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Analytical expressions for spectra and wave functions are derived for a Bohr Hamiltonian, describing the
collective motion of deformed nuclei, in which the mass is allowed to depend on the nuclear deformation.
Solutions are obtained for separable potentials consisting of a Davidson potential in the β variable, in the cases
of γ -unstable nuclei, axially symmetric prolate deformed nuclei, and triaxial nuclei, implementing the usual
approximations in each case. The solution, called the deformation-dependent mass (DDM) Davidson model, is
achieved by using techniques of supersymmetric quantum mechanics (SUSYQM), involving a deformed shape
invariance condition. Spectra and B(E2) transition rates are compared to experimental data. The dependence of
the mass on the deformation, dictated by SUSYQM for the potential used, reduces the rate of increase of the
moment of inertia with deformation, removing a main drawback of the model.
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I. INTRODUCTION

The Bohr Hamiltonian [1] and its extensions, the geomet-
rical collective model [2,3], have provided for several decades
a sound framework for understanding the collective behavior
of atomic nuclei. It was customary to consider in the Bohr
Hamiltonian the mass to be a constant. However, evidence was
accumulating that this approximation might be inadequate. In
particular:

(i) The moments of inertia are predicted to increase
proportionally to β2, where β is the collective variable
corresponding to nuclear deformation, whereas the
experimentally determined (from the spectra) moment
of inertia shows a much more moderate increase as
a function of the experimentally determined [from
the B(E2) transition rates] deformation, especially for
well-deformed nuclei [4]. This discrepancy has led
to arguments that the use of the Bohr Hamiltonian
is justified for vibrational and transitional nuclei,
but its applicability to deformed nuclei needs further
clarification.

(ii) Detailed comparisons to experimental data have re-
cently pointed out [5,6] that the mass tensor of the
collective Hamiltonian cannot be considered as a con-
stant and should be taken as a function of the collective
coordinates, with quadrupole and hexadecapole terms
present in addition to the monopole one.

(iii) In the framework of the interacting boson model (IBM)
[7], which offers an algebraic description of atomic
nuclei complementary to that of the Bohr Hamiltonian,
it is known that in its geometrical limit [7], obtained
through the use of coherent states [7], terms of the
form β2π2 and/or more complicated terms appear [8],
in addition to the usual term of the kinetic energy, π2.
Thus it might be appropriate to search for a modified
form of the Bohr Hamiltonian, in which the kinetic

energy term will be modified by terms containing β2

and/or more complicated terms.

Based on this evidence, a Bohr Hamiltonian with a mass
depending on the collective variable β can be considered.
Position-dependent effective masses have been studied re-
cently in a general framework [9], while several Hamiltonians
known to be soluble through techniques of supersymmetric
quantum mechanics (SUSYQM) [10,11], have been ap-
propriately generalized [12] to include position-dependent
effective masses, the three-dimensional harmonic oscillator
being among them [12].

In the present work we are going to show that a Bohr
Hamiltonian with a Davidson potential [13] in β (a harmonic
oscillator potential with a term proportional to 1/β2 added
to it) can be generalized to include a mass depending on β,
B = B0/(1 + aβ2)2, where B0 and a are constants. We shall
call this approach the deformation-dependent mass (DDM)
Davidson model. Three cases of potentials, for which exact
separation of variables can be achieved, will be considered:

(i) Potentials independent [14] of the collective variable γ

(an angle measuring departure from axial symmetry),
called γ -unstable potentials, appropriate for describing
vibrational and near-vibrational nuclei.

(ii) Potentials of the form [14–18] v(β, γ ) = u(β) +
w(γ )/β2, with u(β) being the Davidson potential [13],
and with w(γ ) having a deep minimum at γ = 0,
corresponding to axially symmetric prolate deformed
nuclei.

(iii) Potentials of the form v(β, γ ) = u(β) + w(γ )/β2, with
u(β) being the Davidson potential [13], and with w(γ )
having a deep minimum at γ = π/6, corresponding to
triaxial nuclei [19,20].

Analytical results for spectra and B(E2) transition rates
will be provided for all three cases, implementing the usual
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approximations in each limit [21–23], whereas comparison
to experimental results will be undertaken in the first two,
for which able bulk of experimental data exists. A spe-
cial solution regarding γ -unstable nuclei was given earlier
in Ref. [24].

The analytical spectra and wave functions of the Bohr
Hamiltonians considered are obtained by using techniques of
supersymmetric quantum mechanics [10,11], equivalent [11]
to the factorization method of Infeld and Hull [25]. The
integrability of the Hamiltonian is achieved by imposing a
deformed shape invariance condition [12]. These tools are
described in more detail in Sec. VI.

It should be noticed that the concept of a nonconstant mass
in the framework of the Bohr Hamiltonian was used long ago
in numerical solutions of a generalized Bohr Hamiltonian [26],
as well as in relevant mean-field calculations [27]. The main
difference of the present work from these earlier approaches is
that analytical solutions are obtained here. In addition, in the
present case the number of free parameters remains small (two
or three), while the functional dependence of the mass on the
deformation for the potential used is dictated by SUSYQM.
The relation of the present work to these earlier approaches
will be discussed in Sec. XII.

The structure of the present work is as follows. In Sec. II
the formalism of position-dependent effective masses, which
we use to allow the mass to depend on the deformation β,
is briefly reviewed, and applied to the Bohr Hamiltonian in
Sec. III. The three exactly separable cases described above are
considered in Sec. IV, in which the common overall form of
the radial equation in all three cases is pointed out, while in
Sec. V we focus on the use of the Davidson potential in the
radial equation. The solvability of the Hamiltonian is achieved
in Sec. VI by imposing a deformed shape invariance condition,
leading to the energy spectrum given in Sec. VII and the wave
functions given in Sec. VIII. Normalization coefficients are
given in Sec. IX, while a detail on their numerical calculation
is included as Appendix. B(E2) transition probabilities are
considered in Sec. X, while in Sec. XI comparisons of spectra
and B(E2)s to experimental data are carried out. Finally,
connections to earlier work are discussed in Sec. XII, while
Sec. XIII contains discussion of the present results and plans
for further work.

II. FORMALISM OF POSITION-DEPENDENT
EFFECTIVE MASSES

For reasons of completeness, we briefly review the basics of
the formalism needed in handling effective masses depending
on the position. The main problem encountered is the gener-
alization of the kinetic energy term. We show how this can be
solved in an unambiguous way.

When the mass m(x) is position dependent [9], it does not
commute with the momentum p = −ih̄∇. Therefore, there
are many ways to generalize the usual form of the kinetic
energy, p2/(2m0), where m0 is a constant mass, to obtain a
Hermitian operator. To avoid any specific choices, one can use
the general two-parameter form proposed by von Roos [28],

with a Hamiltonian,

H = −h̄2

4
[mδ′

(x)∇mκ ′
(x)∇mλ′

(x)

+mλ′
(x)∇mκ ′

(x)∇mδ′
(x)] + V (x), (1)

where V is the relevant potential and the parameters δ′, κ ′, λ′
are constrained by the condition δ′ + κ ′ + λ′ = −1. Assuming
a position-dependent mass of the form,

m(x) = m0M(x), M(x) = 1

(f (x))2
, f (x) = 1 + g(x),

(2)

where m0 is a constant mass and M(x) is a dimensionless
position-dependent mass, the Hamiltonian becomes

H = − h̄2

4m0
[f δ(x)∇f κ (x)∇f λ(x)

+ f λ(x)∇f κ (x)∇f δ(x)] + V (x), (3)

with δ + κ + λ = 2. It is known [9] that this Hamiltonian can
be put into the form,

H = − h̄2

2m0

√
f (x)∇f (x)∇

√
f (x) + Veff(x), (4)

with

Veff(x) = V (x) + h̄2

2m0

[
1

2
(1 − δ − λ)f (x)∇2f (x)

+
(

1

2
− δ

) (
1

2
− λ

)
(∇f (x))2

]
, (5)

where δ and λ are free parameters.
In the final part of the paper, in which comparison to

experiment will be carried out by fitting the theoretical
predictions to the experimental data, it will be seen that
the predictions for the theoretical spectra turn out to be
independent of the choice made for δ and λ.

III. BOHR HAMILTONIAN WITH
DEFORMATION-DEPENDENT EFFECTIVE MASS

A. Deformation-dependent effective mass formalism

The original Bohr Hamiltonian [1] is

HB = − h̄2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1

4β2

∑
k=1,2,3

Q2
k

sin2
(
γ − 2

3πk
)]

+ V (β, γ ), (6)

where β and γ are the usual collective coordinates (β being
a deformation coordinate measuring departure from spherical
shape, and γ being an angle measuring departure from axial
symmetry), while Qk (k = 1, 2, 3) are the components of
angular momentum in the intrinsic frame, and B is the mass
parameter, which is usually considered constant.

We wish to construct a Bohr equation with a mass
depending on the deformation coordinate β, in accordance
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with the formalism described above,

B(β) = B0

(f (β))2
, (7)

where B0 is a constant. We then need the usual Pauli–Podolsky
prescription [29]:

(∇�)i = gij ∂�

∂xj
, ∇2� = 1√

g
∂i

√
ggij ∂j�, (8)

to construct a Schrödinger equation corresponding to the
Hamiltonian of Eq. (4) in a five-dimensional space equipped
with the Bohr-Wheeler coordinates β, γ . Because the defor-
mation function f depends only on the radial coordinate β,
only the β part of the resulting equation will be affected, the
final result reading

H	 =
[

− 1

2

√
f

β4

∂

∂β
β4f

∂

∂β

√
f − f 2

2β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

+ f 2

8β2

∑
k=1,2,3

Q2
k

sin2
(
γ − 2

3πk
) + veff

]
	 = ε	, (9)

where reduced energies ε = B0E/h̄2 and reduced potentials
v = B0V/h̄2 have been used, with

veff = v(β, γ ) + 1
4 (1 − δ − λ)f ∇2f

+ 1
2

(
1
2 − δ

) (
1
2 − λ

)
(∇f )2. (10)

B. Connection to curved space

In Ref. [9] it was proved that the position-dependent
effective mass formalism can be equivalently expressed in
a curved space. We shall prove here that this connection is
possible also in the case of the Bohr Hamiltonian, paving the
way for connecting in Sec. XII the present results to earlier
related work.

Ordering the coordinates as

q1 = �, q2 = �, q3 = ψ, q4 = β, q5 = γ, (11)

the kinetic energy in the standard Bohr Hamiltonian [1] can
be represented as

T = B

2

(
ds

dt

)2

, (12)

where

ds2 = gij dqidqj , (13)

the symmetric matrix gij having the form,

(gij ) =

⎛
⎜⎜⎜⎜⎜⎝

g11 g12 g13 0 0

g21 g22 0 0 0

g31 0 g33 0 0

0 0 0 g44 0

0 0 0 0 g55

⎞
⎟⎟⎟⎟⎟⎠ , (14)

with [30]

g11 = J1

B
sin2 � cos2 ψ + J2

B
sin2 � sin2 ψ + J3

B
cos2 �,

g12 = 1

B
(J2 − J1) sin � sin ψ cos ψ,

g13 = J3

B
cos �, g22 = J1

B
sin2 ψ + J2

B
cos2 ψ, (15)

g33 = J3

B
, g44 = 1, g55 = β2,

where the moments of inertia are

Jk = 4Bβ2 sin2

(
γ − k

2π

3

)
. (16)

The determinant of the matrix is

g = J1J2J3

B3
β2 sin2 � = 4β8 sin2 3γ sin2 �. (17)

The relevant volume element is then

dV = 2β4 sin 3γ sin �d�d�dψdβdγ. (18)

The inverse matrix is found to be

(
g−1

ij

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

g−1
11 g−1

12 g−1
13 0 0

g−1
21 g−1

22 g−1
23 0 0

g−1
31 g−1

32 g−1
33 0 0

0 0 0 g−1
44 0

0 0 0 0 g−1
55

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

with

g−1
11 = B

sin2 �

(
cos2 ψ

J1
+ sin2 ψ

J2

)
,

g−1
12 = −B

(
1

J1
− 1

J2

)
sin ψ cos ψ

sin �
,

g−1
13 = −B

(
cos2 ψ

J1
+ sin2 ψ

J2

)
cot �

sin �
,

g−1
22 = B

(
sin2 ψ

J1
+ cos2 ψ

J2

)
, (20)

g−1
23 = B

(
1

J1
− 1

J2

)
cot � sin ψ cos ψ,

g−1
33 = B

(
cos2 ψ

J1
+ sin2 ψ

J2

)
cot2 � + B

J3
,

g−1
44 = 1, g−1

55 = 1

β2
.

Using these matrix elements and the value of the determinant
from Eq. (17) in Eq. (8) we obtain

T = − h̄2

2B
∇2 = − h̄2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin 3γ

∂

∂γ

× sin 3γ
∂

∂γ
− 1

4β2

∑
k=1,2,3

Q2
k

sin2
(
γ− 2

3πk
)
]
, (21)
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where Qk are the components of the angular momentum in the
intrinsic frame,

Qx = −i

(
−cos ψ

sin �

∂

∂�
+ sin ψ

∂

∂�
+ cot � cos ψ

∂

∂ψ

)
,

Qy = −i

(
− sin ψ

sin �

∂

∂�
+ cos ψ

∂

∂�
− cot � sin ψ

∂

∂ψ

)
,

Qz = −i
∂

∂ψ
. (22)

The connection between the position-dependent effective
mass and curved spaces was considered in Ref. [9]. According
to the findings of Ref. [9], one expects in the present case all
elements of the matrix (14) to be divided by f 2,

g′
ij = gij

f 2
. (23)

As a result, the determinant of the matrix will be

g′ = g

f 10
, (24)

and the volume element will be

dV ′ = dV

f 5
. (25)

The elements of the inverse matrix will be

g′−1
ij = f 2g−1

ij . (26)

According to Ref. [9], to obtain the Schrödinger equation
in the form of Eq. (9), one has to start with the equation,

Hg	̃=
[
−1

2
∇2 + ug

]
	̃ =

[
−1

2

1√
g′ ∂i

√
g′g′−1

ij ∂j + ug

]
	̃,

(27)

where

	̃ = f 5/2	, (28)

while reduced energies and reduced potentials are used, as in
Eq. (9). The exponent in the last equation is related to the
dimensionality of the space.

Substituting the g′ matrix elements and determinant in
Eq. (27), and performing the relevant calculation (which
closely resembles the pure Bohr case, except for the 44-term),
we see that Eqs. (27) and (9) do coincide with

ug = ueff + f f̈ −2(ḟ )2 + 4
f ḟ

β
, ḟ = df

dβ
, f̈ = d2f

dβ2
.

(29)

This result has several important consequences.

(i) It becomes clear that solving the Schrödinger equa-
tion (9) with deformation-dependent mass is equivalent
to solving a modified Bohr equation (27) with different
metric matrix g′ and another effective potential, ug .
Between the two equivalent schemes, one chooses to
solve Eq. (9) instead of Eq. (27), just because the former
can be solved analytically through the use of SUSYQM
techniques.

(ii) The wave functions 	̃ = f 5/2	 are accompanied by
the volume element dV ′ = dV/f 5. As a result,∫

	̃∗	̃dV ′ =
∫

(f 5/2	∗)(f 5/2	)
dV

f 5
=

∫
	∗	dV,

(30)

that is, the wave functions 	 of the deformation-
dependent mass problem correspond to the usual Bohr
volume element dV .

(iii) The simple relation between 	̃ and 	 also shows
that the wave functions 	 satisfy the well-known 24
symmetries of Bohr wave functions [1], which the wave
functions 	̃ satisfy by construction. If these symmetries
were not satisfied, the solutions could not have been
used for the description of nuclei.

Further consequences, regarding the connection of the
present approach to earlier work, will be discussed
in Sec. XII.

IV. EXACTLY SEPARABLE SPECIAL FORMS
OF THE BOHR HAMILTONIAN

The solution of the above Bohr-like equation can be
reached for certain classes of potentials using techniques
developed in the context of SUSYQM [10–12]. At this point
exact separation of variables can be achieved in three cases,
described in the following three subsections.

A. γ -unstable nuclei

To achieve separation of variables we assume that the
potential v(β, γ ) depends only on the variable β, that is,
v(β) = u(β) [14]. Potentials of this kind are called γ -unstable
potentials because they are appropriate for the description of
nuclei which can depart from axial symmetry without any
energy cost.

One then seeks wave functions of the form [14,31],

	(β, γ, θi) = ξ (β)�(γ, θi), (31)

where θi (i = 1, 2, 3) are the Euler angles. Separation of
variables gives[

−1

2

√
f

β4

∂

∂β
β4f

∂

∂β

√
f + f 2

2β2
� + 1

4
(1 − δ − λ)f ∇2f

+ 1

2

(
1

2
− δ

) (
1

2
− λ

)
(∇f )2 + u(β)

]
ξ (β) = εξ (β),

(32)

[
− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ 1

4

∑
k

Q2
k

sin2
(
γ − 2

3πk
)
]

×�(γ, θi) = ��(γ, θi). (33)

Equation (33) was solved by Bès [32]. � = τ (τ + 3) repre-
sents the eigenvalues of the second-order Casimir operator of
SO(5), while τ is the seniority quantum number, characterizing
the irreducible representations of SO(5). The values of angular
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momentum L occurring for each τ are provided by a well-
known algorithm and are listed in Refs. [7,14]. Within the
ground-state band (gsb) one has L = 2τ . The L = 2 member
of the quasi-γ1 band is degenerate with the L = 4 member
of the gsb, the L = 3, 4 members of the quasi-γ1 band are
degenerate to the L = 6 member of the gsb, the L = 5, 6
members of the quasi-γ1 band are degenerate to the L = 8
member of the gsb, and so on.

B. Axially symmetric prolate deformed nuclei

To achieve exact separation of variables, we assume a
potential of the form [14–18],

v(β, γ ) = u(β) + f 2

β2
w(γ ), (34)

with w(γ ) having a deep minimum at γ = 0. Then the angular
momentum term can be written as [21]∑

k=1,2,3

Q2
k

sin2
(
γ − 2

3πk
)

≈ 4

3

(
Q2

1 + Q2
2 + Q2

3

) + Q2
3

(
1

sin2 γ
− 4

3

)
. (35)

One then seeks wave functions of the form [21],

	(β, γ, θi) = φL
K (β, γ )DL

M,K (θi), (36)

where D(θi) denote Wigner functions of the Euler angles,
L is the angular momentum quantum number, while M and
K are the quantum numbers of the projections of angular
momentum on the laboratory-fixed z axis and the body-fixed
z′ axis, respectively. Then separation of variables leads to[

−1

2

√
f

β4

∂

∂β
β4f

∂

∂β

√
f + f 2

2β2
�̃ + 1

4
(1 − δ − λ)f ∇2f

+1

2

(
1

2
− δ

) (
1

2
− λ

)
(∇f )2 + u(β)

]
ξL(β) = εξL(β),

(37)

[
− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ K2

4

(
1

sin2 γ
− 4

3

)

+ 2w(γ )

]
ηK (γ ) = �ηK (γ ), (38)

where

�̃ = � + L(L + 1)

3
, (39)

and φL
K (β, γ ) = ξL(β)ηK (γ ). We remark that Eq. (37) has the

same form as Eq. (32), obtained in the case of γ -unstable
nuclei, when �̃ in the former is replaced by � in the latter.
However, the results are different as far as the physics described
is concerned. The angular momentum dependence, contained
in �̃ and �, respectively, is different. Furthermore, the angular
equation is different in each case, because of the different
treatment of the γ variable, the potential being confined to
γ ≈ 0 in the former case, while being independent of γ in the
latter.

Equation (38) was solved for a harmonic oscillator poten-
tial:

w(γ ) = 1
2 (3c)2γ 2, (40)

in the case of γ ≈ 0 [18,21], resulting in

� = εγ − K2

3
, εγ = (6c)(nγ + 1), nγ = 0, 1, 2, . . . ,

(41)

where nγ is the quantum number related to γ oscillations. The
allowed bands are characterized by

nγ = 0, K = 0; nγ = 1, K = ±2;
(42)

nγ = 2, K = 0,±4; . . .

As a result,

�̃ = L(L+1) − K2

3
+ εγ = L(L + 1) − K2

3
+ (6c)(nγ + 1).

(43)

C. Triaxial nuclei with γ = π/6

In this case we assume again a potential of the form of
Eq. (34), but with w(γ ) having a deep minimum at γ = π/6.
In this case K , the angular momentum projection on the body-
fixed z′ axis, is not a good quantum number any more, but α,
the angular momentum projection on the body-fixed x ′ axis,
is a good quantum number, as found [22] in the study of the
triaxial rotator [19,20]. Then the angular momentum term can
be written as [22,23]

∑
k=1,2,3

Q2
k

sin2
(
γ − 2

3πk
) ≈ 4

(
Q2

1 + Q2
2 + Q2

3

) − 3Q2
1. (44)

One then seeks wave functions of the form [23],

	(β, γ, θi) = φL
α (β, γ )DL

M,α(θi), (45)

where D(θi) denote Wigner functions of the Euler angles, L is
the angular momentum quantum number, while M and α are
the quantum numbers of the projections of angular momentum
on the laboratory-fixed z axis and the body-fixed x ′ axis,
respectively. Then separation of variables leads to[

−1

2

√
f

β4

∂

∂β
β4f

∂

∂β

√
f + f 2

2β2
�̄ + 1

4
(1 − δ − λ)f ∇2f

+1

2

(
1

2
−δ

) (
1

2
−λ

)
(∇f )2 + u(β)

]
ξL,α(β) = εξL,α(β),

(46)

[
− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ 2w(γ )

]
η(γ ) = �′η(γ ), (47)

with φL
α (β, γ ) = ξL,α(β)η(γ ), and

�̄ = 4L(L + 1) − 3α2

4
+ �′. (48)
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Equation (47) was solved for a harmonic oscillator potential,

w(γ ) = 1

4
c

(
γ − π

6

)2

, (49)

in the case of γ ≈ π/6 [23], resulting in

�′ = εγ =
√

2c
(
nγ + 1

2

)
, (50)

where nγ is the quantum number related to γ oscillations. As
a result,

�̄ = 4L(L + 1) − 3α2

4
+

√
2c

(
nγ + 1

2

)
. (51)

We remark that Eqs. (37) and (46) have the same form, with
�̃ in the former replaced by �̄ in the latter.

In the literature on triaxial nuclei it is customary, instead of
the projection α of the angular momentum on the x ′ axis, to
introduce the wobbling quantum number [2,22] nw = L − α.
Inserting α = L − nw in Eq. (51) one obtains

�̄ = L(L + 4) + 3nw(2L − nw)

4
+

√
2c

(
nγ + 1

2

)
. (52)

D. Common form of the radial equation

We remark that Eqs. (32), (37), and (46) have the same
form, the only difference being that � in the first equation is
replaced by �̃ in the second, and by �̄ in the third one. In
what follows we are going to use the symbol �, understanding
that (i) for γ -unstable nuclei it is given by � = τ (τ + 3);
(ii) for axially symmetric prolate deformed nuclei it should be
replaced by �̃, given in Eq. (43); and (iii) for triaxial nuclei it
should be replaced by �̄, given in Eq. (52).

Equation (32) can be simplified by performing the deriva-
tions,

1

2
f 2ξ ′′ +

(
ff ′ + 2f 2

β

)
ξ ′ +

(
(f ′)2

8
+ ff ′′

4
+ ff ′

β

)
ξ

− f 2

2β2
�ξ + εξ − veffξ = 0, (53)

with

veff = u + 1

4
(1 − δ − λ)f

(
4f ′

β
+ f ′′

)

+ 1

2

(
1

2
− δ

) (
1

2
− λ

)
(f ′)2. (54)

The difference in the numerical coefficient of f ′ observed in
comparison to Eq. (2.27) of Ref. [9] is because of the different
dimensionality of the space used in each case.

Setting

ξ (β) = R(β)

β2
, (55)

Eq. (53) is put into the form,

HR = −
(√

f
d

dβ

√
f

)2

R + 2ueffR = 2εR, (56)

where

ueff = veff + f 2 + βff ′

β2
+ f 2

2β2
�. (57)

V. THE DAVIDSON POTENTIAL

Up to now no assumption about the specific form of the
potential u(β) and the deformation function f (β) was made.
We are now going to consider the special case of the Davidson
potential [13]:

u(β) = β2 + β4
0

β2
, (58)

where the parameter β0 indicates the position of the minimum
of the potential. The special case of β0 = 0 corresponds to the
simple harmonic oscillator.

Based on the results for the three-dimensional harmonic
oscillator reported in Ref. [12], we are also going to consider
for the deformation function the special form,

f (β) = 1 + aβ2, a � 1. (59)

This choice is made to lead to an exact solution. Its physical
implications will be discussed in Sec. XI.

Using these forms for the potential and the deformation
function in Eq. (57) one obtains

2ueff = k1β
2 + k0 + k−1

β2
, (60)

where

k1 = 2 + a2[5(1 − δ − λ) + (1 − 2δ)(1 − 2λ) + 6 + �],

k0 = a[5(1 − δ − λ) + 8 + 2�], (61)

k−1 = 2 + � + 2β4
0 .

VI. DEFORMED SHAPE INVARIANCE

Our task now is to find the eigenvalues and eigenfunctions
of the Hamiltonian of Eq. (56). This can be achieved by
imposing shape invariance [12], which is an integrability
condition guaranteeing that exact solutions of the Hamiltonian
of Eq. (56) can be found. The use of shape invariance in the
framework of SUSYQM is equivalent [11] to the well-known
factorization method of the Schrödinger equation, introduced
60 years ago by Infeld and Hull [25]. In other words, we are
now going to use a mathematical technique allowing us to find
the solutions of Eq. (56).

In its simplest form in a one-dimensional space, shape
invariance can be described as follows [33]. Two potentials
V1 and V2, which are supersymmetric partners, are in general
different functions of x. They are called shape invariant if they
satisfy the condition,

V2(x; a1) = V1(x; a2) + R(a1), (62)

where a1, a2 are sets of parameters independent of x, with
a2 being a function of a1, and the remainder R(a1) is also
independent of x. In other words, the two potentials have the
same functional dependence on x, the difference being in the
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values of the parameters appearing in each of them, and in their
relative displacement by the remainder R(a1). Furthermore, it
is known that the shape invariance condition of Eq. (62) can
be written in the operator form,

A(a1)A†(a1) = A†(a2)A(a2) + R(a1), (63)

where A and A† are the operators corresponding to the
supersymmetric partners H1 = A†A and H2 = AA†. Solving
the Schrödinger equation for H1 by this method, one obtains
as a “bonus” the solution of H2 as well.

In the present case, the concept of shape invariance has to
be generalized, as described in detail in Ref. [12], because
the mass depends on the deformation, resulting in a deformed
shape invariance condition. Instead of two Hamiltonians, one
has a series of many Hamiltonians. We are interested in solving
the Schrödinger equation for the first of them, which will be
Eq. (56).

H in Eq. (56) may be considered as the first member
H0 = H of a hierarchy of Hamiltonians,

Hi = A+
i A−

i +
i∑

j=0

εj , i = 0, 1, 2, . . . , (64)

where the first-order operators [12],

A±
i = A±(µi, νi) = ∓

√
f

d

dβ

√
f + W (µi, νi ; β), (65)

satisfy a deformed shape invariance condition,

A−
i A+

i = A+
i+1A

−
i+1 + εi+1, i = 0, 1, 2, . . . , (66)

with εi , i = 0, 1, 2,. . . , denoting some constants. (Note that
the parameters λ and µ of [12] have been changed into µ and
ν, respectively.)

In other words, the superpotential W (µ, ν; β) fulfills the
two conditions:

W 2(µ, ν; β) − f (β)W ′(µ, ν; β) + ε0 = 2ueff(β), (67)

and

W 2(µi, νi ; β) + f (β)W ′(µi, νi ; β)

= W 2(µi+1, νi+1; β) − f (β)W ′(µi+1, νi+1; β) + εi+1,

i = 0, 1, 2, . . . , (68)

where µ0 = µ, ν0 = ν, and a prime denotes derivative with
respect to β.

In the case of the effective potential given in Eq. (60),
W (µ, ν; β) is a class 2 superpotential,

W (µ, ν; β) = µφ(β) + ν

φ(β)
, (69)

φ(β) = 1

β
, (70)

which means that Eqs. (3.9) and (3.10) of [12] read

φ′(β) = − 1

β2
= A

β2
+ B, aβ2 = (A′/β2) + B ′

(−1/β2)
, (71)

with A = −1, B = 0, A′ = 0, and B ′ = −a.

Inserting Eqs. (69) and (70) in (67), we obtain

(
µ

β
+ νβ

)2

− (1 + aβ2)

(
− µ

β2
+ ν

)
+ ε0

= k1β
2 + k0 + k−1

β2
, (72)

which is equivalent to the three equations,

µ(µ+1) = k−1, ν(ν−a) = k1, 2µν + µa − ν + ε0 = k0.

(73)

Their solutions read

µ = 1

2
(−1 ± �1), ν = a

2
(1 ± �2),

ε0 = k0 − 2µν − µa + ν, (74)

�1 ≡
√

1 + 4k−1, �2 ≡
√

1 + 4
k1

a2
,

provided 1 + 4k1/a
2 � 0 (note that 1 + 4k−1 is always posi-

tive). As we shall show in Sec. VIII A, the conditions ensuring
that the ground-state wave function is physically acceptable
select the lower sign for µ and the upper one for ν:

µ = −1

2
(1 + �1), ν = a

2
(1 + �2). (75)

Inserting next Eqs. (69) and (70) in Eq. (68), we get

(
µi

β
+ νiβ

)2

+ (1 + aβ2)

(
−µi

β2
+ νi

)

=
(

µi+1

β
+ νi+1β

)2

− (1 + aβ2)

(
−µi+1

β2
+ νi+1

)
+εi+1,

(76)

leading to the three conditions,

µi(µi − 1) = µi+1(µi+1 + 1),

νi(νi + a) = νi+1(νi+1 − a), (77)

2µiνi − µia + νi = 2µi+1νi+1 + µi+1a − νi+1 + εi+1.

Their solutions are

µi+1 = µi − 1, νi+1 = νi + a, (78)

and

εi+1 = 2(µiνi − µi+1νi+1) − (µi + µi+1)a + νi + νi+1.

(79)

Note that there are other solutions for µi+1 and νi+1, namely
µi+1 = −µi and νi+1 = −νi , but the alternating signs would
not be compatible with physically acceptable excited-state
wave functions. Finally, the iteration of (78) leads to

µi = µ − i, νi = ν + ia. (80)
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VII. ENERGY SPECTRUM

The energy spectrum of Eq. (56) is therefore given by

εn = 1

2

n∑
i=0

εi

= 1

2

[
k0−2µnνn−a

(
2

n−1∑
i=0

µi + µn

)
+2

n−1∑
i=0

νi + νn

]

= 1

2
[k0 − 2µν − aµ + ν − 4(aµ − ν)n + 4an2]. (81)

On taking (75) into account, this can be rewritten as

εn = 1
2

[
k0 + 1

2a(3 + 2�1 + 2�2 + �1�2)

+ 2a(2 + �1 + �2)n + 4an2
]
, (82)

n = 0, 1, 2, . . . .

Equation (82) only provides a formal solution to the bound-
state energy spectrum. The range of n values is actually
determined by the existence of corresponding physically
acceptable wave functions. The relevant conditions will be
considered in the next section.

We quote here the final results for the spectra, which will
be used for comparison to experiment. One has

ε0 = 19

4
a + 5

2
(1 − δ − λ)a + 1

2

√
a2 + 4k1

+ a

2

√
1 + 4k−1 + 1

4

√
(a2 + 4k1)(1 + 4k−1) + a�,

(83)

ε1 = ε0 + 4a +
√

a2 + 4k1 + a
√

1 + 4k−1, (84)

ε2 = ε0 + 12a + 2
√

a2 + 4k1 + 2a
√

1 + 4k−1, (85)

where k1, k−1 are given by Eq. (61), in which � has the form
explained in Sec. IV D.

The ground-state band is obtained from Eq. (83), while the
quasi-β1 band is obtained from Eq. (84), and the quasi-β2 band
is obtained from Eq. (85).

In the special case of a = 0 (no dependence of the mass on
the deformation) one easily obtains

ε1 = ε0 + 2
√

2, ε2 = ε0 + 4
√

2, (86)

that is, the β bandheads become equidistant.

VIII. WAVE FUNCTIONS

To be physically acceptable, the bound-state wave functions
should satisfy two conditions [12]:

(i) As in conventional (constant-mass) quantum mechan-
ics, they should be square integrable on the interval of
definition of ueff , that is,∫ ∞

0
dβ |Rn(β)|2 < ∞. (87)

(ii) Furthermore, they should ensure the Hermiticity of H .
For such a purpose, it is enough to impose that the

operator
√

f (d/dβ)
√

f be Hermitian, which amounts
to the restriction,

|Rn(β)|2f (β) → 0 for β → 0 and β → ∞,

(88)

or, equivalently,

|Rn(β)|2 → 0 for β → 0 and

|Rn(β)|2β2 → 0 for β → ∞. (89)

As condition (89) is more stringent than condition (87),
we should only be concerned with the former.

A. Ground-state wave function

The ground-state wave function, which is annihilated by
A−, is given by Eq. (2.29) of [12] as

R0(β) = R0(µ, ν; β)

= N0√
f (β)

exp

(
−

∫ β W (µ, ν; β̃)

f (β̃)
dβ̃

)
, (90)

where N0 is some normalization coefficient. Here∫ β W (µ, ν; β̃)

f (β̃)
dβ̃ =

∫ β
(

µ

β̃
+ (ν − µa)β̃

1 + aβ̃2

)
dβ̃

= µ ln β + 1

2a
(ν − µa) ln(1 + aβ2).

(91)

Hence

R0(β) = N0β
−µf −(ν−µa+a)/(2a). (92)

For β → 0, the function |R0(β)|2 behaves as β−2µ.
Condition (89) imposes that −2µ > 0 or µ < 0. Because k−1,
defined in Eq. (61), is greater than 2, it follows that �1, defined
in (74), is greater than 3, so that the upper sign choice for µ in
(74) would lead to µ > 1. As this is not acceptable, we have
to take the lower sign for which µ < −2.

For β → ∞, |R0(β)|2β2 behaves as β−2ν/a . Condition (89)
therefore imposes that ν > 0. This restriction is surely satisfied
by the upper sign choice for ν in (74). For the lower one,
it is not fulfilled if we restrict ourselves to small enough
values of a because then k1 in (61) will be positive and �2

in (74) will be greater than 1. For sufficiently large values of
a, however, both sign choices might be acceptable. Because
among two acceptable wave functions, it is customary in
quantum mechanics to choose the most regular one (see,
e.g., [34] and references quoted therein), we assume the upper
sign for ν, thus getting Eq. (75).

B. Excited-state wave functions

According to Eqs. (2.30), (3.20), and (3.21) of [12], the
excited-state wave functions are given by

Rn(β) = Rn(µ, ν; β) ∝ β−nR0(µn, νn; β)Pn(µ, ν; y),

y = β2, (93)
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where Pn(µ, ν; y) is an nth-degree polynomial in y, satisfying
the equation,

Pn+1(µ, ν; y) = −2y(1 + ay)
d

dy
Pn(µ1, ν1; y) + [µn+1 + µ

+ n + (νn+1 + ν + na)y]Pn(µ1, ν1; y),

(94)

with the starting value P0(µ, ν; y) = 1.
From Eqs. (80) and (92), it follows that

R0(µn, νn; β) ∝ β−µnf −(νn−µna+a)/(2a)

∝ R0(µ, ν; β)βnf −n, (95)

so that Eq. (93) becomes

Rn(β) ∝ R0(β)f −nPn(µ, ν; y). (96)

It is then clear that Rn(β) satisfies condition (89) for any n = 1,
2, . . . , because R0(β) does.

It now remains to solve Eq. (94). For such a purpose, let us
make the changes of variable and of function,

t = 1 − 2

f
= −1 + ay

1 + ay
,

(97)
Pn(µ, ν; y) = Cnf

nQn(µ, ν; t),

where Cn is some constant. From definition (97), it follows that
Qn(µ, ν; t) an nth-degree polynomial in t . We successively get

y = 1 + t

a(1 − t)
, 1 + ay = 2

1 − t
,

d

dy
= a

2
(1 − t)2 d

dt
.

(98)

It is then straightforward to show that Eq. (94) becomes

Cn+1

Cn

Qn+1(µ, ν; t) =
{

− (1 − t2)
d

dt
+

[
µ + ν

a
+

(
ν

a

−µ + 1

)
t

]}
Qn(µ − 1, ν + a; t).

(99)

On taking into account that the Jacobi polynomials satisfy
the backward shift operator relation [see Eq. (1.8.7) of [35]],

2(n + 1)P (α,β)
n+1 (x) =

{
− (1 − x2)

d

dx
+ [α − β + (α + β

+ 2)x]

}
P (α+1,β+1)

n (x), (100)

we see that Qn(µ, ν; t) is actually some Jacobi polynomial,

Qn(µ, ν; t) = P
( ν

a
− 1

2 ,−µ− 1
2 )

n (t) = P
( �2

2 ,
�1
2 )

n (t), (101)

provided we choose

Cn+1

Cn

= 2(n + 1), C0 = 1, (102)

or, in other words, Cn = 2nn!.
We therefore conclude that the wave functions are given by

Rn(β) = Nn

N0
R0(β)P ( ν

a
− 1

2 ,−µ− 1
2 )

n (t)

= Nnβ
−µf −(ν−µa+a)/(2a)P

( ν
a
− 1

2 ,−µ− 1
2 )

n (t), (103)

or

Rn(β) = Nnβ
(1+�1)/2f −1−(�1+�2)/4P (�2/2,�1/2)

n (t),
(104)

t = −1 + aβ2

1 + aβ2
,

where Nn is some normalization coefficient.
The Jacobi polynomials appearing in the wave functions of

the ground-state band (n = 0), the quasi-β1 band (n = 1), and
the quasi-β2 band (n = 2), needed for the calculation of the
relevant B(E2) transitions, read

P
(α,β)
0 (x) = 1, (105)

P
(α,β)
1 (x) = 1

2 [2(α + 1) + (α + β + 2)(x − 1)], (106)

P
(α,β)
2 (x) = 1

8 [4(α + 1)(α + 2)

+ 4(α + β + 3)(α + 2)(x − 1)

+ (α + β + 3)(α + β + 4)(x − 1)2]. (107)

IX. NORMALIZATION COEFFICIENT

To calculate Nn, let us first express the whole wave function
Rn in terms of t :

Rn = Nny
(1+�1)/4(1 + ay)−1−(�1+�2)/4P (�2/2,�1/2)

n (t)

= Nn2−1−(�1+�2)/4a−(1+�1)/4(1 + t)(1+�1)/4

× (1 − t)(3+�2)/4P (�2/2,�1/2)
n (t). (108)

Now, on taking into account that

dβ = dy

2
√

y
= dt√

a(1 − t)3/2(1 + t)1/2
, (109)

we obtain∫ ∞

0
|Rn|2dβ = |Nn|22−2−(�1+�2)/2a−1−�1/2

×
∫ +1

−1
(1 − t)�2/2(1 + t)�1/2 [

P (�2/2,�1/2)
n (t)

]2
dt,

(110)

in terms of the normalization integral of Jacobi polynomials
[36].

Hence the normalization condition reads

|Nn|22−2−(�1+�2)/2a−1−�1/2

× 2(�1+�2)/2+1�
(
n + �1

2 + 1
)
�

(
n + �2

2 + 1
)

(
2n + �1+�2

2 + 1
)
n! �

(
n + �1+�2

2 + 1
) = 1,

(111)

and leads to

Nn =
(

2a�1/2+1

(
2n + �1 + �2

2
+ 1

)
n!

)1/2

×
(

�
(
n + �1+�2

2 + 1
)

�
(
n + �1

2 + 1
)
�

(
n + �2

2 + 1
)
)1/2

. (112)
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TABLE I. Comparison of theoretical predictions of the γ -unstable Bohr Hamiltonian with β-dependent mass (with δ = λ = 0) to
experimental data [40] of rare earth and actinide nuclei with R4/2 � 2.6 and known 0+

2 and 2+
γ states. The R4/2 = E(4+

1 )/E(2+
1 ) ratios,

as well as the β and γ bandheads, normalized to the 2+
1 state and labeled by R0/2 = E(0+

β )/E(2+
1 ) and R2/2 = E(2+

γ )/E(2+
1 ), respectively,

are shown. β0 and a are free parameters, related to the Davidson potential [Eq. (58)] and to the dependence of the mass on the deformation
[Eq. (59)]. The angular momenta of the highest levels of the ground state, β and γ bands included in the rms fit are labeled by Lg , Lβ , and Lγ

respectively, while n indicates the total number of levels involved in the fit and σ is the quality measure of Eq. (121). The theoretical predictions
are obtained from the formulas mentioned below Eq. (121). The Xe and Ba isotopes have already been considered in Ref. [24]. See Sec. XI A
for further discussion.

Nucleus R4/2 R4/2 R0/2 R0/2 R2/2 R2/2 β0 a Lg Lβ Lγ n σ

exp th exp th exp th

98Ru 2.14 2.14 2.0 2.4 2.2 2.1 0.99 0.020 24 0 4 15 0.277
100Ru 2.27 2.24 2.1 2.7 2.5 2.2 1.19 0.048 28 0 4 17 0.315
102Ru 2.33 2.20 2.0 2.4 2.3 2.2 1.05 0.059 16 0 5 12 0.364
104Ru 2.48 2.34 2.8 3.0 2.5 2.3 1.40 0.083 8 2 8 12 0.429
102Pd 2.29 2.24 2.9 2.3 2.8 2.2 1.08 0.081 26 4 4 18 0.326
104Pd 2.38 2.21 2.4 2.6 2.4 2.2 1.15 0.034 18 2 4 13 0.397
106Pd 2.40 2.16 2.2 2.2 2.2 2.2 0.91 0.062 16 4 5 14 0.409
108Pd 2.42 2.26 2.4 2.3 2.1 2.3 1.09 0.103 14 4 4 12 0.318
110Pd 2.46 2.31 2.5 2.0 2.2 2.3 0.99 0.195 12 10 4 14 0.354
112Pd 2.53 2.29 2.6 2.5 2.1 2.3 1.21 0.086 6 0 3 5 0.485
114Pd 2.56 2.31 2.6 2.8 2.1 2.3 1.30 0.076 16 0 11 18 0.722
116Pd 2.58 2.36 3.3 3.4 2.2 2.4 1.52 0.062 16 0 9 16 0.609
106Cd 2.36 2.25 2.8 2.9 2.7 2.3 1.28 0.028 12 0 2 7 0.268
108Cd 2.38 2.14 2.7 2.2 2.5 2.1 0.91 0.041 24 0 5 16 0.528
110Cd 2.35 2.08 2.2 1.9 2.2 2.1 0.00 0.061 16 6 5 15 0.415
112Cd 2.29 2.05 2.0 1.9 2.1 2.0 0.00 0.033 12 8 11 20 0.523
114Cd 2.30 2.06 2.0 1.9 2.2 2.1 0.00 0.041 14 4 3 11 0.418
116Cd 2.38 2.16 2.5 2.7 2.4 2.2 1.14 0.000 14 2 3 10 0.387
118Cd 2.39 2.19 2.6 2.9 2.6 2.2 1.21 0.002 14 0 3 9 0.429
120Cd 2.38 2.20 2.7 2.9 2.6 2.2 1.22 0.006 16 0 2 9 0.412
118Xe 2.40 2.32 2.5 2.6 2.8 2.3 1.27 0.103 16 4 10 19 0.319
120Xe 2.47 2.36 2.8 3.4 2.7 2.4 1.51 0.063 26 4 9 23 0.524
122Xe 2.50 2.40 3.5 3.3 2.5 2.4 1.57 0.096 16 0 9 16 0.638
124Xe 2.48 2.36 3.6 3.5 2.4 2.4 1.55 0.051 20 2 11 21 0.554
126Xe 2.42 2.33 3.4 3.1 2.3 2.3 1.42 0.064 12 4 9 16 0.584
128Xe 2.33 2.27 3.6 3.5 2.2 2.3 1.42 0.000 10 2 7 12 0.431
130Xe 2.25 2.21 3.3 3.1 2.1 2.2 1.27 0.000 14 0 5 11 0.347
132Xe 2.16 2.00 2.8 2.0 1.9 2.0 0.00 0.000 6 0 5 7 0.467
134Xe 2.04 2.00 1.9 2.0 1.9 2.0 0.00 0.000 6 0 5 7 0.685
130Ba 2.52 2.42 3.3 3.2 2.5 2.4 1.60 0.118 12 0 6 11 0.352
132Ba 2.43 2.29 3.2 2.8 2.2 2.3 1.29 0.059 14 0 8 14 0.619
134Ba 2.32 2.16 2.9 2.7 1.9 2.2 1.12 0.000 8 0 4 7 0.332
136Ba 2.28 2.00 1.9 2.0 1.9 2.0 0.00 0.000 6 0 2 4 0.250
142Ba 2.32 2.38 4.3 4.3 4.0 2.4 1.72 0.028 14 0 2 8 0.609
134Ce 2.56 2.34 3.7 3.9 2.4 2.3 1.59 0.019 34 2 8 25 0.527
136Ce 2.38 2.11 1.9 2.1 2.0 2.1 0.82 0.034 16 0 3 10 0.457
138Ce 2.32 2.00 1.9 2.0 1.9 2.0 0.00 0.000 14 0 2 8 0.314
140Nd 2.33 2.05 1.8 1.9 1.9 2.1 0.00 0.037 6 0 2 4 0.192
148Nd 2.49 2.36 3.0 2.8 4.1 2.4 1.38 0.110 12 8 4 13 0.764
140Sm 2.35 2.29 1.9 1.9 2.7 2.3 0.92 0.196 8 0 2 5 0.207
142Sm 2.33 2.06 1.9 1.9 2.2 2.1 0.33 0.044 8 0 2 5 0.147
142Gd 2.35 2.21 2.7 2.8 1.9 2.2 1.20 0.020 16 0 2 9 0.231
144Gd 2.35 2.33 2.5 2.5 2.5 2.3 1.26 0.112 6 0 2 4 0.124
152Gd 2.19 2.13 1.8 1.8 3.2 2.1 0.00 0.104 16 10 7 19 0.635
154Dy 2.23 2.15 2.0 2.0 3.1 2.1 0.75 0.083 26 10 7 24 0.530
156Er 2.32 2.25 2.7 2.8 2.7 2.3 1.24 0.043 20 4 5 16 0.450
186Pt 2.56 2.42 2.5 3.7 3.2 2.4 1.71 0.085 26 6 10 25 0.813
188Pt 2.53 2.37 3.0 3.3 2.3 2.4 1.52 0.076 16 2 4 12 0.637
190Pt 2.49 2.28 3.1 3.4 2.0 2.3 1.42 0.015 18 2 6 15 0.637
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TABLE I. (Continued)

Nucleus R4/2 R4/2 R0/2 R0/2 R2/2 R2/2 β0 a Lg Lβ Lγ n σ

exp th exp th exp th

192Pt 2.48 2.34 3.8 3.7 1.9 2.3 1.56 0.032 10 0 8 12 0.681
194Pt 2.47 2.36 3.9 3.6 1.9 2.4 1.55 0.049 10 4 5 11 0.667
196Pt 2.47 2.33 3.2 2.9 1.9 2.3 1.37 0.079 10 2 6 11 0.639
198Pt 2.42 2.21 2.2 2.2 1.9 2.2 0.96 0.089 6 2 4 7 0.370
200Pt 2.35 2.00 2.4 2.0 1.8 2.0 0.00 0.000 4 0 4 5 0.392

A way of avoiding numerical problems when having to
handle �(x) functions with large x is given in Appendix.

X. B(E2) TRANSITION RATES

B(E2) transition rates,

B(E2; �L → �′L′) = 5

16π

|〈�′L′||T (E2)||�L〉|2
2L + 1

, (113)

where � stands for quantum numbers other than the angular
momentum L, can be calculated using the quadrupole operator
T (E2) and the Wigner-Eckart theorem in the form〈

�′L′M ′∣∣T (E2)
µ

∣∣�LM
〉

= 1√
2L′ + 1

〈L2L′|MµM ′〉〈�′L′||T (E2)||�L〉. (114)

A. B(E2)s for γ -unstable nuclei

The calculation is carried out exactly as in Ref. [37], using
the quadrupole operator [31],

T (E2) = Aβ

[
D(2)

µ,0(θi) cos γ

+ 1√
2

(
D(2)

µ,2(θi) + D(2)
µ,−2(θi)

)
sin γ

]
, (115)

where A is a scale factor.
The results of Ref. [37] need not be repeated here. The

only difference is that in the radial integral [see Eq. (21) of
Ref. [37]] the wave functions Rn,τ (β) appear

In′,τ+1;n,τ =
∫ ∞

0
βξn′,τ+1(β)ξn,τ (β)β4dβ

=
∫ ∞

0
βRn′,τ+1(β)Rn,τ (β)dβ. (116)

The τ dependence of the wave functions Rn(β) of Eq. (104)
is contained in �1, �2, known from Eq. (74) to contain k1,
k−1, which in turn are known from Eq. (61) to contain � =
τ (τ + 3).

B. B(E2)s for axially symmetric prolate deformed nuclei

The quadrupole operator is again given by Eq. (115). The
calculation is carried out exactly as in Ref. [18], the results

of which need not be repeated here. The only difference is
that in the radial integral [see Eq. (B5) of Ref. [18]] the wave
functions Rn,L(β) appear

Bn,L,n′,L′ =
∫ ∞

0
βξn,L(β)ξn′,L′(β)β4dβ

=
∫ ∞

0
βRn,L(β)Rn′,L′(β)dβ. (117)

The L dependence of the wave functions Rn(β) of Eq. (104)
is contained in �1, �2, known from Eq. (74) to contain k1,
k−1, which in turn are known from Eq. (61) to contain �̃ of
Eq. (43).

C. B(E2)s for triaxial nuclei with γ = π/6

The calculation is carried out exactly as in Ref. [38], using
the quadrupole operator,

T (E2)
µ = Aβ

[
D(2)

µ,0(θi) cos

(
γ − 2π

3

)
+ 1√

2

(
D(2)

µ,2(θi)

+D(2)
µ,−2(θi)

)
sin

(
γ − 2π

3

)]
, (118)

where A is a scale factor, while the quantity γ − 2π/3 in
the trigonometric functions is obtained from γ − 2πk/3 for
k = 1, because in the present case the projection α along the
body-fixed x̂ ′ axis is used.

The results of Ref. [38] need not be repeated here. The
only difference is that in the radial integral [see Eq. (14) of
Ref. [38]] the wave functions Rn,α,L(β) appear

Iβ(n,L, α; n′, L′, α′) =
∫ ∞

0
βξn,α,L(β)ξn′,L′,α′ (β)β4dβ

=
∫ ∞

0
βRn,α,L(β)Rn′,α′,L′(β) dβ.

(119)

The α,L dependence of the wave functions Rn(β) of Eq. (104)
is contained in �1, �2, known from Eq. (74) to contain k1, k−1,
which in turn are known from Eq. (61) to contain �̄ of Eq. (51).

XI. NUMERICAL RESULTS

From Eq. (9) it is clear that in the present case the moments
of inertia are not proportional to β2 sin2 (γ − 2πk/3) but to
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TABLE II. Same as Table I, but for axially symmetric prolate deformed rare earth and actinide nuclei with R4/2 > 2.9. β0, a, and c are free
parameters, related to the Davidson potential [Eq. (58)], to the dependence of the mass on the deformation [Eq. (59)], and to the γ potential
[Eq. (40)]. The theoretical predictions are obtained from the equations mentioned in Sec. XI B, where further discussion can be found.

nucleus R4/2 R4/2 R0/2 R0/2 R2/2 R2/2 β0 c a Lg Lβ Lγ n σ

exp th exp th exp th

150Nd 2.93 3.13 5.2 7.9 8.2 5.8 0.0 2.1 0.003 14 6 4 13 2.012
152Sm 3.01 3.14 5.6 8.4 8.9 6.5 0.0 2.4 0.000 16 14 9 23 3.327
154Sm 3.25 3.27 13.4 13.0 17.6 18.6 1.30 6.9 0.021 16 6 7 17 0.515
154Gd 3.02 3.09 5.5 6.5 8.1 4.1 0.0 1.4 0.024 26 26 7 32 3.546
156Gd 3.24 3.25 11.8 10.8 13.0 14.3 0.0 5.3 0.026 26 12 16 34 0.933
158Gd 3.29 3.29 15.0 14.5 14.9 15.1 1.99 5.3 0.025 12 6 6 14 0.323
160Gd 3.30 3.30 17.6 17.3 13.1 13.2 2.38 4.5 0.020 16 4 8 17 0.125
162Gd 3.29 3.30 19.8 19.8 12.0 12.1 2.52 4.1 0.008 14 0 4 10 0.078
156Dy 2.93 3.13 4.9 7.4 6.5 5.3 0.0 1.9 0.014 28 10 13 31 1.789
158Dy 3.21 3.22 10.0 9.6 9.6 10.3 0.26 3.8 0.023 28 8 8 25 0.496
160Dy 3.27 3.27 14.7 14.7 11.1 12.1 1.92 4.3 0.005 28 4 23 38 0.510
162Dy 3.29 3.30 17.3 15.7 11.0 11.2 2.23 3.8 0.020 18 8 14 26 0.742
164Dy 3.30 3.30 22.6 22.5 10.4 10.2 2.68 3.4 0.000 20 0 10 19 0.100
166Dy 3.31 3.31 15.0 14.9 11.2 11.2 2.39 3.7 0.047 6 2 5 8 0.077
160Er 3.10 3.16 7.1 8.1 6.8 6.6 0.00 2.4 0.013 26 2 5 18 0.699
162Er 3.23 3.23 10.7 10.7 8.8 10.1 1.29 3.7 0.013 20 4 12 23 0.770
164Er 3.28 3.27 13.6 12.2 9.4 9.6 1.83 3.3 0.026 22 10 18 33 0.918
166Er 3.29 3.28 18.1 16.8 9.8 9.9 2.22 3.4 0.002 16 10 14 26 0.698
168Er 3.31 3.31 15.3 14.4 10.3 10.2 2.29 3.4 0.041 18 6 8 19 0.404
170Er 3.31 3.30 11.3 10.1 11.9 12.9 1.64 4.4 0.083 24 10 19 35 0.837
162Yb 2.92 3.07 3.6 6.8 4.8 4.0 0.00 1.4 0.003 24 0 4 15 1.036
164Yb 3.13 3.18 7.9 8.3 7.0 7.4 0.00 2.7 0.023 18 0 5 13 0.357
166Yb 3.23 3.23 10.2 8.9 9.1 9.7 0.66 3.5 0.038 24 10 13 29 0.973
168Yb 3.27 3.26 13.2 11.2 11.2 11.5 1.52 4.1 0.028 34 4 7 25 1.070
170Yb 3.29 3.27 12.7 11.2 13.6 14.1 1.36 5.1 0.035 20 10 17 31 0.963
172Yb 3.31 3.30 13.2 12.2 18.6 18.9 1.66 6.6 0.055 16 10 5 17 0.742
174Yb 3.31 3.31 19.4 19.3 21.4 21.5 2.44 7.5 0.019 20 4 5 16 0.104
176Yb 3.31 3.30 13.9 13.7 15.4 15.5 1.97 5.4 0.036 20 2 5 15 0.287
178Yb 3.31 3.27 15.7 15.5 14.5 14.6 1.88 5.3 0.000 6 4 2 6 0.127
166Hf 2.97 3.08 4.4 6.9 5.1 4.3 0.00 1.5 0.006 22 0 3 13 0.873
168Hf 3.11 3.17 7.6 8.1 7.1 6.9 0.00 2.5 0.023 22 4 4 16 0.494
170Hf 3.19 3.21 8.7 8.7 9.5 8.8 0.00 3.2 0.033 34 4 4 22 0.970
172Hf 3.25 3.24 9.2 9.8 11.3 11.7 0.00 4.3 0.031 38 4 6 26 0.549
174Hf 3.27 3.25 9.1 10.4 13.5 13.6 0.00 5.0 0.033 26 4 5 19 0.832
176Hf 3.28 3.28 13.0 11.5 15.2 16.1 1.31 5.8 0.038 18 10 8 21 0.950
178Hf 3.29 3.28 12.9 12.3 12.6 13.0 1.70 4.6 0.028 18 6 6 17 0.356
180Hf 3.31 3.30 11.8 11.5 12.9 13.0 1.92 4.4 0.068 12 4 5 12 0.157
176W 3.22 3.21 7.8 9.1 9.6 9.5 0.00 3.5 0.027 22 4 5 17 0.881
178W 3.24 3.22 9.4 8.6 10.5 8.9 0.00 3.2 0.039 18 10 2 15 0.987
180W 3.26 3.25 14.6 13.1 10.8 11.5 1.64 4.2 0.000 24 0 7 18 0.603
182W 3.29 3.29 11.3 11.5 12.2 12.5 1.77 4.3 0.050 18 4 6 16 0.195
184W 3.27 3.28 9.0 8.9 8.1 8.0 1.57 2.7 0.080 10 4 6 12 0.093
186W 3.23 3.25 7.2 7.2 6.0 6.3 1.20 2.1 0.099 14 4 6 14 0.130
176Os 2.93 3.10 4.5 6.9 6.4 4.6 0.00 1.6 0.016 24 6 5 19 1.747
178Os 3.02 3.12 4.9 7.2 6.6 5.1 0.00 1.8 0.017 16 6 5 15 1.836
180Os 3.09 3.22 5.6 7.1 6.6 6.9 0.00 2.4 0.078 10 6 7 14 1.021
184Os 3.20 3.21 8.7 9.9 7.9 8.5 1.21 3.1 0.011 22 0 6 16 0.886
186Os 3.17 3.19 7.7 7.0 5.6 6.0 0.00 2.1 0.063 14 10 13 24 0.702
188Os 3.08 3.15 7.0 7.2 4.1 4.4 1.07 1.5 0.033 12 2 7 13 0.170
190Os 2.93 3.07 4.9 5.6 3.0 3.1 0.00 1.0 0.051 10 2 6 11 0.419
228Ra 3.21 3.24 11.3 11.0 13.3 13.3 0.57 5.0 0.016 22 4 3 15 0.177
228Th 3.24 3.26 14.4 14.3 16.8 17.0 1.50 6.4 0.002 18 2 5 14 0.214
230Th 3.27 3.27 11.9 11.6 14.7 14.7 1.44 5.3 0.034 24 4 4 17 0.243
232Th 3.28 3.28 14.8 14.0 15.9 16.5 1.80 5.9 0.022 30 10 12 31 0.426
232U 3.29 3.29 14.5 13.8 18.2 18.4 1.74 6.6 0.028 20 10 4 18 0.394
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TABLE II. (Continued)

Nucleus R4/2 R4/2 R0/2 R0/2 R2/2 R2/2 β0 c a Lg Lβ Lγ n σ

exp th exp th exp th

234U 3.30 3.30 18.6 18.3 21.3 21.8 2.19 7.8 0.011 28 8 7 24 0.244
236U 3.30 3.30 20.3 20.0 21.2 21.2 2.38 7.5 0.009 30 4 5 21 0.143
238U 3.30 3.31 20.6 20.6 23.6 24.7 2.38 8.8 0.009 30 4 27 43 0.665
238Pu 3.31 3.31 21.4 21.4 23.3 23.3 2.61 8.1 0.016 26 2 4 17 0.067
240Pu 3.31 3.31 20.1 19.9 26.6 26.6 2.40 9.4 0.018 26 4 4 18 0.117
242Pu 3.31 3.31 21.5 21.4 24.7 24.7 2.52 8.7 0.012 26 2 2 15 0.107
248Cm 3.31 3.31 25.0 24.8 24.2 24.3 2.72 8.5 0.004 28 4 2 17 0.159
250Cf 3.32 3.31 27.0 26.9 24.2 24.2 2.88 8.4 0.003 8 2 4 8 0.053

[β2/f 2(β)] sin2 (γ − 2πk/3). The function β2/f 2(β) is shown
in Fig. 1 for different values of the parameter a. It is clear that
the increase of the moment of inertia is slowed down by the
function f (β), as it is expected as nuclear deformation sets in
Ref. [4].

The effect of the deformation-dependent mass on the
moments of inertia can be seen in Fig. 2, where the moments
of inertia [4] for the ground-state band,

�(L) = 2L − 1

E(L) − E(L − 2)
, (120)

normalized to �(2), are shown in the case of axially symmetric
prolate deformed nuclei, for the specific values of β0 = 2
and c = 5, and varying parameter a. It is clear that the rapid
increase of the moments of inertia with L, seen for a = 0, is
gradually moderated by increasing a.

A. Spectra of γ -unstable nuclei

Root mean square (rms) fits of spectra have been performed,
using the quality measure,

σ =
√∑n

i=1[Ei(exp) − Ei(th)]2

(n − 1)E(2+
1 )2

. (121)

0.0 0.5 1.0

0.0

0.5

1.0

β2 /(
1+

aβ
2 )2

β

0.0

0.1

0.3

0.5

FIG. 1. The function β2/f 2(β) = β2/(1 + aβ2)2, to which mo-
ments of inertia are proportional as seen from Eq. (9), plotted as
a function of the nuclear deformation β for different values of the
parameter a. See Section XI for further discussion.

The theoretical predictions for the levels of the ground-state
band are obtained from Eq. (83), while the levels of the
quasi-β1 band are obtained from Eq. (84). The levels of
the quasi-γ1 band are obtained through their degeneracies to
members of the ground-state band, mentioned below Eq. (33).

The results shown in Table I have been obtained for δ =
λ = 0. (The Xe and Ba isotopes have already been considered
in Ref. [24].) One can easily verify that different choices for δ

and λ lead to a renormalization of the parameter values a and
β0, the predicted energy levels remaining exactly the same.

Concerning the physical content of the parameter a, it is
instructive to consider in detail in Table I the Xe isotopes
(already discussed in Ref. [24]), known [39] to lie in a
γ -unstable region. They extend from the borders of the neutron
shell (134Xe80 is just below the N = 82 shell closure) to the
midshell (120Xe66) and even beyond, exhibiting increasing
collectivity [increasing R4/2 = E(4+

1 )/E(2+
1 ) ratios] from the

border to the midshell. Moving from the border of the neutron
shell to the midshell, the following remarks apply.

(i) 134Xe and 132Xe are almost pure vibrators. Therefore no
need for deformation dependence of the mass exists, the
least-square fitting leading to a = 0. Furthermore, no

0 10 2 0
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1.5

2.0

2.5

 0.0
 0.01
 0.03
 0.05
 0.1

Θ
(L

)/
Θ

(2
)

L

a

FIG. 2. Moments of inertia �(L) for the ground-state band, given
by Eq. (120) and normalized to �(2), are shown for the specific values
of β0 = 2 and c = 5, and varying parameter a. See Section XI for
further discussion.
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TABLE III. Normalized [to the energy of the first excited state, E(2+
1 )] energy levels of the ground-state band (gsb) and the β1 and γ1

bands of 162Dy and 238U, obtained from the Bohr Hamiltonian with β-dependent mass for axially symmetric prolate deformed nuclei using the
parameters given in Table II, compared to experimental data [40]. See Sec. XI B for further discussion.

L 162Dy 162Dy 238U 238U L 162Dy 162Dy 238U 238U
exp th exp th exp th exp th

gsb gsb gsb gsb γ1 γ1 γ1 γ1

0 0.00 0.00 0.00 0.00 2 11.0 11.2 23.6 24.7
2 1.00 1.00 1.00 1.00 3 11.9 12.1 24.6 25.5
4 3.29 3.30 3.30 3.31 4 13.2 13.3 25.9 26.7
6 6.80 6.80 6.84 6.86 5 14.7 14.7 27.4 28.1
8 11.41 11.41 11.54 11.57 6 16.4 16.5 29.2 29.8
10 17.04 17.01 17.27 17.33 7 18.5 18.5 31.2 31.7
12 23.57 23.49 23.97 24.06 8 20.7 20.8 33.5 33.9
14 30.90 30.74 31.51 31.63 9 23.3 23.3 36.0 36.3
16 38.90 38.70 39.82 39.97 10 25.9 26.0 38.8 39.0
18 47.58 47.28 48.78 48.98 11 29.0 28.9 41.7 41.9
20 58.31 58.61 12 31.4 32.1 44.9 45.0
22 68.31 68.77 13 35.5 35.5 48.3 48.3
24 78.71 79.44 14 39.4 39.9 51.9 51.8
26 89.46 90.55 15 55.7 55.5
28 100.57 102.08 16 59.7 59.4
30 112.10 113.99 17 63.9 63.4

18 68.2 67.7
β1 β1 β1 β1 19 72.7 72.0

0 17.3 15.7 20.6 20.6 20 77.3 76.6
2 18.0 16.7 21.5 21.6 21 82.1 81.3
4 19.5 19.0 23.5 24.0 22 87.0 86.1
6 21.9 22.6 23 91.9 91.0
8 24.6 27.4 24 97.0 96.1

25 102.1 101.3
26 107.4 106.6
27 112.7 112.0

β0 term is needed in the potential, the fitting therefore
leading to β0 = 0 (i.e., to pure harmonic behavior).

(ii) In the next two isotopes (130Xe and 128Xe) the need
to depart from the pure harmonic oscillator becomes
clear, the fitting leading therefore to nonzero β0 values.
However, there is still no need of dependence of the
mass on the deformation, the fitting still leading to a =
0.

(iii) Beyond 126Xe both the β0 term in the potential and the
deformation dependence of the mass become necessary,
leading to nonzero values of both β0 and a.

Other chains of isotopes also show similar behavior.

B. Spectra of axially symmetric deformed nuclei

Fits of spectra of deformed rare earth and actinide nuclei
are shown in Table II. The energy levels of the ground-state
band and the β1 band (both having nγ = 0 and K = 0) are
obtained from Eqs. (83) and (84), respectively, whereas the
levels of the γ1 band are obtained from Eq. (83) with nγ = 1
and K = 2. Again, the choice δ = λ = 0 was made, and it is
seen that different choices for δ and λ lead to a renormalization
of the parameter values a, β0, and c, the predicted energy levels
remaining exactly the same.

The quality of the fits obtained can also be seen in Table III,
where the calculated energy levels of 162Dy and 238U are
compared to experiment.

The following remarks apply.

(i) Both the bandheads and the spacings within bands are
in general well reproduced. This is particularly true
for the ground state and the γ1 bands. The deviation
in the gsb of 162Dy reaches 0.6% at L = 18, while
in the gsb of 238U it reaches 1.7% at L = 30. The
experimental levels of the γ1 band of 162Dy (up to
L = 14) extend over 28.4 energy units, whereas the
corresponding theoretical predictions spread over 28.7
units, the difference being of the order of 1%. Similarly
in 238U the experimental spread of the γ1 band (up to
L = 27) is 89.1 energy units, whereas the theoretical
one is 87.3 units, the difference being of the order of
2%.

(ii) However we remark that the theoretical level spacings
within the β1 bands are larger than the experimental
ones. This should be attributed to the shape of the
Davidson potential, which raises to infinity at large β,
pushing β bands higher and increasing their interlevel
spacing. It is known that this problem can be avoided
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TABLE IV. Comparison of experimental data [40] (upper line) for several B(E2) ratios of γ -unstable nuclei to predictions (lower line) by
the Bohr Hamiltonian with β-dependent mass (with δ = λ = 0), for the parameter values shown in Table I. See subsection XI C for further
discussion.

Nucleus 41→21
21→01

61→41
21→01

81→61
21→01

101→81
21→01

22→21
21→01

22→01
21→01

02→21
21→01

23→01
21→01

×103 ×103

98Ru 1.44(25) 1.62(61) 36.0(152)
1.82 2.62 3.42 4.22 1.82 0.0 1.36 3.60

100Ru 1.45(13) 0.64(12) 41.1(52) 0.98(15)
1.72 2.40 3.07 3.73 1.72 0.0 1.05 10.89

102Ru 1.50(24) 0.62(7) 24.8(7) 0.80(14)
1.78 2.54 3.28 4.01 1.78 0.0 1.27 8.70

104Ru 1.18(28) 0.63(15) 35.0(84) 0.42(7)
1.63 2.18 2.71 3.21 1.63 0.0 0.79 22.41

102Pd 1.56(19) 0.46(9) 128.8(735)
1.76 2.49 3.19 3.87 1.76 0.0 1.22 12.34

104Pd 1.36(27) 0.61(8) 33.3(74)
1.74 2.45 3.15 3.85 1.74 0.0 1.11 8.13

106Pd 1.63(28) 0.98(12) 26.2(31) 0.67(18)
1.85 2.67 3.49 4.28 1.85 0.0 1.49 5.98

108Pd 1.47(20) 2.16(28) 2.99(48) 1.43(14) 16.6(18) 1.05(13) 1.90(29)
1.75 2.45 3.12 3.75 1.75 0.0 1.20 15.82

110Pd 1.71(34) 0.98(24) 14.1(22) 0.64(10)
1.76 2.43 3.01 3.51 1.76 0.0 1.31 26.24

106Cd 1.78(25) 0.43(12) 93.0(127)
1.68 2.32 2.95 3.58 1.68 0.0 0.92 10.44

108Cd 1.54(24) 0.64(20) 67.7(120)
1.85 2.69 3.52 4.35 1.85 0.0 1.49 4.06

110Cd 1.68(24) 1.09(19) 48.9(78) 9.85(595)
1.99 2.97 3.93 4.87 1.99 0.0 1.98 1.61

112Cd 2.02(22) 0.50(10) 19.9(35) 1.69(48) 11.26(210)
2.00 2.99 3.98 4.96 2.00 0.0 1.99 0.48

114Cd 1.99(25) 3.83(72) 2.73(97) 0.71(24) 15.4(29) 0.88(11) 10.61(193)
2.00 2.99 3.97 4.94 2.00 0.0 1.99 0.74

116Cd 1.70(52) 0.63(46) 32.8(86) 0.02
1.74 2.46 3.17 3.90 1.74 0.0 1.11 4.42

118Cd >1.85 0.16(4)
1.71 2.39 3.06 3.74 1.71 0.0 1.00 5.88

118Xe 1.11(7) 0.88(27) 0.49(20) >0.73
1.67 2.28 2.85 3.39 1.67 0.0 0.95 21.93

120Xe 1.16(14) 1.17(24) 0.96(22) 0.91(19)
1.60 2.11 2.60 3.08 1.60 0.0 0.67 21.51

122Xe 1.47(38) 0.89(26) >0.44
1.58 2.05 2.48 2.89 1.58 0.0 0.63 29.29

124Xe 1.34(24) 1.59(71) 0.63(29) 0.29(8) 0.70(19) 15.9(46)
1.59 2.09 2.57 3.04 1.59 0.0 0.63 20.14

128Xe 1.47(20) 1.94(26) 2.39(40) 2.74(114) 1.19(19) 15.9(23)
1.63 2.20 2.75 3.31 1.63 0.0 0.73 9.64

132Xe 1.24(18) 1.77(29) 3.4(7)
2.00 3.00 4.00 5.00 2.00 0.0 2.00 0.00

130Ba 1.36(6) 1.62(15) 1.55(56) 0.93(15)
1.56 2.01 2.41 2.77 1.56 0.0 0.61 34.54

132Ba 3.35(64) 90.7(177)
1.68 2.30 2.90 3.50 1.68 0.0 0.92 15.21

134Ba 1.55(21) 2.17(69) 12.5(41)
1.75 2.48 3.21 3.94 1.75 0.0 1.14 4.08

142Ba 1.40(17) 0.56(14)
1.55 2.00 2.41 2.82 1.55 0.0 0.49 18.60

148Nd 1.61(13) 1.76(19) 0.25(4) 9.3(17) 0.54(6) 32.82(816)
1.63 2.17 2.68 3.15 1.63 0.0 0.81 26.86
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TABLE IV. (Continued)

Nucleus 41→21
21→01

61→41
21→01

81→61
21→01

101→81
21→01

22→21
21→01

22→01
21→01

02→21
21→01

23→01
21→01

×103 ×103

152Gd 1.84(29) 2.74(81) 0.23(4) 4.2(8) 2.47(78)
1.98 2.92 3.81 4.65 1.98 0.0 1.95 4.51

154Dy 1.62(35) 2.05(42) 2.27(62) 1.86(69)
1.91 2.79 3.64 4.46 1.91 0.0 1.70 5.41

156Er 1.78(16) 1.89(36) 0.76(20) 0.88(22)
1.70 2.35 3.00 3.64 1.70 0.0 0.98 11.50

192Pt 1.56(12) 1.23(55) 1.91(16) 9.5(9)
1.59 2.09 2.57 3.05 1.59 0.0 0.61 16.98

194Pt 1.73(13) 1.36(45) 1.02(30) 0.69(19) 1.81(25) 5.9(9) 0.01
1.59 2.09 2.57 3.04 1.59 0.0 0.63 19.78

196Pt 1.48(3) 1.80(23) 1.92(23) 0.4 0.07(4) 0.06(6)
1.64 2.21 2.75 3.28 1.64 0.0 0.82 20.83

198Pt 1.19(13) >1.78 1.16(23) 1.2(4) 0.81(22) 1.56(126)
1.82 2.60 3.36 4.08 1.82 0.0 1.41 10.09

by using a potential going to some finite value at large
β [41], like the Morse potential [42].

C. B(E2)s of γ -unstable nuclei

B(E2)s within the ground-state band, as well as inter-
band B(E2)s for which experimental data exist for several
nuclei, have been calculated using the procedure described
in Sec. X A. The results are shown in Table IV, the overall
agreement being good.

D. B(E2)s of axially symmetric deformed nuclei

B(E2)s within the ground-state band, as well as inter-
band B(E2)s for which experimental data exist for several
nuclei, have been calculated using the procedure described
in Sec. X B. The results are shown in Table V. The overall
agreement is good for transitions within the ground-state band
(gsb), as well as for transitions connecting the γ1 band to the
gsb, while transitions from the β1 band to the gsb tend to be
overpredicted. One should remember at this point that the β1

band was the one giving poor results also in the case of the
spectra (in Sec. XI B).

XII. CONNECTION TO EARLIER WORK

It is instructive to examine the relation between the present
approach and earlier numerical work.

(i) The formalism of Sec. III B clarifies the relation between
the present approach and the numerical solution of Kumar and
Baranger [26], who used a matrix of the form (14) with gij ,
i, j = 1, 2, 3 the same as in Eq. (15), but with

g44 = B00, g55 = B2′2′ , g45 = g54 = B02′ , (122)

where B00, B2′2′ , B02′ , as well as the moments of inertia Ji

(i = 1, 2, 3) and the potential V have been treated as seven
arbitrary functions of the variables β0 = β cos γ and β2′ =

β sin γ [while in the Bohr formulation [1] a0 = β cos γ and
a2 = β sin γ /

√
2 are used]. On one hand, the present solution

is a special case of Ref. [26] because it contains no nondiagonal
terms g45 = g54. On the other hand, in the present approach
the above-mentioned quantities are interrelated by the overall
symmetry in a specific way, greatly reducing the number of
free parameters (down to two or three in total). It should be
pointed out that the functional dependence of the mass on the
deformation for the potential used is dictated by SUSYQM.
Therefore, the successful prediction of the behavior of the
moments of inertia, for example, provides credit for the present
approach. What we see, independently of the parameter values,
is that the increase of the moments of inertia as a function of
deformation is moderated by the f 2 factor, which can be seen
as a result of the dependence of the mass on the deformation,
or, alternatively, as seen in Sec. III B, as a result of using a
curved space.

(ii) It should be pointed out that in Ref. [9] the equivalence
between the position-dependent mass case and the curved
space approach was established in the special case of κ = 2
and δ = λ = 0 [see Eq. (3) for the meaning of the symbols],
which represents the BenDaniel and Duke Hamiltonian [43],

HBD = −h̄2

2
∇f 2∇ + VBD. (123)

This resembles the collective Hamiltonian,

Hcoll = −h̄2

2
�i,j

∂

∂qi

[M(q)ij ]−1 ∂

∂qj

+ V (q), (124)

used by Libert et al. [27] in mean-field calculations, in which
a tensor mass appears.

XIII. CONCLUSION

In the present work analytical solutions are obtained for a
Bohr Hamiltonian in which the mass was allowed to depend
on the deformation.
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TABLE V. Comparison of experimental data [40] (upper line) for several B(E2) ratios of axially symmetric prolate deformed nuclei to
predictions (lower line) by the Bohr Hamiltonian with β-dependent mass (with δ = λ = 0), for the parameter values shown in Table II. See
Sec.XI D for further discussion.

Nucleus 41→21
21→01

61→41
21→01

81→61
21→01

101→81
21→01

2β→01

21→01

2β→21

21→01

2β→41

21→01

2γ →01
21→01

2γ →21
21→01

2γ →41
21→01

×103 ×103 ×103 ×103 ×103 ×103

154Sm 1.40(5) 1.67(7) 1.83(11) 1.81(11) 5.4(13) 25(6) 18.4(34) 3.9(7)
1.47 1.69 1.87 2.06 26.7 50.0 150 47.5 69.6 3.7

156Gd 1.41(5) 1.58(6) 1.71(10) 1.68(9) 3.4(3) 18(2) 22(2) 25.0(15) 38.7(24) 4.1(3)
1.48 1.73 1.95 2.18 29.7 59.1 191 62.5 92.4 4.9

158Gd 1.46(5) 1.67(16) 1.72(16) 1.6(2) 0.4(1) 7.0(8) 17.2(20) 30.3(45) 1.4(2)
1.46 1.66 1.82 1.98 25.7 45.9 127 64.0 93.0 4.8

158Dy 1.45(10) 1.86(12) 1.86(38) 1.75(28) 12(3) 19(4) 66(16) 32.2(78) 103.8(258) 11.5(48)
1.50 1.78 2.04 2.31 30.5 65.4 232 88.5 131.7 7.1

160Dy 1.46(7) 1.23(7) 1.70(16) 1.69(9) 3.4(4) 8.5(10) 23.2(21) 43.8(42) 3.1(3)
1.46 1.68 1.85 2.03 22.9 43.5 133 78.6 114.5 6.0

162Dy 1.45(7) 1.51(10) 1.74(10) 1.76(13) 0.12(1) 0.20 0.02
1.45 1.65 1.80 1.95 23.9 42.4 116 89.8 129.8 6.7

164Dy 1.30(7) 1.56(7) 1.48(9) 1.69(9) 19.1(22) 38.3(39) 4.6(5)
1.44 1.62 1.75 1.86 16.9 29.1 77 99.7 143.4 7.3

162Er 8(7) 170(90) 32.5(28) 77.0(56) 9.4(69)
1.49 1.75 1.99 2.24 27.8 58.3 202 91.1 134.8 7.2

164Er 1.18(13) 1.57(9) 1.64(11) 23.9(35) 52.3(72) 7.8(12)
1.47 1.70 1.89 2.09 28.3 53.5 162 103.8 151.2 7.9

166Er 1.45(12) 1.62(22) 1.71(25) 1.73(23) 25.7(31) 45.3(54) 3.1(4)
1.46 1.66 1.81 1.96 20.7 38.2 111 100.0 144.8 7.4

168Er 1.54(7) 2.13(16) 1.69(11) 1.46(11) 23.2(15) 41.1(31) 3.0(3)
1.45 1.65 1.79 1.93 27.7 47.2 120 100.6 145.1 7.4

170Er 1.78(15) 1.54(11) 1.4(1) 0.2(2) 6.8(12) 17.7(9) 1.4(4)
1.47 1.69 1.86 2.03 39.2 67.9 177 78.6 114.2 5.9

166Yb 1.43(9) 1.53(10) 1.70(18) 1.61(80)
1.50 1.78 2.05 2.33 33.7 71.0 245 97.2 144.5 7.8

168Yb 8.6(9) 22.0(55) 45.9(73) 8.6
1.48 1.72 1.93 2.14 29.6 57.5 180 82.9 121.6 6.4

170Yb 1.79(16) 1.77(14) 5.4(10) 13.4(34) 23.9(57) 2.4(6)
1.47 1.71 1.91 2.12 30.6 58.2 176 66.2 97.1 5.1

172Yb 1.42(10) 1.51(14) 1.89(19) 1.77(11) 1.1(1) 3.7(6) 12(1) 6.3(6) 0.6(1)
1.46 1.67 1.83 1.99 32.2 55.9 147 51.6 75.0 3.9

174Yb 1.39(7) 1.84(26) 1.93(12) 1.67(12) 12.4(29)
1.45 1.63 1.75 1.86 20.9 35.1 88 45.0 64.9 3.3

176Yb 1.49(15) 1.63(14) 1.65(28) 1.76(18) 9.8
1.46 1.66 1.82 1.97 27.9 49.0 132 63.1 91.6 4.7

174Hf 14(4) 9(3) 31.6(161) 48.7(124)
1.48 1.74 1.96 2.20 31.4 62.2 200 66.9 98.8 5.3

176Hf 5.4(11) 31(6) 21.3(26)
1.47 1.70 1.89 2.09 30.8 57.3 169 57.9 84.9 4.5

178Hf 1.38(9) 1.49(6) 1.62(7) 0.4(2) 2.4(9) 24.5(39) 27.7(28) 1.6(2)
1.47 1.69 1.88 2.07 28.4 53.1 158 73.8 107.8 5.6

180Hf 1.48(20) 1.41(15) 1.61(26) 1.55(10) 24.5(47) 32.9(56)
1.46 1.66 1.82 1.98 34.9 59.5 151 78.4 113.4 5.8

182W 1.43(8) 1.46(16) 1.53(14) 1.48(14) 6.6(6) 4.6(6) 13(1) 24.8(12) 49.2(24) 0.2
1.47 1.69 1.87 2.04 32.5 58.3 162 79.9 116.2 6.0

184W 1.35(12) 1.54(9) 2.00(18) 2.45(51) 1.8(3) 24(3) 37.1(28) 70.6(51) 4.0(4)
1.48 1.73 1.95 2.16 40.7 75.2 216 128.3 187.3 9.8

186W 1.30(9) 1.69(12) 1.60(12) 1.36(36) 41.7(92) 91.0(201)
1.51 1.80 2.07 2.34 46.2 91.9 289 165.7 244.5 12.9

186Os 1.45(7) 1.99(7) 1.89(11) 2.06(44) 109.4(71) 254.6(150) 13.0(47)
1.53 1.87 2.20 2.55 39.7 90.2 335 164.9 247.4 13.4

188Os 1.68(11) 1.75(11) 2.04(15) 2.38(32) 63.3(92) 202.5(304) 43.0(74)
1.54 1.89 2.25 2.63 33.9 83.9 344 229.8 345.2 18.7
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TABLE V. (Continued)

Nucleus 41→21
21→01

61→41
21→01

81→61
21→01

101→81
21→01

2β→01

21→01

2β→21

21→01

2β→41

21→01

2γ →01
21→01

2γ →21
21→01

2γ →41
21→01×103 ×103 ×103 ×103 ×103 ×103

230Th 1.36(8) 5.7(26) 20(11) 15.6(59) 28.1(100) 1.8(11)
1.47 1.70 1.90 2.09 30.0 56.4 168 63.6 93.2 4.9

232Th 1.44(15) 1.65(14) 1.73(12) 1.82(15) 14(6) 2.6(13) 17(8) 14.6(28) 36.4(56) 0.7
1.46 1.67 1.84 2.01 25.8 47.1 135 57.0 83.0 4.3

234U 12.5(27) 21.1(44) 1.2(3)
1.45 1.64 1.78 1.90 20.7 36.1 97 42.7 61.8 3.2

236U 1.42(11) 1.55(11) 1.59(17) 1.46(17)
1.45 1.63 1.76 1.87 19.3 33.2 87 44.7 64.5 3.3

238U 1.45(23) 1.71(22) 1.4(6) 3.6(14) 12(5) 10.8(8) 18.9(17) 1.2(1)
1.45 1.63 1.75 1.86 18.9 32.3 83 37.7 54.5 2.8

238Pu 14(4) 11(4)
1.44 1.62 1.73 1.84 19.1 31.7 78 41.6 59.9 3.0

250Cf 6.8(17) 10.9(25) 0.6(1)
1.44 1.61 1.72 1.81 15.0 24.9 61 40.0 57.5 2.9

From the mathematical point of view, this is achieved
through the use of techniques of supersymmetric quantum
mechanics [10,11], involving a deformed shape invariance
condition [12]. Analytical expressions for the spectra and wave
functions have been obtained.

From the physics point of view, spectra and B(E2)
transition rates have been calculated for γ -unstable, axially
symmetric prolate deformed, and triaxial nuclei, implementing
the usual approximations in each case, and compared to
experimental data for the first two cases. The main new result is
that the dependence of the mass on the deformation moderates
the increase of the moment of inertia with the deformation,
removing an important drawback [4] of the model. It should
be emphasized that the functional dependence of the mass on
the deformation for the potential used is dictated by SUSYQM,
thus the correction in the behavior of the moments of inertia is
a general effect, independent of any specific parameter value
combinations.

However, certain discrepancies with experimental data
remain, especially related to the β1 band and its interband
transitions. It should be remembered at this point that in
the present study separation of variables was achieved by
assuming that the potential either is independent of the
γ variable, or it has the exactly separable form of Eq. (34).
Furthermore, the approximations related to Eqs. (35) and (44)
have been implemented. Recently, the numerical solution of
the Bohr Hamiltonian for any value of β and γ , avoiding
all these approximations, was achieved in the framework of
the powerful algebraic collective model [44–46]. The detailed
study of discrepancies from experimental data both in the
SUSYQM framework and in the context of the algebraic
model, especially for multiphonon excitations [47], could shed
light on the origins of these discrepancies.

As it was already mentioned, the form of the dependence
of the mass on the deformation is dictated by SUSYQM for
the potential used in the β degree of freedom. In the present
work, the Davidson potential was used, called the deformation-
dependent mass (DDM) Davidson model. The application of

the SUSYQM approach to the Bohr Hamiltonian with the
Kratzer potential [48,49] is receiving attention.
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APPENDIX

When using Eq. (112) in numerical calculations, problems
can appear because of �(x) functions with large x. These
problems can be avoided by using Eq. (6.1.16) of Ref. [36],

�(n + z) = (n − 1 + z)(n − 2 + z) . . . (1 + z)�(1 + z).

(A1)

In the normalization factors we need the ratio of

�

(
n + �1 + �2

2
+ 1

)
, (A2)

over

�

(
n + �2

2
+ 1

)
. (A3)

Let us call I the integer part of �2/2 and r the rest of it, that
is,

�2

2
= I + r. (A4)

Then we have
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�

(
n + �1 + �2

2
+ 1

)
= � (I + (n + �1/2 + r + 1)) = (I − 1 + n + �1/2 + r + 1)(I − 2 + n + �1/2 + r + 1)

× · · · (1 + n + �1/2 + r + 1)�(1 + n + �1/2 + r + 1),

(A5)

�(n + �2

2
+ 1) = �(I + (n + r + 1)) = (I − 1 + n + r + 1)(I − 2 + n + r + 1) . . . (1 + n + r + 1)�(1 + n + r + 1).

(A6)

Their ratio becomes

�
(
n + �1+�2

2 + 1
)

�
(
n + �2

2 + 1
) = (I − 1 + n + �1/2 + r + 1)

(I − 1 + n + r + 1)

(I − 2 + n + �1/2 + r + 1)

(I − 2 + n + r + 1)

× · · · (1 + n + �1/2 + r + 1)

(1 + n + r + 1)

�(1 + n + �1/2 + r + 1)

�(1 + n + r + 1)

=
(

1 + �1/2

(I − 1 + n + r + 1)

) (
1 + �1/2

(I − 2 + n + r + 1)

)

× . . .

(
1 + �1/2

(1 + n + r + 1)

)
�(1 + n + �1/2 + r + 1)

�(1 + n + r + 1)
, (A7)

in which one does not have to calculate �(x) functions with large x. The only large numbers appear in denominators of fractions
accompanying 1, which do not pose any problem.
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