
∫

dr r2 �ν
p(r)U(r)jlp (kpr)

−
∫

dr r2 �ν
p(r)

∫
dr ′ r ′2 W(r, r ′)jlp (kpr ′), (B3)

where the unknowns are the expansion coefficients c
µ
p .
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