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Deformation of hypernuclei studied with antisymmetrized molecular dynamics
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An extended version of antisymmetrized molecular dynamics was developed to study the structure of p-sd
shell hypernuclei. By using an effective �N interaction, we investigated the energy curves of 9

�Be, 13
� C, and 20,21

�Ne
as a function of nuclear quadrupole deformation. The changes to nuclear deformation caused by � particles are
discussed. We found that � in the p wave enhances nuclear deformation, while that in the s wave reduces it. This
effect is most prominent in 13

�C. The possibility of parity inversion in 20
�Ne is also examined.

DOI: 10.1103/PhysRevC.83.044323 PACS number(s): 21.80.+a, 02.70.Ns, 27.20.+n, 27.30.+t

I. INTRODUCTION

One of the unique and interesting aspects of hypernuclei
is the structure change caused by the hyperon as an impurity.
Many theoretical works have suggested that such phenomena,
caused by a � particle, result in changes of deformation [1–5],
shrinkage of the intercluster distance [1,2], and creation of the
supersymmetric (genuine) hypernuclear state [2,6–9]. Owing
to experimental developments, some of these phenomena have
been observed in light p-shell hypernuclei. As examples, we
can refer to the reduction of B(E2) in 7

�Li [10] and the
identification of the supersymmetric (genuine) hypernuclear
state in 9

�Be [11–13].
Today, we expect that a new experimental facility at the

Japan Proton Accelerator Research Complex (J-PARC) will
reveal spectral information about both the p-sd shell and
neutron-rich hypernuclei. Since the normal forms of these
nuclei have a variety of structures, such as a coexistence of
shell and cluster structure [14–16] and novel exotic clustering
[17–21], there must be many interesting phenomena peculiar
to hypernuclei to be found. Indeed, several pioneering works
have predicted exotic structures in sd-shell hypernuclei, such
as parity inversion in 20

�Ne [7] and various rotational bands
in 21

�Ne [22]. These works have been based on rather limited
knowledge of the �N interaction. Since our knowledge of this
interaction has been greatly increased by recent theoretical and
experimental efforts [13,23–27], we are now able to perform a
more quantitative and systematic study of the structure changes
in � hypernuclei. Such a study will reveal the dynamics and
many interesting aspects of the baryon many-body problem.

To perform such a systematic and quantitative study of
sd-shell and neutron-rich � hypernuclei, we have developed
an extended version of antisymmetrized molecular dynamics
(AMD) [18,28–31], which we shall call HyperAMD. AMD
has been successful at describing various exotic structures of

neutron-rich nuclei and highly excited states of stable nuclei.
Therefore, HyperAMD is suitable for describing the structure
change and exotic structure of hypernuclei.

In this study, we introduce HyperAMD and focus on
changes in nuclear quadrupole deformation caused by a �

particle. By applying HyperAMD to 9
�Be, 13

�C, 20
�Ne, and

21
�Ne with a YNG-ND �N interaction [32], it is found that the
� particle changes nuclear quadrupole deformation. While
a � particle in the s wave reduces quadrupole deformation,
as expected, one in the p orbital increases it. Among the
calculated hypernuclei, 13

�C has shown the most drastic change
of the nuclear deformation. We also find that the binding
energy of a � particle depends on the structure of the core
nucleus. Namely, the � in an s wave coupled to the deformed
core nucleus has smaller binding than does one coupled to a
spherical core. On the contrary, the � in a p wave coupled
to the deformed core has greater binding than does one
coupled to a spherical core. This contradicts the findings of a
preceding study [7], in which the parity inversion of 20

�Ne was
predicted.

This paper is organized as follows. In the next section, we
explain the theoretical framework of HyperAMD. In Sec. III,
the changes in energy curves as a function of quadrupole
deformation are presented. The trends of these change and
theirs origin are discussed. The final section summarizes this
work.

II. THEORETICAL FRAMEWORK

In this section, we introduce the theoretical framework
of HyperAMD. As compared to the coupled-channel AMD
that describes the multistrangeness system [33], it has a better
description of the hyperon single-particle wave function, but
it does not treat multistrangeness and is limited to single-�
hypernuclei.
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A. Wave function

A single-� hypernucleus consists of A nucleons and a
� particle and is described by the wave function that is the
eigenstate of the parity:

�± = P̂ ±�int, (1)

where P̂ ± is the parity projector, and the intrinsic wave
function �int is given by the direct product of the single �

particle wave function ϕ� and the wave function of A nucleons
�N ,

�int = ϕ� ⊗ �N. (2)

The nuclear part is described by a Slater determinant of
nucleon single-particle wave packets,

�N = 1√
A!

det{ψi(rj )}, (3)

ψi(rj ) = φi(rj ) · χi · ηi, (4)

φi(r) =
∏

σ=x,y,z

(
2νσ

π

)1/4

exp
{ − νσ (r − Zi)

2
σ

}
, (5)

χi = αiχ↑ + βiχ↓, (6)

ηi = proton or neutron, (7)

where ψi is the ith nucleon single-particle wave packet,
consisting of spatial φi , spin χi , and isospin ηi parts. The spatial
part φi is represented by a deformed Gaussian. Its centroid,
Zi , is a complex-valued three-dimensional vector. The width
parameters νσ are real numbers and take an independent value
for each direction, but are common to all nucleons. The spin
part is parametrized by the complex parameters αi and βi , and
the isospin part is fixed to either a proton or neutron. Zi , νσ ,
αi , and βi are the variational parameters of the nuclear part.

To describe the various wave functions of the � particle,
the � single-particle wave function is represented by the
superposition of Gaussian wave packets,

ϕ�(r) =
M∑

m=1

cmϕm(r), ϕm(r) = φm(r) · χm, (8)

φm(r) =
∏

σ=x,y,z

(
2νσ ρ

π

)1/4

exp
{ − νσρ(r − zm)2

σ

}
, (9)

χm = amχ↑ + bmχ↓, (10)

ρ ≡ m�

mN

. (11)

Again, each wave packet is parametrized by the centroid of
the Gaussian zm, the spin direction am, and bm. zm, am, bm,
and cm are the variational parameters of the � part. The width
parameter νσ are equal to those of the nuclear part. The number
of the superposition M is taken to be large enough to allow the
energy convergence of the variational calculation.

B. Hamiltonian

The Hamiltonian used in this study is given as

Ĥ = T̂N + V̂NN + V̂Coul + T̂� + V̂�N − T̂g. (12)

Here, T̂N , T̂�, and T̂g are the kinetic energies of the nucleons,
the kinetic energy of the � particle, and the center-of-mass
motion. Since we have superposed Gaussian wave packets to
describe the � single-particle wave function, it is rather time
consuming to remove the spurious motion of the center of mass
exactly. To reduce this spurious motion, we keep the center of
mass of the wave packets at the origin of the coordinate,

A∑
i=1

Zi +
M∑

m=1

√
ρ zm = 0. (13)

We expect that the spurious energy is not large in sd-shell
hypernuclei, since the number of nucleons is much larger than
the hyperon. A similar method has been applied in other AMD
studies [28].

Our model wave function is designed to describe low-
momentum phenomena, as in the case of the conventional
shell model, and we shall use the low-momentum effective
interaction. We have used the Gogny D1S interaction [34] as
an effective nucleon-nucleon interaction V̂NN, which has been
successfully applied to stable and unstable normal nuclei. As
an effective �N interaction, we have used the central part
of the YNG-ND interaction [32]. The YNG-ND interaction
depends on the nuclear Fermi momentum kF through the
density dependence of the G matrix in the nuclear medium.
In this work, we apply kF = 1.14 and 1.17 fm−1, respectively,
for 9

�Be and 13
�C, which are so determined as to approximately

reproduce the binding energy of � in an s wave. For 20
�Ne and

21
�Ne, we apply the same value as for 13

�C, since there are no
experimental data. The Coulomb interaction is approximated
by the sum of seven Gaussians.

C. Frictional cooling method with constraints

Using the frictional cooling method, the variational parame-
ters of the model wave function are so determined that the total
energy is minimized under the constraints. We have imposed
two constraints on the variational calculation. The first is on the
nuclear quadrupole deformation parameter β that is calculated
by adding the parabolic potential,

〈V̂β〉 = vβ(β − β0)2, (14)

to the total energy. Here, β denotes the quadrupole deformation
of the nuclear wave function �N [28]. The deformation of
the nuclear part becomes equal to β0 after the variation.
It is noted that there are no constraints on the nuclear
quadrupole deformation γ and the deformation of the �

single-particle wave function. They have the optimum value
after the variational calculation for each given value of β0.

Another constraint is on the � single-particle wave func-
tion,

V̂s = �|ϕs〉〈ϕs |, (15)

〈r|ϕs〉 = exp{−ρν̄r2}, (16)

ν̄ = 3
√

νxνyνz. (17)

By using a sufficiently large value for �, this potential forbids
� in an s wave. Therefore, by switching this potential on and
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off, we obtain the hypernuclear states in which a � particle
dominantly occupies the s and p waves, respectively.

The total energy plus constraint potentials,

E′ = 〈�±|Ĥ |�±〉
〈�±|�±〉 + 〈V̂s〉 + 〈V̂β〉, (18)

is minimized using the frictional cooling method. The imagi-
nary time development equations of the variational parameters
are given as,

dX

dt
= µ

h̄

∂E′

∂X∗ , a (19)

X = Zi , zm, αi, βi, am, bm, νσ , ν�
i , (20)

where µ is an arbitrary negative real number. It is easy to
prove that E′ decreases over time, and after sufficient time
steps we obtain the energy minimum under the constraint. By
this method, we obtain the hypernuclear wave function for a
given β0, the total parity and the � single-particle orbital. In
the present work, � dominantly occupies an s or a p wave, and
we shall use the notation �s and �p for them. Combined with
the parity projection, we obtain four different configurations in
which �s and �p couple to the positive- and negative-parity
states of the core. These are denoted �+

N ⊗ �s , �−
N ⊗ �s ,

�+
N ⊗ �p, and �−

N ⊗ �p in the following discussion.

III. RESULTS AND DISCUSSION

A. General trend of the energy curves

We have performed the variational calculation for 9
�Be,

13
�C, 20

�Ne, and 21
�Ne. To illustrate the changes in nuclear

deformation, Fig. 1 shows the energy curves of hypernuclear
states with different configurations and the corresponding
normal nuclei as functions of deformation β. Each energy
curve has an energy minimum shown by the open circle, and
the binding energies, quadrupole deformation, and radius at
the minimum are listed in Table I. The binding energy of � is

TABLE I. Calculated total and � binding energies B and B�,
in MeV, quadrupole deformation parameters β and γ , and the root-
mean square radius in fm at the minimum of each energy curve. The
central values of the observed energies [12,13,35,36] are also listed
in parentheses. The energies for the �p states of 9

�Be and 13
�C are

estimated from the observed excitation energies given in Ref. [13].

B B� β γ
√

〈r2〉
8Be �+

N 51.2(56.5) − 0.68 1.9 2.50
9
�Be �+

N ⊗ �s 56.9(63.2) 5.75(6.71) 0.65 1.9 2.44
�+

N ⊗ �p 50.4(56.7) −0.77(0.19) 0.71 1.7 2.53
12C �+

N 87.7(92.2) − 0.27 60.0 2.42
�−

N 75.5(82.5) − 0.45 45.4 2.56
13
�C �+

N ⊗ �s 99.3(103.9) 11.6(11.69) 0.00 − 2.32
�+

N ⊗ �p 88.2(93.8) 0.46(1.65) 0.30 55.1 2.42
�−

N ⊗ �s 86.2 −1.5 0.40 42.5 2.49
19Ne �+

N 142.6(143.7) − 0.27 0.6 2.81
�−

N 137.9(143.5) − 0.45 0.5 2.91
20
�Ne �+

N ⊗ �s 159.4 16.8 0.25 0.6 2.76
�+

N ⊗ �p 148.4 5.74 0.30 0.9 2.81
�−

N ⊗ �s 154.0 11.4 0.45 0.5 2.87
�−

N ⊗ �p 144.2 1.6 0.45 0.5 2.89
20Ne �+

N 155.6(160.6) − 0.38 0.7 2.89
�−

N 147.5(155.6) − 0.43 0.4 2.91
21
�Ne �+

N ⊗ �s 172.8 17.2 0.37 0.7 2.85
�+

N ⊗ �p 162.4 6.75 0.38 0.6 2.88
�−

N ⊗ �s 164.5 8.9 0.42 0.4 2.88
�−

N ⊗ �p 154.6 7.1 0.43 0.4 2.90

defined as the difference in energy between the ground state
of the core nucleus and the hypernuclear states,

B� = B(A+1
�X) − B

(A
Xg.s.

)
. (21)

As a general trend, the shape of the energy curve is not
strongly modified by the � particle, except for 13

�C, and the
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FIG. 1. (Color online) Energy curves as a function of the nuclear quadrupole deformation β for (a) 9
�Be, (b) and (c) 13

�C, (d) and (e) 20
�Ne,

and (f) and (g) 21
�Ne. Panels (a), (b), (d), and (f) compare the positive-parity states of normal nuclei (�+

N ) with the hypernuclear states of the
�+

N ⊗ �s and �+
N ⊗ �p configurations. Panels (c), (e), and (g) compare the negative-parity states (�−

N ) with the hypernuclear states of the
�−

N ⊗ �s and �−
N ⊗ �p configurations. Open circles show the energy minimum on each curve. Energies of hypernuclei are shifted in the figure

for the sake of the presentation.
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FIG. 2. (Color online) The single-particle energies of �s and �p

of 13
�C as a function of quadrupole deformation of the core nucleus

12C. The solid (dashed) line shows the energy of �s coupled to the
positive (negative) parity state of 12C. The dotted line shows the
energy of �p coupled to the positive-parity state of 12C.

deformations β at the minima are slightly changed. In all cases,
�s reduces quadrupole deformation. This is consistent with
cluster model calculations [22,27] and (relativistic) mean-field
calculations [3–5] that have demonstrated the reduction of β

by �s . On the other hand, it is found that �p increases β.
The magnitude of the change in quadrupole deformation is
strongly dependent on the core nucleus and is most prominent
in 13

�C, in which �s makes the 12C core spherical, while �p

enhances the core deformation. The reasons for the opposite
behaviors of �s and �p and the strong dependence on the
core nucleus are clearly seen in the single-particle energy of
�. Figure 2 shows the single-particle energy of � [ε�(β)] in
each parity and � single-particle state in 13

�C. Here, ε�(β) is
defined as the difference between the binding energy of 13

�C
with deformation β and that of the corresponding state of 12C
with the same deformation,

ε�(β) = B13
�C(β) − B12C(β). (22)

Figure 2 shows the Nilsson-model-like behavior of the �

single-particle energy. The binding of �s becomes shallower
as deformation becomes larger. In the case of �p, � occupies
the lowest p wave that comes down as deformation becomes
larger. Therefore, �s makes quadrupole deformation smaller,
and �p in the lowest p wave makes it larger. The � single-
particle energy varies within a range less than 2 MeV as
a function of quadrupole deformation when that is smaller
than the variation of the core nucleus energy. This is also the
case for other calculated hypernuclei. This explains why only
13
�C [Fig. 1(b)] manifests the drastic change in quadrupole

deformation. Since the positive-parity state of 12C is quite
soft to the quadrupole deformation, a small change in the �

single-particle energy can result in a large modification in
quadrupole deformation. In other cases, a change in the �

single-particle energy cannot overcome much larger variation
of the core energy and results in a minor modification of
quadrupole deformation. Therefore, we can conclude that the
drastic change of quadrupole deformation by a � particle
occurs when the core nucleus is quite soft to quadrupole
deformation within a range less than 2 MeV. Since the behavior
of the energy curve is sensitive to the effective NN interaction
[37], the drastic change in 13

� C may depend on the choice
of NN interaction, and this will be investigated in our future

work. The behavior of the � single-particle energy is also
understood from the density distribution of the � particle and
the core nucleus, as shown in Fig. 3. This figure shows that as
nuclear deformation becomes larger, the overlap between the
�s and the core wave function becomes smaller (for example,
compare the �+

N ⊗ �s and �−
N ⊗ �s configurations of 20

�Ne).
This leads to the reduction of �N attraction. On the contrary,
larger deformation makes the overlap larger in the case of �p,

4fm

FIG. 3. (Color online) Density plots of the intrinsic wave function
at each minimum on the energy curve. Contour lines show the density
of the nuclear part �N , and the color plot shows the � single-particle
orbital ϕ�. Dots in the figure show the centroids of Gaussian wave
packets on the nuclear part �N .
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and increases �N attraction (see �+
N ⊗ �p and �−

N ⊗ �p of
20
�Ne). In the case of �p, larger deformation reduces the kinetic
energy, which also contributes to the deeper binding of �p.

Another issue to be mentioned is the reduction of the nuclear
radius by the � particle. In all cases, the radius of the nuclear
part is reduced, but the reduction (less than 5%) is much smaller
than in the case of 7

�Li (20%) [10]. A more detailed discussion
of this point will be found in our next work.

B. Discussion on each hypernucleus

The calculated total binding energies of 8Be and 9
�Be

underestimate the observed values by about 5 MeV. The
underestimation is common to all other hypernuclei, and can
be resolved by performing angular momentum projection
and the generator coordinate method (GCM), which are
usually performed in the study of normal nuclei by AMD.
Indeed, in the case of 20Ne, it was shown that the AMD
calculation [15] reproduces the observed binding energy.
The angular momentum projection and GCM will also be
performed in our next work. Despite the underestimation of
the total binding energy, B� of �p is comparable with the
observed value.

The density distribution of �p in 9
�Be (�+

N ⊗ �p in Fig. 3)
clearly shows that this state corresponds to the supersymmetric
(genuine) hypernuclear state [11–13]. The nuclear part has the
pronounced 2α cluster structure, and the � occupies the p

orbital parallel to the symmetry axis. It is also interesting to
note that the �s state reduces the intercluster distance, while
the �p state increases it.

13
�C manifests a drastic change in quadrupole deformation.

The �s makes the 12C core spherical, while the �p state
enhances deformation. It is noted that 12C has the 0p3/2

subshell closure configuration at small deformation, and a
3α cluster structure develops as deformation becomes larger.
In other words, the nucleon spin is not saturated at small
deformation, while it becomes almost zero at larger deforma-
tion. Sophisticated AMD calculation [14] has shown that the
low-lying states of 12C have a mixed nature between the 0p3/2

subshell closure configuration and the 3α cluster structure,
and the mixing strength is different for each state. Since the
� particle changes the deformation and spin properties of
12C, it will have influence on the �N spin-orbit splitting of
13
�C [38–40].

Based on the cluster model calculation, the parity inversion
in 20

�Ne was suggested by Sakuda and Bandō [7]. The core
nucleus 19Ne has the α + 15O cluster state (Jπ = 1/2−

1 )
238 keV above the ground state (Jπ = 1/2+), which has the
(sd)3 shell structure [41]. The researchers conclude that the �s

coupled to the Jπ = 1/2−
1 state was more deeply bound than

that coupled to the ground state, and that the Jπ = 1/2− ⊗ �s

configuration becomes the ground state of 20
�Ne. They argued

that the Jπ = 1/2−
1 state has a dilute α + 15O cluster

structure, and by the reduction of the intercluster distance,
�s gains larger binding energy than the Jπ = 1/2+

1 ⊗ �s

configuration. Our result shows the opposite trend to their
result: Since the positive-parity state is more deformed than
the negative-parity state, the binding of �s is weaker when it
is coupled to the negative-parity state. This trend is common
to other calculations, including the cluster model calculation
for 21

�Ne [22]. However, AMD fails to reproduce the small
excitation energy of the negative-parity state and does not
have prominent α + 15O clustering; both of these results are
mainly due to the lack of angular momentum projection and
the GCM calculation. We will need a more sophisticated AMD
calculation to settle this problem.

The negative-parity state of 20Ne has larger deformation
than the positive-parity state. Therefore, the �s coupled
to the positive-parity state is more deeply bound than that
coupled to the negative-parity state. This is common to the
other hypernuclei studied here. On the contrary, �p is more
deeply bound to the negative-parity state. Since the number
of nucleons in 20Ne is large enough to bound �p, we can
expect that the addition of � will generate a variety of bound
rotational bands in 21

�Ne, as discussed by Yamada et al. [22].
We will discuss 21

�Ne in detail in the forthcoming paper.

IV. SUMMARY

An extended version of AMD named HyperAMD has
been introduced for investigating the structure of p-sd shell
hypernuclei. The energy curves of 9

�Be, 13
�C, 20

�Ne, and 21
�Ne

as functions of quadrupole deformation were studied, and it
was found that �s reduces nuclear deformation, while �p

increases it, due to variation of the single-particle energy
of � as a function of quadrupole deformation. The binding
of �s decreases as deformation becomes larger, while that of
�p increases. The variation of the � single-particle energy
is within a range less than 2 MeV, which is rather small
compared to the variation of the energy of the core nucleus.
Therefore, the magnitude of the change of deformation
strongly depends on the softness of the core nucleus to
quadrupole deformation. Since 12C is very soft to quadrupole
deformation, it manifests the most prominent change of
quadrupole deformation. This trend of the deformation change
caused by �s and �p contradicts the cluster model calculation
for 20

�Ne [7] but is consistent with other calculations. More
sophisticated AMD calculations will be needed to resolve this
disagreement.
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[34] J. Dechargé and D. Gogny, Phys. Rev. C 21, 1568 (1980).
[35] M. Juric et al., Nucl. Phys. B 52, 1 (1973).
[36] D. H. Davis, Nucl. Phys. A 547, 369c (1992).
[37] J. A. Maruhn, M. Kimura, S. Schramm, P. G. Reinhard,

H. Horiuchi, and A. Tohsaki, Phys. Rev. C 74, 044311 (2006).
[38] S. Ajimura et al., Phys. Rev. Lett. 86, 4255 (2001).
[39] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and

Y. Yamamoto, Phys. Rev. Lett. 85, 270 (2000).
[40] D. J. Millener, Nucl. Phys. A 691, 93c (2001).
[41] T. Sakuda and F. Nemoto, Prog. Theor. Phys. 62, 1274 (1979);

62, 1606 (1979).

044323-6

http://dx.doi.org/10.1016/0370-2693(88)90763-0
http://dx.doi.org/10.1103/PhysRevC.38.854
http://dx.doi.org/10.1103/PhysRevC.38.854
http://dx.doi.org/10.1103/PhysRevLett.86.1982
http://dx.doi.org/10.1103/PhysRevLett.66.2585
http://dx.doi.org/10.1016/S0375-9474(98)00255-3
http://dx.doi.org/10.1016/j.ppnp.2005.07.001
http://dx.doi.org/10.1016/j.ppnp.2005.07.001
http://dx.doi.org/10.1103/PhysRevLett.81.5291
http://dx.doi.org/10.1103/PhysRevC.69.044319
http://dx.doi.org/10.1016/j.nuclphysa.2005.12.006
http://dx.doi.org/10.1007/s002180050010
http://dx.doi.org/10.1103/PhysRevC.52.628
http://dx.doi.org/10.1103/PhysRevC.52.628
http://dx.doi.org/10.1103/PhysRevC.61.044306
http://dx.doi.org/10.1016/S0375-9474(01)01286-6
http://dx.doi.org/10.1103/PhysRevC.66.011303
http://dx.doi.org/10.1143/PTP.71.985
http://dx.doi.org/10.1143/PTP.71.985
http://dx.doi.org/10.1016/0375-9474(94)90073-6
http://dx.doi.org/10.1016/0375-9474(94)90073-6
http://dx.doi.org/10.1103/PhysRevC.73.044008
http://dx.doi.org/10.1103/PhysRevC.73.044008
http://dx.doi.org/10.1016/j.ppnp.2006.08.001
http://dx.doi.org/10.1016/j.ppnp.2006.08.001
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.252
http://dx.doi.org/10.1016/j.ppnp.2009.05.001
http://dx.doi.org/10.1016/j.ppnp.2009.05.001
http://dx.doi.org/10.1103/PhysRevC.56.1844
http://dx.doi.org/10.1103/PhysRevC.56.1844
http://dx.doi.org/10.1143/PTP.106.1129
http://dx.doi.org/10.1143/PTP.106.1129
http://dx.doi.org/10.1143/PTP.106.1153
http://dx.doi.org/10.1143/PTP.106.1153
http://dx.doi.org/10.1016/S1631-0705(03)00062-8
http://dx.doi.org/10.1016/S1631-0705(03)00062-8
http://dx.doi.org/10.1143/PTPS.117.361
http://dx.doi.org/10.1103/PhysRevC.83.024312
http://dx.doi.org/10.1103/PhysRevC.21.1568
http://dx.doi.org/10.1016/0550-3213(73)90084-9
http://dx.doi.org/10.1016/0375-9474(92)90746-7
http://dx.doi.org/10.1103/PhysRevC.74.044311
http://dx.doi.org/10.1103/PhysRevLett.86.4255
http://dx.doi.org/10.1103/PhysRevLett.85.270
http://dx.doi.org/10.1016/S0375-9474(01)01013-2
http://dx.doi.org/10.1143/PTP.62.1274
http://dx.doi.org/10.1143/PTP.62.1606
http://dx.doi.org/10.1143/PTP.62.1606

