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We study extrapolation approaches to evaluate energies of low-lying states for nuclei in the sd and pf shells,
by sorting the diagonal matrix elements of the nuclear shell-model Hamiltonian. We introduce an extrapolation
method with perturbation and apply our new method to predict both low-lying state energies and E2 transition
rates between low-lying states. Our predicted results arrive at an accuracy of the root-mean-squared deviations
∼40–60 keV for low-lying states of these nuclei.
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I. INTRODUCTION

The study of low-lying states is one of the most important
topics in nuclear structure physics. Energy levels of low-lying
states and electromagnetic transitions between these levels are
among the fundamental properties of atomic nuclei. Theo-
retically, one of the most powerful approaches for studying
the low-lying states is the nuclear shell model. The main
problem, however, is that the shell-model space becomes
gigantic when we study heavy nuclei. Diagonalization of
the shell-model Hamiltonian becomes difficult. Therefore
statistical methods and various truncations of the shell model
are indispensable. There have been many attempts to evaluate
the lowest eigenenergy for a given matrix of the nuclear
shell-model Hamiltonian; see Refs. [1–13].

Recently, we suggested an extrapolation method to predict
energies of the yrast states [14,15] by using a truncation
based on sorting the diagonal matrix elements of the nuclear
shell-model Hamiltonian. The procedure of this method is
to diagonalize several sub-matrices of the full Hamiltonian
whose dimension is less than 15% of the full space. In this
paper, we present a more sophisticated study along the same
lines. Here we study both energy levels and E2 transition rates
for low-lying states.

In this paper the shell-model calculations are performed
by using the shell-model code developed by the Kyushu
group [16]. We take several sets of effective interactions,
including the Yukawa [17], the USD [18], and the USDB [19]
interactions for the sd-shell nuclei, and the Gaussian [17], the
KB3 [20] and the GXPF1 [21] interactions for the pf -shell
nuclei.

This paper is organized as follows. In Sec. II, we discuss
our previous extrapolation method in evaluation of the low-
est eigenvalue for spin-I states of the nuclear shell-model
Hamiltonian. We make a comparison between our truncation

*Corresponding author: ymzhao@sjtu.edu.cn

scheme which is based on sorting the diagonal matrix elements
of the shell-model Hamiltonian and a conventional truncation
scheme based on sorting the single-particle energy term. In
Sec. III we consider a perturbation in order to improve our
previous method [14,15] and exemplify our new method by
low-lying states of a few nuclei in the sd and the pf shells.
We also extend our methods to evaluate electromagnetic
quantities, such as E2 transition rates, electric quadrupole
moments, and magnetic dipole moments of low-lying states
for these nuclei. In Sec. IV we discuss the robustness of our
new method with respect to the different sets of interactions
and the size of the configuration space. In Sec. V we summarize
the conclusions of this paper.

II. EXTRAPOLATION METHODS OF LOW-LYING
STATE ENERGIES

We denote a matrix of the shell-model Hamiltonian H with
dimension D and spin I by H (I ) and its matrix elements by
H

(I )
ij = 〈φi |H (I )|φj 〉, where φi and φj represent basis states

with indices i and j , respectively. We sort the diagonal matrix
elements H

(I )
ii from the smaller to the larger. This sorting means

nothing but a rearrangement for indices of basis states. We
define the average magnitude of off-diagonal matrix elements
by M(t) = ∑D−t

i=1 |H (I )
i,i+t |/ (D − t) , t = 1, 2, 3, . . . ,D − 1,

where t represents the “distance” from the diagonal matrix
elements.

In Fig. 1, we show M(t) for the Iπ = 2+ (π represents
parity) states of 28Si and 46Ti, with and without sorting the
diagonal elements H

(I )
ii from the smaller to the larger. One

sees that M(t) with sorting H
(I )
ii decreases gradually with t

and becomes zero at t = d0.
This feature provides us with a new clue to truncate the

model space for the low-energy configurations. After sorting
H

(I )
ii , we truncate the matrix H (I ) artificially and obtain a

series of Hamiltonian h(I ) with dimension d (d < D), where
h

(I )
ij = H

(I )
ij (i, j = 1, 2, . . . , d). This truncation scheme was
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FIG. 1. (Color online) Average magnitudes [denoted by M(t) in
MeV] for off-diagonal matrix elements of H (I ) with (the lower panels)
and without (the upper panels) sorting the diagonal elements versus
t , the “distance” with respect to the diagonal matrix elements. The
panels on the left correspond to the Iπ = 2+ states of 28Si by using
the USDB interaction [19] and those on the right the Iπ = 2+ states
of 46Ti by using the GXPF1 interaction [21].

used to evaluate the lowest eigenvalue of spin-I states in
Refs. [14,15].

A conventional truncation scheme of the shell-model space
is based on sorting the single-particle energies. Because the
magnitudes of the single-particle energy term of H (I ) are much
larger than those of two-body interactions, configurations
which have smaller values of single-particle energies are
usually assumed to play the dominant role in low-lying states,
whereas those have larger values of single-particle energies
are assumed to be less important. However, there are also
considerably large contributions in H (I ) from the two-body
interactions. Let us denote the matrix of H (I ) with sorting the
diagonal matrix elements by H ′(I ) and the matrix of H (I )

with sorting the single-particle energy term by H ′′(I ). The
diagonal matrix element H ′

ii(I ) locates at the i-th row and
the i-th column for H ′(I ), but it moves to the i ′-th row and
the i ′-th column in H ′′(I ). If i and i ′ are always the same or
very close, these two truncations are equivalent or very close
to each other. However, this is not the case for realistic nuclei;
instead, i and i ′ differ from each other substantially. In Fig. 2,
we investigate whether there are any correlations between i

and i ′ for 28Si and 46Ti. No correlation is noted between them.
One thus asks the following question: Which truncation

scheme is more efficient, the one based on sorting the diagonal
matrix elements or the one based on sorting the single-particle
energy term? In Fig. 3, we present the overlaps between
the wave functions calculated by the exact diagonalizations
of H (I ) and those by truncating the matrix H (I ) to h(I ),
in terms of ln(D/d). h

(I )
ij = H

(I )
ij for i, j � d, with H

(I )
ij

rearranged by sorting either the diagonal matrix elements or
the single-particle energy term. One sees that the truncation
by sorting the diagonal matrix elements H

(I )
ii is more efficient:

The overlaps for truncations by sorting H
(I )
ii (results in red in
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FIG. 2. (Color online) Correlation between the indices of basis
states sorted by single-particle configurations and the diagonal ele-
ments of H (I ). Each datum corresponds to one set of [H ′

ii(I ),H ′′
i′i′ (I )],

with H ′
ii(I ) = H ′′

i′i′ (I ). We take the USDB [19] interaction for 28Si
and the GXPF1 interaction [21] for 46Ti. (a) I = 0 states for 28Si;
(b) I = 0 states for 46Ti; (a′) I = 2 states for 28Si; (b′) I = 2 states
for 46Ti. See the text for details.

Fig. 3) are systematically larger than overlaps for truncations
by sorting the single-particle energy term (results in blue in
Fig. 3). Furthermore, the overlaps for truncations based on
sorting H

(I )
ii change gradually with ln(d), instead of sudden

changes. This property is important for extrapolations.
After diagonalizing h(I ), we obtain its lowest eigenenergy,

εd . According to Refs. [14,15], εd is linear in terms of ln(d)
when d is less than d0, and changes its slope at d = d0 (d0

was determined by M(d0) = 0 in Ref. [14]; in this paper we
assume empirically d0 = 0.75D). The predicted lowest energy
of spin-I states is given by

E(I )
min = 0.4lnD + 0.6klnd0 + b, (1)

where k and b are the slope and the intercept of the εd -lnd plot
for d < d0, respectively. The values of k and b can be obtained
by a few matrices h(I ) with d � D [14].

We denote the second (third) lowest spin-I state energy by
using E

(I )
(1) (E(I )

(2) ), and the second (third) lowest eigenvalue of

h(I ) by ε
(1)
d (ε(2)

d ). In Fig. 4, we present correlations of εd , ε
(1)
d ,

and ε
(2)
d versus ln(D/d), where it is seen that these correlations

are very similar to each other. Similar to Eq. (1), we empirically
assume that

E
(I )
(1) = 0.4lnD + 0.6k1lnd0 + b1, (2)

E
(I )
(2) = 0.4lnD + 0.6k2lnd0 + b2, (3)

where k1, k2 and b1, b2 are the slopes and intercepts in the
ε

(1)
d -lnd and ε

(2)
d -lnd plots for d < d0. These parameters can

be calculated by in the same way as for k and b in Eq. (1).
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FIG. 3. (Color online) Overlaps between wave functions calcu-
lated by exact diagonalizations of H (I ) and those by diagonalizing
truncated matrices h(I ) versus ln(D/d). h

(I )
ij = H

(I )
ij for i, j � d . The

results in red (blue) correspond to truncations by sorting H
(I )
ii (single-

particle energies). One sees that the overlaps for truncations based on
sorting H

(I )
ii increase gradually with ln(d) and are systematically

larger than those for truncations based on sorting single-particle
energies. (a) I = 0 states for 28Si; (b) I = 0 states for 46Ti; (a′) I = 2
states for 28Si; (b′) I = 2 states for 46Ti.

III. EXTRAPOLATION METHOD WITH PERTURBATION

In this section we improve our extrapolation method
by applying the perturbation theory of stationary states in
quantum mechanics. We rewrite the Hamiltonian H (I ) =
H

(I )
0 + (H (I ) − H

(I )
0 ) = H

(I )
0 + H ′(I ), where (H (I )

0 )ij = h
(I )
ij
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FIG. 4. (Color online) Energies (in MeV) of the three lowest
states [denoted by εd , ε

(1)
d , and ε

(2)
d ] of h(I ) versus ln(D/d). The three

panels on the left (right) correspond to 28Si (46Ti). One sees that
correlations in the εd -ln(D/d), ε

(1)
d -ln(D/d) and ε

(2)
d -ln(D/d) plots

are very similar. The vertical dashed lines are plotted to highlight d0.
The solid straight lines in red are optimized to fit εd , ε

(1)
d , and ε

(2)
d for

both d � d0 and d � d0.

FIG. 5. (Color online) Overlaps |〈�P (d) | �〉| (in red) and
|〈�(d) | �〉| (in black) d/D. The panels on the left (right) correspond
to 28Si (46Ti). I = 0 in the upper panels, and I = 2 in the lower ones.

for i, j � d and (H (I )
0 )ij = δijH

(I )
ii for i or j > d. Here the

matrix H (I ) is given with sorting diagonal matrix elements
from the smaller to the larger, and H

(I )
ij = 〈φi |H (I )|φj 〉.

Namely

H
(I )
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h(I ) 0 0 . . . 0

0 H
(I )
d+1,d+1 0

. . . 0

0 0 H
(I )
d+2,d+2

. . .
...

...
...

. . .
. . .

...
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FIG. 6. (Color online) The lowest energy (in MeV) of H
(I )
0 with

perturbation (denoted by εP
d ) versus [In(D/d)]2. The panels on the

left (right) correspond to 28Si (46Ti). I = 0 in the upper panels, and
I = 2 in the lower ones.
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FIG. 7. (Color online) Energy levels (energies in MeV) based on
the diagonalizations of H (I ) (denoted by “Exact”), the extrapolation
with perturbation (denoted by “Pred.1”), and the extrapolation
without perturbation (denoted by “Pred.2”). In these predictions,
we use up to 15% of the full space for each H (I ), i.e., d/D �
0.15. (a) 26Mg, (b) 28Si, (c) 45Ti, and (d) 46Ti. We take the
USDB interaction in (a) and (b), and the GXPF1 interaction in (c)
and (d).

TABLE I. Root-mean-squared deviations (RMSD) of predicted
yrast-state energies of 26Mg, 28Si, and 45,46Ti. δ1 and δ2 correspond to
the RMSD by using Eqs. (6) and (1), respectively. One see that δ1 is
approximately 10 times smaller than δ2.

Nuclei δ1 (keV) δ2 (keV)

26Mg 89.9 868.9
28Si 56.6 914.7
45Ti 50.8 415.5
46Ti 49.8 565.5

H
(I )
0 is the dominant “unperturbed” part of H (I ), and H ′(I ) is

the small “perturbation” part. To proceed, we diagonalize H
(I )
0 .

This is essentially the diagonalization of h(I ) (for d � D), as
in Refs. [14,15]. We denote the lowest-energy wave function
of H (I ) by �, the lowest-energy wave function of h(I ) by
�(d), and the lowest-energy wave function of H

(I )
0 with the

first-order perturbation by �P (d),

�P (d) = �(d) +
D∑

i=d+1

φi

∑d
j=1 �j (d)H ′(I )

ji

εd − H
(I )
ii

, (4)

where �j (d) is the j -th component of �(d) = ∑d
j=1 �jφj ,

εd is the lowest energy of h(I ), H
′(I )
ji ≡ H

(I )
ji , and H

(I )
ii = H

(I )
0,ii

�P (d) is not normalized in Eq. (4).
In Fig. 5, 〈�P (d)|�〉 and 〈�(d)|�〉 versus d/D are

presented for the lowest Iπ = 0+ and Iπ = 2+ states of
two nuclei, 28Si and 46Ti. One sees that 〈�P (d) | �〉 and
〈�(d) | �〉 increase quickly with d/D and saturate to 1.0 at
d/D ∼ 0.05 − 0.10 and that the perturbation improves the
wave functions when d < 0.1D [i.e., �P (d) has a larger
overlap with � than �(d)].

By using the above �P (d), we predict the lowest eigenen-
ergy (denoted by εP

d ) of H
(I )
0 with the second-order perturba-

tion

εP
d = εd +

D∑
i=d+1

(∑d
j=1 �j (d)H ′(I )

ji

)2

εd − H
(I )
ii

, (5)

where εd is the lowest energy of h(I ) and d is the dimension
of h(I ). The first-order correction is zero for εP

d , because
H

′(I )
ii ≡ 0.
In Fig. 6, we show a few correlations between εP

d and
[In(D/d)]2, for the Iπ = 0+ and Iπ = 2+ states of 28Si by
using the USDB interaction and 46Ti by using the GXPF1
interaction. One notices an approximate linear correlation be-
tween εP

d and [In(D/d)]2. Based on this empirical correlation,
we assume that

εP
d = E(I )

min + a[ln(D/d)]2, (6)

where E(I )
min is the lowest eigenvalue of spin-I states. The

parameter a is obtained by optimizing the linear correlation
between εP

d and [ln(D/d)]2 for a few h(I ) with d � D. Thus
we obtain E(I )

min by diagonalizing a few h(I ). Without details we
note that the evaluations of nonyrast state energies are the same
as Eq. (6) except that the value of parameter a is different.
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FIG. 8. (Color online) B(E2, 2+ → 0+) (in e2 fm4), electric
quadrupole moments Q (in e fm2), and magnetic dipole moments
µ (in µN ) versus ln(D/d). The panels on the left correspond to 28Si
by using the USDB interaction [19] and those on the right 46Ti by
using the GXPF1 interaction [21].

In Fig. 7 we present low-lying states predicted by using
two extrapolation methods: extrapolation with perturbation,
denoted by “Pred.1,” and extrapolation without perturbation,
denoted by “Pred. 2,” for 26Mg, 28Si, 46Ti, and 45Ti. In our
predictions, we use the 15% of the full space for each H (I ).
The predicted energy levels are compared with those calculated
by the exact diagonalizations of H (I ). One see in Fig. 7
that both methods approximately reproduce low-lying states
calculated by exact diagonalizations. In Table I, we show the
root-mean-squared deviations (RMSD) of these two methods.
One sees that the extrapolation method with perturbation (i.e.,
“Pred.1”) is superior to extrapolation without perturbation (i.e.,

TABLE II. Predicted E2 transition rates (in e2 fm4), electric
quadrupole moments Q (in e fm2), and magnetic dipole moments
µ (in µN ) in comparison with those calculated by the exact
diagonalizations (denoted by “Exact”). “Pred.1” and “Pred.2” are
based on �P (d) and �(d), respectively.

B(E2) Iπ Exact Pred.1 Pred.2

24Mg 2+
1 → 0+

1 76.85 65.49 70.94
28Si 2+

1 → 0+
1 32.40 31.61 35.82

45Ti 3/2−
1 → 7/2−

1 54.53 53.70 66.82
46Ti 2+

1 → 0+
1 62.36 61.01 66.10

Q Iπ Exact Pred.1 Pred.2
24Mg 2+

1 −17.46 −17.16 −18.41
28Si 2+

1 9.46 9.90 10.51
45Ti 7/2−

1 −5.58 −5.46 −6.37
46Ti 2+

1 −8.90 −7.25 −8.84

µ Iπ Exact Pred.1 Pred.2
24Mg 2+

1 1.03 1.06 1.07
28Si 2+

1 1.19 1.19 1.18
45Ti 7/2−

1 −0.15 −0.04 −0.07
46Ti 2+

1 0.84 0.90 0.91
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FIG. 9. (Color online) Overlaps |〈�P (d) | �〉| (in red) and
|〈�(d) | �〉| (in blue) for the 0+

1 state of 28Si (panels on the left)
and 46Ti (panels on the right) versus d/D. We show the USDB, the
GXFP1, the Yukawa, and the Gaussian interactions in panels (a), (b),
(a′), and (b′), respectively.

“Pred.2”): The RMSD’s from the former method are smaller
than those by using the latter method by a factor of about 10.

In Fig. 5, we have shown that the overlap |〈�P (d) | �〉|
increases with d and saturates to 1.0 when d/D � 0.10. Thus
we expect our extrapolation method be useful in predicting
electromagnetic quantities. In Fig. 8, we present E2 transition
rates, quadrupole moments, and magnetic moments in terms
of ln(D/d) for 24Mg, 28Si, 45Ti, and 46Ti, where we take two
set of wave functions: (i) the lowest-energy wave function of
H

(I )
0 with the first-order perturbation, i.e., �P (d) in Eq. (4),

and (ii) the lowest-energy wave function of h(I ), i.e., �(d). In
Table II, we tabulate our predicted results by using these two
sets of wave functions, in comparison with those calculated by
exact diagonalizations of H (I ). Both of them are found to work
reasonably well, with the one by using �P (d) [wave function
of h(I ) with perturbation] slightly more efficient. Here we use
up to the 15% of the full model space (i.e., d/D � 0.15) in
predicting these results, as in Fig. 7.

TABLE III. The RMSD (in keV) of predicted energies by using
our new extrapolation method. We use the USDB and Yukawa
interactions for 28Si and the GXPF1 and Gaussian interactions for
46Ti.

Iπ 28Si 46Ti

USDB Yukawa GXPF1 Gaussian

0+
1 3.9 926.7 48.6 400.1

2+
1 34.7 1119.1 9.4 1103.8

4+
1 52.0 637.1 59.3 1385.8
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FIG. 10. (Color online) Quadrupole moments Q (in e fm2) versus
ln(D/d). The results in red (blue) are obtained by using extrapolation
with (without) perturbation. The panels on the left correspond to the
first Iπ = (5/2)+ state of 25Mg and those on the right correspond to
the first Iπ = (7/2)− state of 45Ti. We use the USDB, the GXPF1,
the Yukawa, and the Gaussian interactions in (a), (b), (a′), and (b′),
respectively.

IV. ROBUSTNESS OF OUR EXTRAPOLATION METHOD

In Sec. III we have shown that our new extrapolation method
is very efficient in predicting both low-lying state energies and
E2 transition rates for nuclei in the sd shell and in the pf

shell by using realistic effective interactions. One would ask
whether this new method is robust if we use an interaction
which is not well refined and whether this method continues
to work well for matrices with larger dimensions.

In Fig. 9, we present |〈�P (d)|�〉| and |〈�(d)|�〉| for the
Iπ = 0+

1 states of 28Si and 46Ti. In the upper two panels we
use interactions which are well refined, the USDB interaction
for 28Si in (a) and the GXPF1 interaction for 46Ti in (b), and
in the lower panels we use the interactions which are not well
refined, the Yukawa interaction for 28Si in (a′) and the Gaussian
interaction for 46Ti in (b′). One easily notices that the values of
overlaps in the upper panels saturate to 1.0 at a much smaller
value of d/D than those in the lower panels, in which we use
the Yukawa or Gaussian interaction.

In Table III, we present the RMSD of our predicted energies
by using Eq. (6), with d/D � 0.15. For 28Si we use the USDB
and Yukawa interactions, and for 46Ti we use the GXPF1 and
Gaussian interactions. One sees that the RMSD by using the
refined realistic interactions are one or two orders smaller than

TABLE IV. The RMSD’s by using Eq. (6) for 26Mg, 26Mg, 28Si,
26Al, 27Si, 46Ti, 26Al, and 45Ti. Here we use the GXPF1 interaction
for 45,46Ti and the USDB interaction for others.

Nucleus 24Mg 25Mg 26Mg 26Al
RMSD 823.2 288.8 89.9 422.8
Nucleus 27Si 28Si 45Ti 46Ti
RMSD 201.8 56.6 50.8 49.8

FIG. 11. (Color online) The RMSD (in MeV) of predicted
energies by using Eq. (6) versus d/D, for 24Mg (dimension D from
900 to 5000), 26Mg (dimension D from 1900 to 9000), and 28Si
(dimension from 3000 to 16 000). One sees that the RMSD is smaller
for systems with larger D. Here we use the USDB interaction.

those by using interactions which are not well refined (here
the Yukawa and Gaussian interactions).

In Fig. 10 we present electric quadrupole moments in
terms of ln(D/d) for the yrast Iπ = (5/2)+ state of 25Mg
by using the USDB and the Yukawa interactions, and for

FIG. 12. (Color online) Predicted energy levels by using our
new extrapolation method in comparison with those by exact
diagonalizations. (a) 28Si by using the USDB interaction; (b) 46Ti
by using the GXPF1 interaction. See the text for details.
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the yrast Iπ = 7/2− state of 45Ti by using the GXPF1 and
Gaussian interactions, with and without perturbation. One
sees that the extrapolations do not work well if we use the
Yukawa interaction or the Gaussian interaction (see the lower
panels in Fig. 10). These numerical experiments show that
the extrapolations become irregular and less efficient if the
interaction deviates largely from the “realistic” interaction.
Thus our extrapolation may be useful as a touchstone of the
interactions in parametrizations.

Now we investigate the robustness of our extrapolation
method with respect to D, the dimension of H (I ). In Table IV,
we tabulate the RMSD’s given by our extrapolation method
for 24Mg, 25Mg, 26Mg, 26Al, 27Si, and 28Si by using the USDB
interaction, 45Ti and 46Ti by using the GXPF1 interaction.
According to Table IV, the RMSD values decrease with D.
This suggests that our extrapolation method with perturbation
is more efficient for matrices with larger dimensions. In other
words, one needs a smaller portion for a matrix with larger
dimensions in order to achieve a reasonable accuracy of
evaluated eigenvalues by using our extrapolation method.

We exemplify the feature exhibited in Table IV by using
24,26Mg and 28Si. We apply our new extrapolation method
to predict the low-lying levels of these nuclei and calculate
the RMSD for d/D ranging from 0.02 to 0.3. We present our
calculated RMSD in Fig. 11. One sees that these RMSD values
are smaller for nuclei with larger D and that they decrease
rapidly with d/D.

In Fig. 12 we present our predicted low-lying states by
using our new extrapolation method. We use up to 5% of the
total space (i.e., d/D � 0.05) for 28Si and 3% for 46Ti. The
RMSD is 189.7 keV for 28Si and 115.0 keV for 46Ti.

V. SUMMARY

To summarize, in this paper we study extrapolation methods
in studying low-lying states of a few nuclei in the sd and the
pf shells by sorting the diagonal matrix elements H

(I )
ii of the

nuclear shell-model Hamiltonian matrix H (I ).

First, we discuss our extrapolation method of Refs. [14,15].
We make comparisons between our present truncation scheme
which is based on sorting the diagonal matrix elements of
H (I ) and the conventional truncation scheme which is based on
sorting single-particle configurations. We conclude that sorting
the diagonal elements of H (I ) provides us with a new and more
efficient truncation scheme of the full shell-model space.

Second, we apply the perturbation theory to improve our
previous extrapolation method and exemplify our new method
by using low-lying states of a few nuclei in the sd shell and
in the pf shell. Our predicted results based on diagonalizing a
few submatrices of H (I ) with d/D � 15% [d is the dimension
of truncated matrix h(I ) and D is that of the matrix H (I )]
arrive at an accuracy of the RMSD ∼ 50 keV for low-lying
states of nuclei in the sd and pf shells. These RMSD values
are about 10 times smaller than our previous method [14,15].
We also extend our new extrapolation method to predict E2
transition rates, electric quadrupole moments, and magnetic
moments. Our predicted results of these quantities are also in
good agreement with exact solutions.

Third, we notice two features exhibited in our new extrap-
olation method: (i) This method works well if we use “good”
effective interactions. If we use an interaction which is not well
refined (e.g., the Yukawa interaction), it becomes less efficient.
(ii) According to our numerical experiments so far, the new
method is more efficient when one goes to matrices with larger
dimensions. These two features are potentially very important,
because they suggests that our new method might be useful
in evaluating the effective interactions as touchstone and also
in studying the nuclear structure of nuclei not accessible by
exact diagonalizations of H (I ) due to the large dimensionality
of configuration spaces.
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