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Nuclear level density and y-ray strength functions of '?"'?2Sn below the neutron separation energy are
extracted with the Oslo method using the (*He,>He’y) and (*He,ay) reactions. The level densities of '2"''22Sn
display steplike structures, interpreted as signatures of neutron pair breaking. An enhancement in both strength
functions, compared to standard models for radiative strength, is observed in our measurements for E,, 2 5.2 MeV.
This enhancement is compatible with pygmy resonances centered at ~8.4(1) and ~8.6(2) MeV, respectively,
and with integrated strengths corresponding to ~ I.Sf;% of the classical Thomas-Reiche-Kuhn sum rule. Similar
resonances were also seen in ''%~11Sn. Experimental neutron-capture cross reactions are well reproduced by our
pygmy resonance predictions, while standard strength models are less successful. The evolution as a function
of neutron number of the pygmy resonance in ''%~122Sn is described as a clear increase of centroid energy from

8.0(1) to 8.6(2) MeV, but with no observable difference in integrated strengths.
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I. INTRODUCTION

The level density and the y-ray strength function are
average quantities describing properties of atomic nuclei. The
nuclear level density is defined as the number of energy levels
per unit of excitation energy, while the y -ray strength function
may be defined as the reduced average transition probability as
a function of y-ray energy. The strength function characterizes
average electromagnetic properties of excited nuclei.

The level density and the strength function are important
for many aspects of fundamental and applied nuclear physics.
They are used for the calculation of cross sections and neutron-
capture (n,y) reaction rates, which are input parameters
in, e.g., reactor physics, nuclear waste management, and
astrophysical models describing the nucleosynthesis in stars.

Tin and other heavier neutron-rich nuclei are often found
to display a smaller resonance for y-ray energies below the
giant electric dipole resonance (GEDR). The existence of
even a small resonance close to the neutron separation energy
may have large consequences in nuclear astrophysics on the
calculated distribution of elemental abundance.

This paper presents the measurements of the level densities
and y-ray strength functions in '2''22Sn for energies below
the neutron separation energy, as well as a systematic study of
the evolution of the pygmy resonances in !16-119:121.1225 The
experimental results on !'%'19Sn are published in Refs. [1-3].
All experiments have been performed at the Oslo Cyclotron
Laboratory (OCL).

The experimental setup is described in Sec. II and the
data analysis in Sec. III. The level densities of '>!:122Sn are
presented in Sec. IV and the strength functions in Sec. V.
Section VI discusses the pygmy resonance evolution and
the impacts from the pygmy resonances on the (y,n) cross
sections. Conclusions are drawn in Sec. VII.
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II. EXPERIMENTAL SETUP

The self-supporting '>2Sn target was enriched to 94% and
had a mass thickness of 1.43 mg/cm?. For five days the
target was exposed to a 38 MeV *He beam with an average
current of 0.2 nA. The reaction channels studied were
1228n(3He,*He’y)'*2Sn and '*2Sn(*He,ay)'?' Sn.

Particle-y coincidences were recorded with 64 Si particle
AE — E telescopes and 28 collimated Nal(T1) y -ray detectors.
The AE and E detector thicknesses are approximately 130
and 1550 pm, respectively. These detectors cover the angles
of 40°-54° with respect to the beam axis, and they have a total
solid-angle coverage of 9% out of 4. The Nal detectors
are distributed on a sphere and constitute the CACTUS
multidetector system [4]. The detection efficiency is 15.2%,
and the resolution of a single Nal detector is 6% FWHM, at
the y energy of 1332 keV.

III. DATA ANALYSIS

The measured energy of the ejectile is calculated into
excitation energy of the residual nucleus. The y-ray spectra
are unfolded with the known response functions of CACTUS
and by the use of the Compton subtraction method [5]. The
first generation y-ray spectra are extracted by the subtraction
procedure described in Ref. [6].

The first-generation y-ray spectra are arranged in a two-
dimensional matrix P(E, E, ), shown for 12281 in Fig. 1. The
entries of the matrix give the probabilities P(E, E,) that
a y-ray of energy E, is emitted from a bin of excitation
energy E.

The empty region for low y energy and higher excitation
energies in Fig. 1 is explained by too strong subtraction caused
by the strongly populated states (yellow/red spots) found for
low y energy and lower excitation energies. Too few first-
generation y’s remain for low y energy and higher excitation
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The selected region of the first-generation matrix P is fac-
torized into the level density p and the radiative transmission

(D

The factorization into two independent components is justified

P(E,E,) x p(E — E, YT (E,)).

for nuclear reactions leading to a compound state prior to a
subsequent y decay [9]. The factorization is performed by
an iterative procedure [8] where the independent functions
p and 7 are adjusted until a global x?> minimum with the
experimental P(E, E, ) is reached.

The quality of the factorization of level density and strength
function is illustrated for '??Sn in Fig. 2. At example excitation
energies (indicated on the panels), the entries of the P matrix
obtained from the y2-fitted output functions p and 7 using
Eq. (1) are compared to those of the experimental P matrix.
The fitted output (solid line) agrees well with experimental
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FIG. 1. (Color online) The first-generation matrix P of '22Sn.
The solid lines indicate the region for the data used in the Oslo
method (E, > 1.6 MeV, 3.8 < E < 9.4 MeV). The dashed line
(E = 6.6 MeV) is the middle between the upper and lower ranges in
excitation energy.

energies, which has made the first-generation method not work
very well (see Ref. [7]). We select and proceed with the region
between the solid lines. Note that the diagonal valleys and
ridges are made up of strong first-generation transitions to the
ground and first-excited states.

data. It is noted that in some of the panels, the fitted curves
are significantly lower than the experimental data points
(for E =4.1 MeV: the transition to the ground state; for
E = 4.8 MeV: the transition to the first-excited state). This
is probably explained by the fit adjusting the entire matrix,
and not just these example excitation energies.

The Brink-Axel hypothesis [10,11] states that the GEDR
and any other collective excitation mode built on excited
states have the same properties as those built on the ground
state. Equation (1) shows that the transmission coefficient is
assumed to be independent of excitation energy E, which is a
consequence of the Brink-Axel hypothesis.

Figure 3 shows an investigation of this assumption for
1228n, which is of special concern due to some clear structures
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FIG. 2. (Color online) Comparison between experimental (squares) and x? fitted (solid lines) P matrix for '>>Sn. The energy bins have
been compressed to 240 keV/ch in E and E, . While the panels show the results for the indicated example excitation energies, the fit has been
performed globally for the entire region of the P matrix that has been selected for the analysis (see Fig. 1).
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FIG. 3. (Color online) Comparison of unnormalized y-ray
strength functions (arbitrary units) for '*2Sn. The shown strength
functions are derived from the independent data sets of the upper and
lower parts of the selected region of the P matrix, as well as from the
total selected region for comparison.

in the strength function. We divide the selected region of
the P matrix into two parts (separated by the dashed line
in Fig. 1), which are two independent data sets. Figure 3
displays the strength functions derived from the lower and
upper parts, as well as from the total region. The strength
functions, proportional to 7 /E y3, are not normalized and are
shown in arbitrary units. As the clear structures are found at
the same locations for the two independent data sets, the 7 is
indeed found to be approximately independent of excitation
energy.

The adjustment to Eq. (1) determines only the functional
forms of p and 7. These two functions are invariant under the
following transformations [8]:

P(E — Ey) = Aexpla(E — E)Ip(E - E)), (2
T(E,) = B exp(eE,)T(E,). A3)

The parameters A and B define the correction to the ab-
solute values of the functions p and 7, respectively, while
the parameter « defines their common correction to the
log-scale slope. These parameters will be determined in
Secs. IV and V.
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IV. LEVEL DENSITIES

The constants A and o needed to normalize the ex-
perimental level density p, are determined using literature
values of the known discrete energy levels at low energy
and of the level spacing D at the neutron separation
energy S,. We use the same normalization procedure as
in Refs. [1-3], in order to have a common ground for
comparison.

The chosen model is the back-shifted Fermi-gas (BSFG)
model, published by von Egidy er al. in 1988 [12]. The
level density at the neutron separation energy p(S,) is
calculated from known values of the s-wave level spacing
DO [8]

202 —(I, + 1)
p(Sn) = Do {(It + Dexp [—202 }
—12 -
+ It exp|:2021|} ’ (4)

where I, is the target spin, and where the spin-cutoff parameter
o is also evaluated at S,,. The spin-cutoff parameter is defined
as 02 = 0.0888A423aT, where A is the mass number of the
isotope, and T is the nuclear temperature givenby 7' = /U /a.
Here, U is the nucleus intrinsic excitation energy and a is
the level-density parameter. The parametrization used for a is
a =0.21 A% MeV~!. The parametrizationof U is U = E —
Epqir — Ci, where the pairing energy Ep; is calculated from
the proton and neutron pair-gap parameters: Epir = Ap + Ay,
and where the back-shift parameter C; is defined as C; =
—6.6A7032,

The experimental value of Dy for '>!Sn is found in
Ref. [13] and is used to calculate o(S,) using the input
parameters listed in Table I. The pair-gap parameters are
evaluated from even-odd mass differences [14] according to
the method of Ref. [15].

No experimental value exists for Dy of '22Sn, and we
estimate p(S,) for this isotope from systematics. Figure 4
shows p(S,) calculated from the experimental values of Dy
according to Eq. (4) for all available Sn isotopes as a function of
S,,. The values of Dy have been taken from Ref. [13]. We have
also calculated p(S,) according to the prediction of the BSFG
model [16]:

exp(2val)
124/2a' AU o’
with the above-listed parametrizations. The theoretical value
of p(S,), multiplied with a common factor of 0.4, are

shown in Fig. 4 together with the experimental values.
From the trends appearing in the figure, we estimate p(S,)

p(E)BsrG = &)

TABLE 1. Input parameters and the resulting values for the calculation of the normalization value p(S,,).

Nucleus S, Dy a C A, A, o(S,) o(Sy) n
MeV) V) MeV—) MeV) (MeV) (MeV) (10* MeV™)

1218n 6.17 1250(200) 13.62 —1.42 0 0.82 4.57 3.42(86) 0.25

1228n 8.81 62(31)* 13.72 —1.42 1.32 1.12 4.75 20(10)* 0.42

“Estimated from systematics.
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FIG. 4. (Color online) Estimation (cross) of the experimental
value of p(S,) for '2Sn from systematics. Experimental values
(squares) and global BSFG predictions (triangles) for p(S,) are shown
for various Sn isotopes as a function of S, (see text).

for '22Sn to 2.0(10) - 10° MeV~! [50% uncertainty assumed
(see Table I)].

While we would like to normalize to p(S,), our experi-
mental data only cover the excitation energy region from 0
to S, — 2 MeV, due to methodical limitations. We therefore
make an interpolation from our measurements to S, using the
BSFG prediction in Eq. (5). The prediction is multiplied by
a scaling parameter 1 (see Table I) in order to agree with the
normalization value p(S),):

P(E)BsrG — 1 p(E)BSFG- (6)

Figure 5 shows the normalized level densities of 121228,
The arrows indicate the two regions that have been used
for normalization to the discrete level density and to the
normalization value p(S,). As expected, the level-density
function of '*!Sn is very similar to those of the other
even-odd nuclei ''7:11°Sn, while the level-density function
of 228n is very similar to those of the even-even nuclei
116,118Sn [1,3]

The level densities of '2!'22Sn in Fig. 5 show step-
like structures, a feature also seen in 1°~!19Sp [1,3]. In
12112281, two pronounced bumps are seen in the region of
~0.8—1.4MeV and ~1.8—2.4 MeV. The corresponding steps
are located at &~ 1.0 and ~2.0 MeV, respectively. The second
step is very abrupt, especially in the even-even nucleus, and
the step is followed by a significantly higher level density.
The second step is therefore a candidate for the neutron
pair-breaking process in '2!122Sn. Such neutron pair-breaking
bumps are especially distinctive in Sn isotopes since the
proton number is magic (Z = 50), making proton pair breaking
occur only at relatively higher excitation energies. A detailed

PHYSICAL REVIEW C 83, 044320 (2011)
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FIG. 5. Normalized level densities of '?""'?2Sn (filled squares) as
a function of excitation energy with energy bins of 120 keV/ch.
The solid lines represent the discrete level densities obtained from
spectroscopy. The dashed line in both panels is the BSFG prediction,
which is used for interpolation, scaled with 1 to coincide with
p(S,) (open square). The value of p(S,) has been calculated from
neutron resonance data. The arrows indicate the two regions used for
normalization.

discussion of the pair-breaking process has been given in
Refs. [1,3].

V. y-RAY STRENGTH FUNCTIONS

The y-ray transmission coefficient 7, which is deduced
from the experimental data, is related to the y-ray strength
function f by

T(E,) =21 Y E} fyi(E,), (7)
XL

where X denotes the electromagnetic character and L the
multipolarity of the y ray. The transmission coefficient 7 is
normalized in log-scale slope («) and in absolute value (B)
[see Eq. (3)].
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FIG. 6. Estimation of the average radiative width at S,,, (I",,(S,)),
for '?2Sn. The respective values of other Sn isotopes are plotted
(squares) as a function of S, (see text).

For s-wave neutron resonances and assuming a major
contribution from dipole radiation and parity symmetry for
all excitation energies, the expression for the average radiative
width (I'), (E, I, 7)) will at S, reduce to [17]

(Cy(Sns I £1/2, 7))
B B
4w p(S,, I, £1/2, 7))

Sn
/ dE, T(E,) (S, — Ey)
0

1
X Y g(Sy—Ey I £1/2+4 ). ®)
J=—1

Here, I; and 7, are the spin and parity of the target nucleus in
the neutron capture (n,y) reaction. We determine B by using
the BSFG model for the spin distribution g given in Ref. [12]
and the experimental value of (I",,(S,)).

For !2!Sn, the radiative width at the neutron separation
energy is available in literature. For '*2Sn, we estimated it
from systematics. Figure 6 shows the (I", (S,,)) plotted against
S, for Sn isotopes where this quantity is known (taken from
Ref. [13]). From the appearing trend of the even-even nuclei,
we estimate (', (S,,)) to 85(42)meV for '*Sn. The applied
input parameters needed for determining the normalization
constant B for '21:1228n are shown in Table II. The values for
12181 have been taken from Ref. [13].

The normalized y-ray strength functions of '2!:122Sn are
shown in Fig. 7. The error bars show the statistical uncertain-
ties. While the strength function of '2!Sn is smooth, just like
those of '16~119Sn [2,3], the strength function of '*2Sn displays
clear structures in the entire E,, region. As discussed in Sec. III,
these structures also appear using different, independent data
sets.

PHYSICAL REVIEW C 83, 044320 (2011)

TABLE II. Input parameters for normalization of the jy-ray
transmission coefficient 7~ of 121:1228n,

Nucleus I, Dy (T (Sw)
) (eV) (meV)

21gy 0 1250(200) 40(5)

1228 3/2 62(31)* 85(42)*

“Estimated from systematics.

A change of the log-scale slope in the strength functions,
leading to a sudden increase of strength, is seen in 21:122Sn
for E, > 5.2 MeV. The change of log-scale slope represents
the onset of a small resonance, commonly referred to as
the pygmy dipole resonance. A comparison of our '21:122Sp
measurements compared with photonuclear cross-section data
from Refs. [18-22] is shown in the two upper panels in Fig. 8.
Similar strength increases were also seen in !'6=11°Sn [3], and
this figure will be further discussed for those isotopes when
discussing the evolution of the pygmy resonance in the next
section.
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and ""°Sn(y, x) [22].

In order to investigate the experimental strength functions In the GLO model, the E 1 strength function is given by [23]

of 121.1228n, we have applied commonly used models for
the GEDR resonance and for the magnetic spin-flip reso-
nance, also known as the giant magnetic dipole resonance
(GMDR).

The generalized Lorentzian (GLO) model [23] is used for
the GEDR resonance. The GLO model is known to agree
rather well both for low y-ray energies and for the GEDR
centroid at about 15 MeV. The strength function approaching
anonzero value for low E,, is not a property specific for the Sn
isotopes, but has been seen for all nuclei studied at the OCL
so far.

044320-6
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in units of MeV >, where the Lorentzian parameters are the
GEDR’s centroid energy Eg;, width I'gy, and cross section
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TABLE III. Applied parameters for the parametrization of the
GEDR and the GMDR contributions for '2!:1228n,

Nucleus EEl FE| OE1 EM] FM| oM Tf
(MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV)

1218n 1553 481 253.0 8.29 4.00 1.11 0.25(5)

1228n 1559 477 2560 8.27 4.00 1.09 0.25(5)

og1. These experimental parameters are not available for
121.1228n, We instead apply the one measured for '?°Sn to 2! Sn,
and the one measured for '2*Sn to '22Sn, from Fultz [18] (see
Table III).

The GLO model is temperature dependent from the incor-
poration of a temperature-dependent width I'kyg. This width
is the term responsible for the nonvanishing E1 strength at low
excitation energy. It has been adopted from the Kadmenskic,
Markushev, and Furman (KMF) model [24] and is given by

I
Ckmr(Ey, Tr) = E(Ef, +47°T7), (10)

in units of MeV, and where T is the temperature.

Usually, T is interpreted as the nuclear temperature of
the final state, with the commonly applied expression T, =
+/U/a. In this work and in Refs. [1-3], we assume a constant
temperature, i.e., the y-ray strength function is independent
of excitation energy. This approach is adopted for consistency
with the Brink-Axel hypothesis (see Sec. III).

Moreover, we treat T as a free parameter. This is necessary
to adjust the theoretical strength prediction to our low-energy
measurements. The applied values of the T, parameters are
listed in Table III.

The M1 spin-flip resonance is modeled with the functional
form of a standard Lorentzian (SLO) model [25]:

1 o3 E,

242 .2 2 ’
3T (B = Eyn) + E) Tipy

Fit(E)) = (11)

where the parameter Ejq is the centroid energy, "y is the
width, and o, is the cross section of the GMDR. These
Lorentzian parameters are for '>!''22Sn predicted from the
theoretical expressions in Ref. [25] and shown in Table III.
The predictions for the GEDR using the GLO model and for
the GMDR for '16-119.121.122Gpy nyclei are shown as dashed
lines in Fig. 8.

The standard Lorentzian (SLO) model was also tested and
isincluded in Fig. 8 (the M 1 spin-flip resonance contribution is
added to it). The SLO succeeds in reproducing the (y, x) data,
but clearly fails for the low-energy strength measurements,
both when it comes to absolute value and shape. The same
has been the case also for many other nuclei measured at the
OCL and elsewhere. Therefore, we consider the SLO not to be
adequate below the neutron threshold.

At present, it is unclear how these resonances should
be modeled properly, although many theoretical predictions
exist. We have found [2,3] that the Sn pygmy resonance is
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TABLE IV. Empirical values of Gaussian pygmy parameters, and
the corresponding integrated strengths and TRK values of the pygmy

resonances, in 121122Sn.

Nucleus Epye  0pye Cpye Integrated strength TRK value
(MeV) (MeV) (1077 MeV™2)  (MeV mb) (%)

21Sn  8.4(1) 1.4(1) 327 3173 1.871

2280 8.6(2) 1.4(1)  3.2% 3212 1.8

satisfactorily reproduced by a Gaussian distribution [2]:

1 _(EJ/ B Epyg)2
ex , (12)
PV Opyg b |: 20755,

superimposed on the GLO prediction. Here, Cpy, is the
resonance’s absolute value normalization constant, E}yg is the
centroid energy, and oy, is the width. These parameters are
treated as free.

By adding the discussed theoretical strength contributions,
the prediction of the total y-ray strength function is given by

S = fe1 4+ far + foyg - (13)

We determined the Gaussian pygmy parameters of '2!122Sn
from fitting to our measurements. The centroid energies of the
pygmy resonances are 8.4(1) and 8.6(2) MeV, respectively.
We found that the same width opy, and strength Cpye as in
16,1178 [3] gave a very good agreement also in '2!-1228n,
so the width and strength are kept unchanged. The pygmy
parameters are listed in Table IV. The estimated error bars
given in the table take into account systematic uncertainties
in the normalization values and in the choice of baseline of
the pygmy resonance, including the fact that the GLO does
not perfectly follow the (y, n) measurements for higher E,
values.

The predictions for '2!:1228n are shown as solid lines in the
upper panels of Fig. 8. We see that the predictions of the total
strength describe the measurements rather well, in the sense
that the Gaussian pygmy resonances fill a very large fraction of
the missing strength. Still, the Gaussian distribution does not
completely follow either the left flank or the right flank of the
pygmy resonances in '21122Sn. In the case of ''®!7Sn [2,3],
having a larger T, of Ty = 0.46(1) MeV, the left flank was
followed very well. However, in all Sn isotopes, there is a gap
on the right flank between the measured data and the GLO. A
better pygmy resonance representation than the Gaussian or a
better model for the baseline may be found in the future.

Strength from the resonances in '>!-'22Sn have been added
in the energy region of ~5—8 MeV according to our mea-
surements, and in the region of ~#5—11 MeV when compared
to photonuclear data as well. The total integrated strengths
of the pygmy resonances, based on the total predictions, are
estimated to 3273 MeV mb. This constitutes 1.8f;% of the
classical Thomas-Reiche-Kuhn (TRK) sum rule, assuming all
pygmy resonance strength being E'1 (see Table IV).

Even though uncertainties in the choice of baseline have
been considered in the uncertainty estimates, another predic-
tion of the GEDR other than the GLO or another function
for the pygmy resonance than the Gaussian may be found in

Joye(Ey) =C
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the future. This will consequently influence the estimates on
the pygmy resonance. Lack of data, i.e., the gaps between our
measurements and the (y,n) measurements in the resonance
region, and also the lack of (y,n) measurements for 1211228y,
adds to the uncertainties in the estimates of the pygmy
resonances.

Measurements from other reactions and using other meth-
ods have also been used to estimate the TRK value of the Sn
pygmy, and these estimates deviate from each other. Data from
16,1178 (y ,n) experiments [19] indicate an integrated strength
which constitutes & 1% of the TRK sum rule, which agrees
within the uncertainty with our value. From ''612Sn(y,y")
experiments [26], the TRK value is calculated to 0.4—0.6 %.
This may seem to deviate from our result. However, taking into
account unresolved strength in the quasicontinuum of typically
a factor of 2—3, the (y,y’) results are compatible within the
uncertainty with the other data.

VI. EVOLUTION OF THE PYGMY RESONANCE

Studying the neutron dependency is important and may help
in determining the origin of the Sn pygmy resonance. Figure 9
shows the present and previously analyzed normalized strength
functions for the Sn isotopes. The measurements of ' '8Sn have
been multiplied by 1.8 in order to agree with those of '1°Sn
(see Ref. [3]).

First, it may seem like a trend that the tail of the strength
function decreases in strength as the neutron number N
increases. Second, it is noticeable from Fig. 9 that the change
of log-scale slope, which represents the onset of the pygmy
resonance, occurs at a higher E, value in 121.1228p than for
16,1179 The changes of slope are clearest for the even-even
nuclei. They are found at ~4.5MeV in ''®Sn and at ~ 5.2 MeV
in 122Sn.

The values of T for '21'122Sn are lower than for 1'¢=119Sp.
There is no physical reason for different nuclear temperatures.
Lowering the parameter 7’ is instead necessary in order to get
the lowest-energy part of the GLO comparable in magnitude
with the measurements.

The centroid energy Epy, of the pygmy resonances in
1211229 has larger values than those of earlier studies in
16,1178 [2,3]. For '21:1228n, the pygmy centroids are 8.4(1)
and 8.6(2) MeV (see Table IV), respectively, while 8.0(1) MeV
is found for ''%117Sn [2,3]. During the pygmy resonance fitting,
it was clear that the centroid energies had to be significantly
increased for the heavier isotopes. The significant increases are
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FIG. 9. (Color online) Normalized y-ray strength functions as
functions of y-ray energy for the Sn isotopes measured at the OCL.
The even-odd isotopes '7-!1%121Sn are shown in the upper panel, while
the even-even isotopes !'%!!81228p are shown in the lower panel. The
measured strength of ''¥Sn has been multiplied by 1.8 (see Ref. [3]).
The energy bins are 120 keV /ch for 1161171211228 240 keV /ch for
11981, and 360 keV /ch for ''8Sn.

also apparent from studying the energies for which there is a
change of log-scale slope in the strength functions. Moreover,
allowing the centroid energy differ has a consequence that
the same pygmy width opy, and pygmy strength Cpy, as in
16,1179 [3] also give the best fit in 121:122Sn,

TABLE V. Empirical values of ''~1°Sn Gaussian pygmy parameters, and the corresponding pygmies’ integrated strengths and TRK values.
For ''88n, the values have been found from fitting to the measured strength function multiplied by 1.8.

Nucleus Epy, Opye Chye Integrated strength TRK value
(MeV) (MeV) (1077 MeV~?) (MeV mb) (%)
168 8.0(1) 1.4(1) 3.2%3 3079 1.779
178n 8.0(1) 1.4(1) 3.2% 3079 1.779
11881 8.2(1) 1.4(1) 3.2% 3079 1.8%9
198n 8.2(1) L.4(1) 3.219 3019 174
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TABLE VI. Applied parameters for the parametrization of the
GEDR and the GMDR contributions for !16~!9Sn,

Nucleus EE] FEI OE1 EMI FM] oMl Tf
(MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV)
1168 15.68 419 266.0 841 4.00 0.773 0.46(1)
178n 1566 5.02 2540 8.38 4.00 1.04 0.46(1)
1188n 15.59 477 256.0 836 4.00 0.956 0.40(1)
198 1553 481 253.0 8.34 4.00 0.963 0.40(1)

In the earlier study of !'8:11°Sn [3], the data have large error
bars. This means that the pattern of an increasing centroid
energy was not so clear, and the choice then was to keep the
centroid energy constant, while compensating with an increase
of the resonance width. We have updated the resonance
prediction of ''311°Sn by following the same pattern as in
1211229, The estimated centroid energy of the pygmies in
11811987 ig then 8.2(1) MeV, while the width and strength are
kept constant. Updated parameter values are listed in Table V
and displayed in Fig. 8. The parameters for the GEDR and
GMBDR contributions are listed in Table VI.

We would like to investigate for several isotopes the effect
of our predicted pygmy resonances on the (n,y) cross sections
and compare these with available experimental measurements.
This has been done for ''7~11%:1218n ysing the reaction code
TALYS [27]. For the level density, we have applied the spin- and
parity-dependent calculations of Goriely, Hilaire, and Koning
[28], which are in good agreement with our level-density data,
as demonstrated for ''7Sn in Fig. 10. Also, we have used the
neutron optical potential of Koning and Delaroche [29].

The results of the comparisons are shown in Fig. 11. Our
modeled strength function with a Gaussian pygmy resonance
(denoted GLO2) leads to a calculated cross section that

6 17gp
10§ " Oslodata
- 5| —— NLD calc., Goriely et al.
- 107 F
> E
) c
= C
g 10°s
e c
- C
=103
c =
) c
-] C
2 0%
o =
| C
10
u
...ll.
[}
1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
0 1 2 3 4 5 6 7

Excitation energy E (MeV)

FIG. 10. (Color online) Level-density measurements on ''’Sn
compared with microscopic calculations from Ref. [28].
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generally agrees very well with the measurements. Assuming
the GLO model with constant temperature but without the
pygmy resonance (GLO1), clearly gives a lower cross section
in all cases, as expected. This may be taken as support
of the finding of an enhanced strength function in the E,
region of ~5—11 MeV. The SLO model gives an overall
too high cross section, which is not surprising considering
the large overshoot in y-ray strength compared to our mea-
surements and also to (I',) data. We note that our calculated
cross section for ''°Sn(n,y)"7Sn using the GLO2 model
is in very good agreement with the one in the work of
Utsunomiya et al. [19].

For the ''"Sn(n,y)''8Sn case, we have applied the model
parameters that correspond to our scaled data (with a factor of
1.8). The resulting excellent agreement with the experimental
(n,y) data further supports our choice of renormalization in
Ref. [3]. In addition, we have tested the strength prediction
using parameters that fit with the original normalization,
which results in calculated cross sections that are clearly
underpredictive compared to the experimental data (not shown
here).

The reproduction of the '*°Sn(n,y)'?'Sn cross section
is not as good as for the other nuclei, as this calculation
seems to be somewhat more underpredictive. However, the
calculation is certainly an improvement compared to that of
the GLOI, which is a standard strength model without the
pygmy resonance. The underprediction might be explained by
a too low experimental value of (I',) in the normalization
procedure of the measurements. If the value had been higher,
the pygmy resonance would have produced more strength,
leading to a general increase of the calculated cross section.

We would also like to study the evolution of the resonances’
centroid energy Epy, with neutron number N. Figure 12
shows Epy, as a function of N for the isotopes studied at
the OCL. A x? fit has been performed on these data, resulting
in the linear relation Epy, = 2.0(16) + 0.090(23)N in units
of MeV.

The estimates on E,y, from others’ experimental data
on Sn are in agreement within the uncertainties with the
observed pattern: 28.5 MeV for !'%117Sn [19], ~7.8 MeV for
17.1198p [35], and 10.1(7) and 9.8(7) MeV for 130:1328q [36],
respectively. Note that an increase of the resonances’ centroid
energies with increasing neutron numbers was also found in
experimental data on Ca [37].

The observation of an increase of the centroid energy with
increasing neutron numbers is not in agreement with common
theoretical predictions. On the contrary, studies on Sn isotopes
instead predict a decrease of centroid energy with increasing
neutron numbers. These studies include the Hartree-Fock-
Bogoljubov (HFB) and multiphonon quasiparticle-phonon
models (QPM) by Tsoneva and Lenske [38], the relativistic
Hartree-Bogoliubov model (RHB) + relativistic quasiparticle
random phase approximation (RQRPA) (DD-ME2) model by
Paar [39], and the continuum QRPA model by Daoutidis [40].
Also, a theoretical study on Ca isotopes, using the extended
theory of finite Fermi systems (ETFFS) by Tertychny [37],
results in a decrease of centroid energy with neutron number
( contrary to experimental results on Ca, see Ref. [37], and
references therein). However, it is noted that Daoutidis [40]

044320-9



H. K. TOFT et al.

PHYSICAL REVIEW C 83, 044320 (2011)

450 116 117 450 118 119

400 Sn(n,y) ' 'Sn 400 Sn(n;y) "Sn
~ Koehler et al. : + Nishiyama et al

350 ® Macklin et al. 350 - ’
(S ishi E O Timokhov et al.
< + Nishiyama et al. = "
5 300 o Timokhov etal. | 300F 4 Wisshak et al.
B 250F A \éVi%shak etal. 250 0 GLO1
@ ~ LO1 £ — GLO2
g 200 \\ — GLO2 200 ?\. -.- SLO
g - : 1501~
o - Sea

100 £ S -
S0 e
F 0 :.
12005_ "7Sn(n,y)"83n 250 - 1203n(n’y)121sn

5 E + Nishiyama et al. r m  Macklin et al.
£ 1000 O Timokhov etal. | 200 O Timokhov et al.
= Ee 4 Wisshak et al. r 4 Wisshak et al.
S8 s8ooF ~. - GLO1 150 GLO1
Z i _ . — GLO2
3 - . --- sLO
o c 100 .
(7] L '~
o FLo
o

neutron energy Er| (MeV)

neutron energy En (MeV)

FIG. 11. (Color online) Data on neutron-capture cross sections for the target nuclei ''°~!'%120Sn compared with calculations for neutron
energies 220 keV. GLO1 (dotted line) is the GLO model assuming constant temperatures (given in Tables IV and VI) and GLO2 (solid line)
is the GLO1 model plus the prediction of the pygmy resonance. Measurements are from Koehler er al. [30], Macklin et al. [31], Nishiyama

et al. [32], Wisshak et al. [33], and Timokhov et al. [34].

predicts a relatively stable centroid energy in the atomic mass
region A = 120—126 compared to other mass regions. Hence,
the increase of centroid energy in the isotopes that we have
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FIG. 12. (Color online) Estimated centroid energies Epy
(squares) as a function of neutron number N, deduced from our
measurements on '10=11%12.1228y The solid line is a linear x? fit to
the measurements.

compared may be less than would have been observed in
another mass region.

Recent measurements using the (o, «’y) coincidence
method on '?*Sn compared to photon-scattering experiments
show a splitting into its isoscalar and isovector components
[41]. Hence, both components seem to be present, in agreement
with theoretical predictions.

The nature, origin, and integrated strength of the Sn
pygmy resonance are issues that are heavily debated. The E'1
neutron-skin oscillation mode, discussed in Refs. [39,42,43],
is assumed as the underlying physical phenomenon in most
of the theoretical predictions, both in macroscopic (e.g.,
Van Isacker et al. [42]) and microscopic approaches (e.g.,
Daoutidis [40], Tsoneva and Lenske [38], Paar [39], and
Sarchi et al. [43]). Most theoretical calculations predict a
systematic increase of the resonances’ strength as the number
of neutrons increase, due to the increase of the number of
neutrons in the skin. Another prediction is the increase by
neutron number up to '?°Sn followed by a decrease (Paar
[39]). Several of the predicted increases of integrated strength
concerning the isotopes that we have performed measurements
on are significant (e.g., Tsoneva and Lenske [38], Van Isacker
et al. [42], and Litvinova et al. [44]). It is noted that the study
by Daoutidis [40] predicts that also the integrated strength is
relatively stable in the mass region A = 120—126.

However, for our measurements on the pygmy resonances
in 116-19.121.1225yy we cannot see any dependency on neutron
number in the integrated strengths. The same resonance
prediction has, on the contrary, been applied for all isotopes.
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FIG. 13. (Color online) TRK values for Sn estimated from our
measurements (squares) compared to the theoretical prediction from
Van Isacker ef al. [42] (multiplied by a factor 14) (solid line) as a
function of neutron number N.

[The total integrated strengths and the TRK values of '2!:122Sn
being slightly larger than those of '1!17Sn (see Tables IV
and V) is explained by differences in the GLO models of
those isotopes.] Figure 13 shows our TRK values together
with those of Van Isacker ef al. [42] (multiplied by a factor of
14 in absolute value). The experimental result does not follow
the predicted increase. Still, the uncertainties in our estimated
resonance strengths are large. More experimental information
is therefore needed in order to answer the question of whether
the integrated strength in Sn increases with neutron number.

The experimental TRK values based on ours and others’
measurements are relatively large, compared to general exci-
tations. This might indicate that the pygmy resonance is due to
a collective phenomenon. However, its origin is unknown, and
single-particle excitations are not excluded. Various theoretical
predictions disagree on whether the neutron-skin oscillation is
collective or not [39].

A clarification of the electromagnetic character of the
pygmy resonance in Sn would be of utmost importance.
Present theoretical predictions assume an E'1 strength, model-
ing the resonance as a neutron-skin oscillation. Experimental
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studies have indicated an E1 character. Amongst these are the
nuclear resonance fluorescence (NRF) experiments performed
on 1012481 [26] and ''%124Sn [45], and the Coulomb dissoci-
ation experiments performed on '2°~1328n [36,46]. In addition
are the polarized photon beam experiments on '*¥Ba [47].
However, the existence of an M 1 component of the resonance
strength cannot be ruled out, as was discussed in Ref. [3].

VII. CONCLUSIONS

The level density and y-ray strength functions of 2!:122Sn
have been measured using the (*He,’He’y) and (CHe,ay)
reactions and the Oslo method. The level densities of '2!:122Sn
display steplike structures for excitation energies below
~4 MeV. One of the bumps is interpreted as a signature
of neutron pair breaking, in accordance with the findings in
16-119g

A significant enhancement in the y -ray strength is observed
in the '2"122Sn measurements for E, 2 5.2 MeV. The in-
tegrated strength of the resonances correspond to ~ I.Sf;%
of the TRK sum rule. These enhancements are compatible
with pygmy resonances centered at ~8.4(1) and ~8.6(2) MeV,
respectively.

Neutron-capture cross-section calculations using our
pygmy resonance predictions give significantly better repro-
duction of experimental (n,y) cross sections than standard
strength models without any pygmy resonance.

The pygmy resonances are compared to those observed
in 16=119Sp_ The evolution with increasing neutron numbers
of the pygmy resonances observed in '16-119:121.1228p g 4
clear increase of centroid energy from 8.0(1) MeV in ''Sn to
8.6(2) MeV in '?2Sn, while no difference in integrated strength
is observed. This finding is not in agreement with most theoret-
ical predictions. However, the experimental uncertainties are
large, and more experimental information is needed in order
to determine the nature of the pygmy resonances in the Sn
isotopes.

ACKNOWLEDGMENTS

We would like to thank H. Utsunomiya for giving us access
to yet unpublished experimental results from photoneutron
cross-section reactions 120'122Sn(y,n), and the Department of
Physics at the University of Jyvaskyld (JYFL) for kindly lend-
ing us the '?2Sn target. We also thank E. A. Olsen, J. Wikne,
and A. Semchenkov for excellent experimental conditions.
The funding of this research from The Research Council of
Norway (Norges forskningsrad) is gratefully acknowledged.

[1] U. Agvaanluvsan, A. C. Larsen, M. Guttormsen, R. Chankova,
G. E. Mitchell, A. Schiller, S. Siem, and A. Voinov, Phys. Rev.
C 179, 014320 (2009).

[2] U. Agvaanluvsan, A. C. Larsen, R. Chankova, M. Guttormsen,
G. E. Mitchell, A. Schiller, S. Siem, and A. Voinov, Phys. Rev.
Lett. 102, 162504 (2009).

[3] H. K. Toft et al., Phys. Rev. C 81, 064311 (2010).

[4] M. Guttormsen, A. Atac, G. Lgvhgiden, S. Messelt, T. Ramsgy,
J. Rekstad, T. F. Thorsteinsen, T. S. Tveter, and Z. Zelazny, Phys.
Scr., T 32, 54 (1990).

[5]1 M. Guttormsen, T. S. Tveter, L. Bergholt, F. Ingebretsen, and
J. Rekstad, Nucl. Instrum. Methods Phys. Res. A 374, 371
(1996).

[6] M. Guttormsen, T. Ramsgy, and J. Rekstad, Nucl. Instrum.
Methods Phys. Res. A 255, 518 (1987).
[71A. C. Larsen et al, Phys. Rev.

(2011).

[8] A. Schiller, L. Bergholt, M. Guttormsen, E. Melby, J. Rekstad,
and S. Siem, Nucl. Instrum. Methods Phys. Res. A 447, 498
(2000).

C 83, 034315

044320-11


http://dx.doi.org/10.1103/PhysRevC.79.014320
http://dx.doi.org/10.1103/PhysRevC.79.014320
http://dx.doi.org/10.1103/PhysRevLett.102.162504
http://dx.doi.org/10.1103/PhysRevLett.102.162504
http://dx.doi.org/10.1103/PhysRevC.81.064311
http://dx.doi.org/10.1088/0031-8949/1990/T32/010
http://dx.doi.org/10.1088/0031-8949/1990/T32/010
http://dx.doi.org/10.1016/0168-9002(96)00197-0
http://dx.doi.org/10.1016/0168-9002(96)00197-0
http://dx.doi.org/10.1016/0168-9002(87)91221-6
http://dx.doi.org/10.1016/0168-9002(87)91221-6
http://dx.doi.org/10.1103/PhysRevC.83.034315
http://dx.doi.org/10.1103/PhysRevC.83.034315
http://dx.doi.org/10.1016/S0168-9002(99)01187-0
http://dx.doi.org/10.1016/S0168-9002(99)01187-0

H. K. TOFT et al.

[9] A. Bohr and B. Mottelson, Nuclear Structure (Benjamin, New
York, 1969), Vol. 1.

[10] D. M. Brink, Ph.D. thesis, Oxford University, 1955.

[11] P. Axel, Phys. Rev. 126, 671 (1962).

[12] T. von Egidy, H. H. Schmidt, and A. N. Behkami, Nucl. Phys.
A 481, 189 (1988).

[13] R. Capote et al., Nucl. Data Sheets 110, 3107 (2009). Available
online at [http://www-nds.iaea.org/RIPL-3/].

[14] G. Audi and A. H. Wapstra, Nucl. Phys. A 595, 409 (1995).

[15] J. Dobaczewski, P. Magierski, W. Nazarewicz, W. Satuta, and
Z. Szymanski, Phys. Rev. C 63, 024308 (2001).

[16] A. Gilbertand A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965).

[17] A. Voinov, M. Guttormsen, E. Melby, J. Rekstad, A. Schiller,
and S. Siem, Phys. Rev. C 63, 044313 (2001).

[18] S. C. Fultz, B. L. Berman, J. T. Caldwell, R. L. Bramblett, and
M. A. Kelly, Phys. Rev. 186, 1255 (1969).

[19] H. Utsunomiya et al., Phys. Rev. C 80, 055806 (2009).

[20] V. V. Varlamov, B. S. Ishkhanov, V. N. Orlin, and V. A.
Tchetvertkova, Moscow State University Institute of Nuclear
Physics Report No. 2009, p. 3/847 (2009).

[21] V. V. Varlamov, N. N. Peskov, D. S. Rudenko, and M. E.
Stepanov, Vop. At. Nauki i Tekhn., Ser. Yadernye Konstanty
1-2 (2003).

[22] A. Leprétre, H. Beil, R. Bergere, P. Carlos, A. De Miniac,
A. Veyssiere, and K. Kernbach, Nucl. Phys. A 219, 39 (1974).

[23] J. Kopecky and R. E. Chrien, Nucl. Phys. A 468, 285 (1987).

[24] S. G. Kadmenskii, V. P. Markushev, and V. 1. Furman, Yad. Fiz.
37,277 (1983) [Sov. J. Nucl Phys. 37, 165 (1983)].

[25] T. Belgya et al., Handbook for Calculations of Nuclear Reaction
Data, RIPL-2, (IAEA, Vienna, 2006). Available online at
[http://www-nds.iaea.org/RIPL-2/].

[26] K. Govaert, F. Bauwens, J. Bryssinck, D. De Frenne, E. Jacobs,
W. Mondelaers, L. Govor, and V. Y. Ponomarev, Phys. Rev. C
57, 2229 (1998).

[27] A.]J. Koning, S. Hilaire, and M. C. Duijvestijn, in “TALYS-1.2,”
Proceedings of the International Conference on Nuclear Data
for Science and Technology, Nice, France, 2007, edited by
O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, and
S. Leray (EDP Sciences, 2008), p. 211. Available online at
[http://www.talys.eu/].

PHYSICAL REVIEW C 83, 044320 (2011)

[28] S. Goriely, S. Hilaire, and A. J. Koning, Phys. Rev. C 78, 064307
(2008).

[29] A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231
(2003).

[30] P. E. Koehler, R. R. Spencer, K. H. Guber, J. A. Harvey, N. W.
Hill, and R. R. Winters, in Proceedings of the International
Conference on Nuclear Data for Science and Technology,
Trieste, Italy, 1997, edited by G. Reffo, A. Ventura, and
G. Grandi (Italian Physical Society, Bologna, Italy, 1997).

[31] R. L. Macklin, T. Inada, and J. H. Gibbons, Nature (London)
194, 1272 (1962).

[32] J. Nishiyama, M. Igashira, T. Ohsaki, G. N. Kim, W. C.
Chung, and T. I. Ro, J. Nucl. Sci. Technol. (Tokyo) , 45, 352
(2008).

[33] K. Wisshak, F. Voss, Ch. Theis, F. Kippeler, K. Guber,
L. Kazakov, N. Kornilov, and G. Reffo, Phys. Rev. C 54, 1451
(1996).

[34] V. M. Timokhov, M. V. Bokhovko, M. V. Isakov, L. E. Kazakov,
V. N. Kononov, G. N. Manturov, E. D. Poletaev, and V. G.
Pronyaev, Yad. Fiz. 50, 609 (1989).

[35] E. J. Winhold, E. M. Bowey, D. B. Gayther, and B. H. Patrick,
Phys. Lett. 32B, 7 (1970).

[36] P. Adrich et al., Phys. Rev. Lett. 95, 132501 (2005).

[37] G. Tertychny, V. Tselyaev, S. Kamerdzhiev, F. Griimmer,
S. Krewald, J. Speth, A. Avdeenkov, and E. Litvinova, Phys.
Lett. B 647, 104 (2007).

[38] N. Tsoneva and H. Lenske, Phys. Rev. C 77, 024321
(2008).

[39] N. Paar, Rep. Prog. Phys. 70, 691 (2007).

[40] L. Daoutidis (private communication).

[41] J. Endres et al., Phys. Rev. Lett. 105, 212503 (2010).

[42] P. Van Isacker, M. A. Nagarajan, and D. D. Warner, Phys. Rev.
C45,R13 (1992).

[43] D. Sarchi, P. F. Bortignon, and G. Colo, Phys. Lett. B 601, 27
(2004).

[44] E. Litvinova, P. Ring, and V. Tselyaev, Phys. Rev. Lett. 105,
022502 (2010).

[45] A. Tonchev (private communication).

[46] Klimkiewicz et al., Phys. Rev. C 76, 051603(R) (2007).

[47] A. Tonchev et al., Phys. Rev. Lett. 104, 072501 (2010).

044320-12


http://dx.doi.org/10.1103/PhysRev.126.671
http://dx.doi.org/10.1016/0375-9474(88)90491-5
http://dx.doi.org/10.1016/0375-9474(88)90491-5
http://dx.doi.org/10.1016/j.nds.2009.10.004
http://www-nds.iaea.org/RIPL-3/
http://dx.doi.org/10.1016/0375-9474(95)00445-9
http://dx.doi.org/10.1103/PhysRevC.63.024308
http://dx.doi.org/10.1139/p65-139
http://dx.doi.org/10.1103/PhysRevC.63.044313
http://dx.doi.org/10.1103/PhysRevC.63.044313
http://dx.doi.org/10.1103/PhysRevC.63.044313
http://dx.doi.org/10.1103/PhysRev.186.1255
http://dx.doi.org/10.1103/PhysRevC.80.055806
http://dx.doi.org/10.1016/0375-9474(74)90081-5
http://dx.doi.org/10.1016/0375-9474(87)90518-5
http://www-nds.iaea.org/RIPL-2/
http://dx.doi.org/10.1103/PhysRevC.57.2229
http://dx.doi.org/10.1103/PhysRevC.57.2229
http://www.talys.eu/
http://dx.doi.org/10.1103/PhysRevC.78.064307
http://dx.doi.org/10.1103/PhysRevC.78.064307
http://dx.doi.org/10.1016/S0375-9474(02)01321-0
http://dx.doi.org/10.1016/S0375-9474(02)01321-0
http://dx.doi.org/10.1038/1941272a0
http://dx.doi.org/10.1038/1941272a0
http://dx.doi.org/10.3327/jnst.45.352
http://dx.doi.org/10.3327/jnst.45.352
http://dx.doi.org/10.1103/PhysRevC.54.1451
http://dx.doi.org/10.1103/PhysRevC.54.1451
http://dx.doi.org/10.1103/PhysRevLett.95.132501
http://dx.doi.org/10.1016/j.physletb.2007.01.069
http://dx.doi.org/10.1016/j.physletb.2007.01.069
http://dx.doi.org/10.1016/j.physletb.2007.01.069
http://dx.doi.org/10.1016/j.physletb.2007.01.069
http://dx.doi.org/10.1103/PhysRevC.77.024321
http://dx.doi.org/10.1103/PhysRevC.77.024321
http://dx.doi.org/10.1088/0034-4885/70/5/R02
http://dx.doi.org/10.1103/PhysRevLett.105.212503
http://dx.doi.org/10.1103/PhysRevC.45.R13
http://dx.doi.org/10.1103/PhysRevC.45.R13
http://dx.doi.org/10.1016/j.physletb.2004.09.019
http://dx.doi.org/10.1016/j.physletb.2004.09.019
http://dx.doi.org/10.1103/PhysRevLett.105.022502
http://dx.doi.org/10.1103/PhysRevLett.105.022502
http://dx.doi.org/10.1103/PhysRevC.76.051603
http://dx.doi.org/10.1103/PhysRevLett.104.072501

