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Calculations of α-decay half-lives for heavy and superheavy nuclei

Yibin Qian,1,* Zhongzhou Ren,1,2,3,† and Dongdong Ni1
1Department of Physics, Nanjing University, Nanjing 210093, China

2Kavli Institute for Theoretical Physics China, Beijing 100190, China
3Center of Theoretical Nuclear Physics, National Laboratory of Heavy-Ion Accelerator, Lanzhou 730000, China

(Received 24 January 2011; revised manuscript received 29 March 2011; published 25 April 2011)

Systematic calculations on the α-decay half-lives of heavy and superheavy nuclei are performed within a
deformed version of the cluster model, using the modified two-potential approach. The deformed Woods-Saxon
potential is employed to calculate the α-decay width through a deformed barrier. For comparison the calculated
α-decay half-lives in the empirical relations are also presented. The present study is initially restricted to even-even
nuclei in the heavy mass region with N > 126. Then the study is extended to the recentlyobserved heaviest nuclei,
including synthesized superheavy elements and isotopes. The α-decay half-lives obtained are found to be in good
agreement with the experimental data.

DOI: 10.1103/PhysRevC.83.044317 PACS number(s): 23.60.+e, 21.10.Tg, 21.60.Gx, 27.90.+b

I. INTRODUCTION

The study of α decay dates back to the early days of nuclear
physics, even to the first observation of unknown radiation by
Becquerel in 1896. With the foundation and development of
quantum mechanics, Gamow [1] and Condon and Gurney [2]
independently described α decay as a quantum tunneling
problem for the first time in 1928. These pioneering works
were the first successful applications of quantum mechanics
to nuclear physics. Different from the cluster model based on
the Gamow picture, some other theoretical models, such as
the shell model and the fissionlike model, have also been
proposed in the pursuit of a microscopic description of α

decay. Consequently, the absolute α-decay width has been
estimated by many theoretical calculations [3–17], which
employ various approaches such as the WKB method [4–7],
the distorted-wave Born approximation [13], the coupled-
channel approach [14,15], and phenomenological methods
[16,17]. On the experimental side, as an engaging topic in
contemporary nuclear physics, the observation of α-decay
chains from unknown parent nuclei to known nuclei has been a
reliable method used to identify different superheavy elements
(SHEs) and isomeric states [18–21]. In addition, α emissions
are helpful in the research of the exotic molecular states in light
nuclei [22]. Moreover, α decay, as one of the most important
decay modes for unstable nuclei, has long been a useful and
precise tool in the investigation of nuclear structure [23–27].
For example, measurements of α decay in the closed-shell
region around Z = 82 can provide unique shell structure
information [23,24] and also give an opportunity to find a
triplet of differently shaped states [27].

Based on the Gamow model, the α-decay process is usually
considered as one preformed α particle tunneling through the
potential barrier between the cluster and the daughter nucleus.
Obviously, the α-preformation factor is indispensable for the
calculations of α-decay half-lives. However, it is actually
difficult to obtain the quantity due to the complexity of the

*qyibin@gmail.com
†zren@nju.edu.cn

nuclear many-body problem. Plenty of theoretical attempts
have been made to achieve the goal. Several approaches
have been developed for this purpose [25], e.g., the shell
model in combination with the BCS method [28] and the
hybrid model supplementing the shell-model wave function
with a cluster component [3]. At present, the microscopic
calculation (the hybrid model) indicates that the weight of
clustering is as high as 0.3 for the typical nucleus 212Po with
two protons and two neutrons outside the double magic shell.
Alternatively, the formation factor may also be extracted from
the ratios of the experimental α-decay width to the penetration
probability [5,29,30], considering that the absolute α-decay
width is mainly determined by the formation factor and the
barrier penetration probability within the Gamow model.

As mentioned in Refs. [31,32], the tunneling problem can
be simply treated by reducing it to two separate problems: the
bound-state problem and the scattering-state problem. This can
be achieved consistently by the two-potential approach (TPA),
which is a fully quantum method based on the perturbation
theory. Moreover, the TPA not only provides good physical
insight, but it is simple and accurate as well [32]. Very
recently we employed the two-potential approach to evaluate
the α-decay half-lives of medium mass nuclei within the
cluster model, including the exotic nuclei around the N =
126 shell closure [33,34]. The calculated results of medium
nuclei are found to agree well with the experimental data.
This has encouraged us to extend the previous work to the
heavy and superheavy regions. In addition, Gurvitz et al. have
proposed further developments for the TPA, which provide
a detailed discussion on the corrections to the TPA and a
modified form resembling the R-matrix theory without losing
its accuracy [32]. In the present study we use the modified two-
potential approach (MTPA) within the cluster model to give
a description of α decay. Meanwhile, we extend the approach
for the system composed of the α particle and the deformed
daughter nucleus. The α-core nuclear potential is obtained in
a deformed potential of the Woods-Saxon shape, which has
achieved remarkable success in both nuclear structure and
nuclear reactions [13]. In order to obtain the α-decay width,
the numerical solution of the radial Schrödinger equation for
the bound state is preformed. In addition, we employ the
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Viola-Seaborg formula to evaluate the α-decay half-lives for
comparison. This famous Viola-Seaborg formula [35] has been
widely used for α decay [36,37] and is also extended to cluster
radioactivity [38]. Recently, other empirical relations were de-
veloped by Denisov and Khudenko [16] and Royer [17], which
introduced the terms related to the angular momentum and
parity of α transition, to evaluate the partial α-decay half-lives.
These two analytical formulas give similarly good agreement
between the evaluated results and the experimental data.

This article is organized as follows. In Sec. II the theoretical
framework of the calculation of α-decay half-lives is briefly
described. In Sec. III we present numerical results and detailed
discussion for heavy and superheavy nuclei, including the
recently observed SHEs. A brief summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

Consider a quantum well V (r) with a barrier, which
contains a quasistationary state at E. The coordinate space
can be divided into two regions by a separation radius
R. Correspondingly, one introduces two auxiliary potentials
[31,32]: the inner potential

U (r) =
{
V (r), r � R

V (R) = V0, r > R
(1)

and the outer potential

W (r) =
{

0, r � R

V (r) − V0, r > R.
(2)

The separation radius R is taken inside the barrier of the total
interaction potential V (Fig. 1). As additional information
we introduce a shifted potential W̃ (r) = W (r) + V0, which
vanishes for r → ∞, to solve the eigenproblem perturbatively
in the TPA since the perturbation W (r) → −V0 at r → ∞
[31,32].

To extend the α-decay width for the deformed case we
assume an α particle interacts with an axially symmetric
deformed daughter nucleus. The total interaction potential,
including the attractive part, the repulsive Coulomb part, and
the additional centrifugal part, is given by

V (r, θ ) = VN (r, θ ) + VC(r, θ ) + h̄2�(� + 1)

2µr2
, (3)

where θ is the orientation angle of the emitted α particle with
respect to the symmetric axis of the deformed daughter nucleus
and � is the angular momentum carried by the α particle. The
nuclear potential is given by the Woods-Saxon type potential

VN (r, θ ) = V0

1 + exp
(

r−R(θ)
a

) , (4)

where the radius parameter R(θ ) = R0[1 + β2Y20(θ ) +
β4Y40(θ )] fm, R0 = 1.18A

1/3
d , and the diffuseness a = 0.6 fm.

These Woods-Saxon parameter values are consistent with
those of Refs. [13,39]. Here Ad , β2, and β4 are, respectively, the
mass number, the quadrupole deformation parameter, and the
hexadecapole deformation parameter of the daughter nucleus.
The deformation parameters are taken from the work of Möller

FIG. 1. (Color online) In the spherical (i.e., one-dimensional)
case, for r > r̄ the total potential V (r) can be approximated by
its repulsive part Vrep(r). r1,2 denote the classical turning points
[V (r1), V (r2) = Q]. Also shown are the inner potential U (top) and
the introduced potential W̃ (bottom). It is evident that the separation
radius R should be taken away from r1, but not too close to r2, to
achieve corrections to the TPA [32].

et al. [40]. The deformed Coulomb term is taken as the form
of Refs. [11,12]:

VC(r, θ ) = ZdZαe2

r

(
1 + 3R2

0

5r2
β2Y20(θ ) + 3R4

0

9r4
β4Y40(θ )

)

(5)

for r > R(θ ) and

VC(r, θ ) ≈ ZdZαe2

2R(θ )

[
3 − r2

R(θ )2
+ 6R2

0

5R(θ )2
β2Y20(θ )

×
(

2− r3

R(θ )3

)
+ 3R4

0

9R(θ )4
β4Y40(θ )

(
7− 5r2

R(θ )2

) ]

(6)

for r � R(θ ).
For a certain orientation angle θ of the α particle, one

can correspondingly obtain a result for the decay width by
following the MTPA procedure [32]:

�(θ ) = h̄2k

µ

(
φn�j (r̄)

G�(kr̄)

)2

, (7)

where k = √
2µE/h̄, G� is the irregular Coulomb wave

function, and φn�j (r)/r is the radial wave function of the bound
state, for one orientation angle θ with the inner potential U (θ ).
The value of r̄ is chosen in such a way that the potential
V can be well approximated by the repulsive part (i.e., the
attractive part is disregarded) for r � r̄ within a certain θ (see
Fig. 1). It should be noted that the decay width �(θ ) does
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not depend on the particular choice of R or r̄ , as discussed
in Refs. [31,32]. Moreover, it is interesting to note that the
final expression of the MTPA resembles R-matrix theory, yet
without uncertainties related to the choice of the matching
radius. There are the further details on the comparison of these
two theoretical approaches in Ref. [32].

The radial Schrödinger equation of the bound state with
U (θ ), for a certain angle θ , is numerically solved to obtain
a corresponding decay width �(θ ). In this procedure, the
depth V0 is adjusted to reproduce the experimental Q value
and the special number of internal nodes determined by the
Wildermuth condition [41], which is given by

G = 2n + � =
4∑

i=1

gi. (8)

In this expression, n is the number of internal nodes in the radial
wave function and gi are the corresponding oscillator quantum
numbers of the nucleons composing the α cluster, whose values
are chosen to guarantee that the α cluster outside the shell is
occupied entirely by the core nucleus. This is restricted by the
Pauli principle. In this case we take the global quantum number
G = 22 for heavier nuclei with N > 126. This is consistent
with previous studies [6,13]. For example, we take the α emit-
ter 218Th, a nearly spherical α-daughter system, to present the
detailed properties of the bound-state wave function. Here the
deformation parameters of the daughter nucleus are taken as
β2 = β4 = 0, which means this system goes back to a spherical
one. As one can see from Fig. 2(a), the wave function has 11
nodes, as expected. Meanwhile, the decimal logarithm of the
wave function begins to decrease quickly from a value of about
−7 in linear form for r > R, as shown in Fig. 2(b). This means
that the wave function decreases sharply in magnitude by about
7 orders in the barrier region (r < R) and begins to vanish
gradually in an exponential law from the separation radius R.

After the angle-dependent decay width �(θ ) is obtained,
the final α-decay width can be obtained by averaging it in all
directions:

� =
∫ π/2

0
�(θ ) sin(θ ) dθ. (9)

FIG. 2. Schematic plot of the bound-state wave function in the
spherical 214Ra + α system in (a) the inner region (r < R) and (b)
the outer region (r > R). The separation radius R is indicated. Note
that y axis in (b) is designated the decimal logarithm.

The above procedure for the deformed system has been widely
applied in the calculations of both α-decay half-lives and α-
capture cross sections [10–12,42,43]. The half-life of α decay
can be achieved as

T1/2 = h̄ ln2

Pα�
, (10)

where the preformation factor Pα is an indispensable quantity
for the calculation. In terms of the nuclear structure, the
preformation factor is very important because α decay is a
rich source of nuclear structure information. Nevertheless,
because of the complexity of both the nuclear potential and
the nuclear many-body problem, it is quite difficult to evaluate
the value of Pα . The preformation factor α is obtained from the
experimental analysis of the (n,α) and (p,α) reactions and α

radioactivity of even-even nuclei [25]. It is shown that the
preformation factor varies smoothly in the open-shell region
and has a value smaller than 1.0. As a result, it is reasonable
and appropriate to take the preformation factor as constant for
different kinds of nuclei. In the present work its value is taken
as follows: Pα = 0.34 for even-even nuclei, Pα = 0.21 for
odd-A nuclei, and Pα = 0.15 for odd-odd nuclei. These values
agree well with both the microscopic calculation for 212Po
and the experimental data of open-shell nuclei [3,25] and the
procedure is consistent with the model of Buck et al. [4]. There
is no doubt that the agreement between the calculated results
and the experimental data should be better if the Pα value is
taken as a variable with different parent nuclei instead of a
constant [34,44]. This is worth further investigation.

III. NUMERICAL RESULTS AND DISCUSSION

For comparison, the well-known Viola-Seaborg formula,
which is employed to evaluate α-decay half-lives, is written
as [35–37]

log10 T1/2 = (aZ + b)Q−1/2 + (cZ + d) + h, (11)

where Z is the proton number of the parent nucleus and h is the
hindrance factor for nuclei with unpaired nucleons. Through
the best fit to the available experimental data, including
the recently synthesized SHEs and isotopes, we obtain the
parameters a = 1.646 32, b = −7.448 80, c = −0.209 56, and
d = −33.0187, which are determined in an adjustment that
takes into account the available data for even-even heavy and
superheavy nuclei (with N > 126 and Z � 82) [21,45–49].
The hindrance factor h is obtained as 0, 0.1367, 0.5172, and
0.5007 for even-even, even-odd, odd-even, and odd-odd nuclei,
respectively, through a least-squares fit to the experimental
data.

Very recently, Denisov and Khudenko [16] and Royer [17]
proposed accurate formulas to evaluate α-decay half-lives. For
example, Denisov and Khudenko [16] offer a set of simple
relations for the evaluation of the half-lives of α transitions
between ground states, which work well for both light and
heavy α emitters. Considering the recent progress in the
experimental synthesis of SHEs and isotopes [21,47], it is of
interest to use their relations to calculate the α-decay half-lives
of heavy and superheavy nuclei. Based on the formula in
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Ref. [16], a different fitting of the parameters is made where
the recent data of superheavy nuclei are also included. For
77 even-even, 40 even-odd, 42 odd-even, and 29 odd-odd
nuclei, we find that available experimental α-decay half-lives
can be well reproduced with the following parameters for the
formulas [16]:

log10

(
T e-e

1/2

)=−26.7517−1.1046(A−4)1/6Z1/2+1.5826Z√
Q

,

(12)

log10

(
T e-o

1/2

) = −26.7321−1.2597(A−4)1/6Z1/2+1.7071Z√
Q

+ 0.7775
√

�(� + 1)

QA−1/6
− 0.7689[(−1)� − 1],

(13)

log10

(
T o-e

1/2

) = −29.5599−1.1342(A − 4)1/6Z1/2+1.7040Z√
Q

+ 0.3693
√

�(� + 1)

QA−1/6
− 0.5760[(−1)� − 1],

(14)

log10

(
T o-o

1/2

) = −23.9210−1.1798(A−4)1/6Z1/2+1.5720Z√
Q

+ 0.9678
√

�(� + 1)

QA−1/6
− 0.1937[(−1)� − 1].

(15)

The present study is initially restricted to the ground-state
(g.s.) to g.s. α transitions of even-even heavy nuclei with N >

126. Consequently, it is reasonable to take these transitions as
favored α decays. The experimental data and the calculated
α-decay half-lives for even-even heavy nuclei with A < 260
are listed in Table I. These experimental values, such as decay
energies and half-lives, are mainly taken from Refs. [45,46]. In
Table I the first and second columns list the elemental symbol
and the mass number of the parent nucleus, respectively. The
third and fourth columns are, respectively, the experimental
decay energies and partial half-lives for the g.s. to g.s. α

transitions. The numerical results obtained with the MTPA, the
Viola-Seaborg formula, and the empirical relations of Ref. [16]
are presented in the last three columns, respectively. Note that
the results of the empirical formulas are calculated with the
parameter values from the present work. As seen from Table
I, the calculated half-lives are found to be in good agreement
with the experimental data, although the α-decay half-lives
span a large order of magnitude.

For further insight, we give a comparison of the calculated
results with the experimental data for different isotopic
chains in Fig. 3. One can see that the absolute values of
log10(T calc

1/2 /T
expt

1/2 ) are generally less than 0.4, which corre-

sponds to the values of T calc
1/2 /T

expt
1/2 in the range of about

0.4–2.5. The slightly large deviation is for the parent nucleus
210Pb, which may be caused by the effect of the Z = 82 closed
shell. This effect results in a decrease of the α-preformation
factor, which has been shown in the experimental analysis [25].

FIG. 3. (Color online) Decimal logarithm of T calc
1/2 /T

expt
1/2 versus

the neutron number N for even-even heavy nuclei with N > 126.
The values 0.2 and 0.4 of the decimal logarithms correspond to
the absolute deviations of the half-lives with factors of 1.6 and 2.5,
respectively.

It is obvious that a fixed value of the preformation factor cannot
describe the features of the nuclear structure. Nevertheless,
the systematic trend of the agreement between the calculated
and measured α-decay half-lives for different isotopic and
isotonic chains can provide some information on the properties
of the nuclear structure. As shown in Fig. 3, the deviation of
log10(T calc

1/2 /T
expt

1/2 ) increases from the neutron number N = 128
for several isotopic chains, which results from the influence of
the spherical shell closure N = 126. Meanwhile, the effect of
the deformed shell N = 152 is clear [15,30]. The deviations
of the agreement between calculations and experiments at
N = 152 are obviously smaller than those of the neighboring
region. Similarly, we also plot the deviations of N = 128–156
isotones versus the proton number of the parent nucleus. In
Fig. 4 one can see that the deviations for different isotones
generally increase with the proton number moving away from
the spherical shell closure Z = 82 and in general decrease
with the proton number approaching the deformed Z = 100
shell [30].

For the 64 even-even heavy nuclei, the value of the
standard deviation is 0.21, which is defined as

√
〈σ 2〉 =√

1
N

∑N
i=1(log10 T i

calc − log10 T i
expt)2. This means that there is

good agreement between the calculated α-decay half-lives and
the experimental data within a mean factor of 2. In light of this,
we also extend this study to the superheavy region including
the SHEs. This can be considered as a further test of the validity
and applicability of the present method. Considering that there
is little knowledge of the level schemes in the superheavy mass
region, the angular momentum of the emitted α particle for
superheavy nuclei is assumed to be �= 0 (i.e., a favored α

transition).
Table II displays the detailed numerical results of the

observed α-decay chains originating from the recently syn-
thesized SHEs. The experimental data are mostly taken from
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TABLE I. Comparison of the experimental and calculated α-decay half-lives for even-even heavy nuclei with neutron number N > 126.
The last two columns are the results obtained with the Viola-Seaborg formula (denoted by form 1) and the empirical relations of Denisov and
Khudenko (denoted by form 2), respectively, for which calculations are performed with the present set of parameters.

Element A Q(MeV) T
expt

1/2 (s) T calc
1/2 (s) T form 1

1/2 (s) T form 2
1/2 (s)

Pb 210 3.792 3.69 ×1016 1.02 ×1016 1.98 ×1015 3.82 ×1015

Po 212 8.954 2.99 ×10−7 1.74 ×10−7 1.27 ×10−7 1.08 ×10−7

214 7.833 1.64 ×10−4 1.67 ×10−4 1.34 ×10−4 1.16 ×10−4

216 6.906 1.45 ×10−1 1.81 ×10−1 1.47 ×10−1 1.30 ×10−1

218 6.115 1.86 ×102 2.31 ×102 1.95 ×102 1.77 ×102

Rn 214 9.208 2.70 ×10−7 2.08 ×10−7 1.45 ×10−7 1.34 ×10−7

216 8.200 4.50 ×10−5 7.28 ×10−5 6.32 ×10−5 5.81 ×10−5

218 7.263 3.50 ×10−2 5.99 ×10−2 5.38 ×10−2 4.99 ×10−2

220 6.405 5.56 ×101 1.05 ×102 9.11 ×101 8.62 ×101

222 5.590 3.31 ×105 6.38 ×105 4.92 ×105 4.83 ×105

Ra 216 9.526 1.82 ×10−7 1.59 ×10−7 1.16 ×10−7 1.17 ×10−7

218 8.546 2.56 ×10−5 4.26 ×10−5 3.55 ×10−5 3.52 ×10−5

220 7.592 1.81 ×10−2 2.98 ×10−2 2.61 ×10−2 2.58 ×10−2

222 6.679 3.92 ×101 5.57 ×101 5.20 ×101 5.21 ×101

224 5.789 3.33 ×105 4.04 ×105 4.54 ×105 4.70 ×105

226 4.871 5.35 ×1010 6.63 ×1010 6.42 ×1010 7.13 ×1010

Th 218 9.849 1.17 ×10−7 1.33 ×10−7 9.12 ×10−8 1.01 ×10−7

220 8.953 9.70 ×10−6 1.80 ×10−5 1.41 ×10−5 1.52 ×10−5

222 8.127 2.29 ×10−3 3.53 ×10−3 3.04 ×10−3 3.19 ×10−3

224 7.298 1.33 ×100 1.41 ×100 1.62 ×100 1.68 ×100

226 6.451 2.43 ×103 2.14 ×103 3.35 ×103 3.48 ×103

228 5.520 8.35 ×107 7.63 ×107 1.04 ×108 1.12 ×108

230 4.770 3.12 ×1012 3.00 ×1012 3.56 ×1012 4.00 ×1012

232 4.082 5.67 ×1017 6.45 ×1017 5.89 ×1017 7.01 ×1017

U 222 9.500 1.25 ×10−6 3.68 ×10−6 2.66 ×10−6 3.13 ×10−6

224 8.620 7.29 ×10−4 7.96 ×10−4 5.65 ×10−4 6.43 ×10−4

226 7.701 4.12 ×10−1 3.56 ×10−1 3.95 ×10−1 4.41 ×10−1

228 6.803 8.45 ×102 5.17 ×102 8.23 ×102 9.14 ×102

230 5.993 2.67 ×106 2.08 ×106 3.38 ×106 3.76 ×106

232 5.414 3.19 ×109 2.37 ×109 3.93 ×109 4.33 ×109

234 4.858 1.08 ×1013 1.12 ×1013 1.10 ×1013 1.21 ×1013

236 4.573 1.00 ×1015 1.16 ×1015 1.11 ×1015 1.18 ×1015

238 4.270 1.78 ×1017 1.66 ×1017 2.48 ×1017 2.56 ×1017

Pu 232 6.716 1.33 ×104 1.19 ×104 1.33 ×104 1.52 ×104

234 6.310 7.73 ×105 6.19 ×105 8.39 ×105 9.16 ×105

236 5.867 1.30 ×108 1.40 ×108 1.25 ×108 1.31 ×108

238 5.593 3.90 ×109 4.00 ×109 3.71 ×109 3.69 ×109

240 5.256 2.84 ×1011 2.47 ×1011 3.43 ×1011 3.27 ×1011

242 4.985 1.54 ×1013 1.16 ×1013 1.81 ×1013 1.65 ×1013

244 4.666 3.17 ×1015 2.27 ×1015 2.99 ×1015 2.63 ×1015

Cm 240 6.398 3.29 ×106 2.40 ×106 2.52 ×106 2.56 ×106

242 6.216 1.90 ×107 1.92 ×107 1.85 ×107 1.75 ×107

244 5.902 7.43 ×108 8.17 ×108 7.13 ×108 6.40 ×108

246 5.475 1.83 ×1011 1.36 ×1011 1.68 ×1011 1.45 ×1011

248 5.162 1.46 ×1013 1.33 ×1013 1.40 ×1013 1.16 ×1013

Cf 240 7.719 9.74 ×101 5.39 ×101 6.82 ×101 7.74 ×101

242 7.517 2.62 ×102 2.05 ×102 3.74 ×102 3.94 ×102

244 7.329 2.22 ×103 1.46 ×103 1.94 ×103 1.90 ×103

246 6.862 1.62 ×105 1.24 ×105 1.55 ×105 1.44 ×105

248 6.361 3.60 ×107 3.05 ×107 2.89 ×107 2.56 ×107

250 6.128 4.87 ×108 3.73 ×108 4.07 ×108 3.38 ×108

252 6.217 1.02 ×108 9.28 ×107 1.46 ×108 1.10 ×108

254 5.927 2.03 ×109 3.47 ×109 4.52 ×109 3.23 ×109
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TABLE I. (Continued)

Element A Q(MeV) T
expt

1/2 (s) T calc
1/2 (s) T form 1

1/2 (s) T form 2
1/2 (s)

Fm 246 8.374 1.49 ×100 1.27 ×100 2.20 ×100 2.31 ×100

248 8.002 4.84 ×101 2.28 ×101 3.90 ×101 3.82 ×101

250 7.557 2.65 ×103 1.05 ×103 1.60 ×103 1.47 ×103

252 7.153 1.09 ×105 3.97 ×104 6.25 ×104 5.43 ×104

254 7.308 1.37 ×104 8.80 ×103 1.48 ×104 1.17 ×104

256 7.027 1.35 ×105 1.41 ×105 2.09 ×105 1.54 ×105

No 252 8.550 4.71 ×100 2.00 ×100 3.07 ×100 3.10 ×100

254 8.226 7.08 ×101 2.89 ×101 3.61 ×101 3.40 ×101

256 8.581 3.36 ×100 1.87 ×100 2.44 ×100 2.08 ×100

Rf 256 8.930 2.38 ×100 7.87 ×10−1 9.76 ×10−1 1.04 ×100

258 9.250 9.23 ×10−2 8.27 ×10−2 1.08 ×10−1 1.04 ×10−1

Refs. [21,47–49], including the element Z = 117 [21], several
isotopes [48], and data with improved accuracy [49]. The SHE
experiments are very difficult and usually few decay events are

observed. Hence the experimental error bar is relatively large in
the measurement of both decay energies and half-lives. Despite
this, the experimental α-decay half-lives are well reproduced

TABLE II. Same as Table I but for the recently observed α-decay chains of the SHEs. aHalf-lives deduced from the only event of the
observed 294117 decay chain. bUncertain experimental error bar.

Element A Q(MeV) T
expt

1/2 T calc
1/2 T form 1

1/2 T form 2
1/2

118 294 11.81(6) 0.89+1.07
−0.31 ms 1.05 ms 0.41 ms 0.52 ms

116 290 11.00(8) 7.1+3.2
−1.7 ms 10.9 ms 10.2 ms 11.6 ms

114 286 10.33(6) 0.26+0.08
−0.04 s 0.17 s 0.15 s 0.15 s

117 293 11.18(8) 14+11
−4 ms 15 ms 23 ms 33 ms

115 289 10.46(9) 0.22+0.26
−0.08 s 0.23 s 0.43 s 0.67 s

113 285 9.88(8) 5.5+5.0
−1.8 s 2.0 s 4.3 s 7.0 s

117 294 10.96(10) 78+370
−36 ms 66 ms 79 ms 63 ms

115 290 10.09(40) 0.023 sa 2.5 s 4.4 s 3.3 s
113 286 9.77(10) 28.3 s 5.5 s 8.6 s 6.2 s
111 282 9.13(10) 0.74 sa 86.80 s 171.33 s 117.44 s
109 278 9.69(10) 11.0 sa 0.6 s 0.8 s 0.5 s
107 274 8.93(10) 1.3 mina 0.3 min 0.5 min 0.4 min
116 293 10.69(6) 61+57

−20 ms 121 ms 87 ms 89 ms
114 289 10.01(3) 2.1+0.8

−0.4 s 1.7 s 2.2 s 1.9 s
112 285 9.34(3) 29+11

−6 s 33 s 54 s 51 s
110 281 8.86(3) 144+250

−12 s 190 s 253 s 420 s
116 292 10.80(7) 18+16

−6 ms 34 ms 33 ms 35 ms
114 288 10.08(6) 0.80+0.27

−0.16 s 1.02 s 0.72 s 0.69 s
112 284 9.349(50) 9.8+18

−3.8 s 17.4 s 23.9 s 20.8 s
115 288 10.61(6) 87+105

−30 ms 174 ms 166 ms 138 ms
113 284 10.15(6) 0.48+0.58

−0.17 s 0.60 s 0.72 s 0.57 s
111 280 9.87(6) 3.6+4.3

−1.3 s 0.53 s 1.04 s 0.80 s
115 287 10.74(9) 32+155

−14 ms 59 ms 79 ms 118 ms
113 283 10.26(9) 100+490

−45 ms 155 ms 373 ms 543 ms
111 279 10.52(16) 170+810

−80 ms 11 ms 19 ms 19 ms
113 282 10.78(8) 73+134

−29 ms 10 ms 16 ms 14 ms
111 278 10.85(8) 4.2+7.5

−1.7 ms 2.2 ms 2.7 ms 2.4 ms
110 270 11.20(5) 100+140

−40 µs 54 µs 65 µs 77 µs
108 266 10.336(20) 2.3+1.3

−0.6 ms 1.9 ms 2.2 ms 2.4 ms
108 270 9.02(3) 3.6+0.8

−1.4 s 6.9 s 11.7 s 11.2 s
106 266 8.76(5) 25.7 sb 8.9 s 16.3 s 14.5 s
108 264 10.591(20) 0.85 msb 0.43 ms 0.49 ms 0.59 ms
106 260 9.92(3) 9.5+2.1

−1.4 ms 4.4 ms 6.4 ms 7.1 ms
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FIG. 4. (Color online) Deviations between the calculated and
measured half-lives versus the proton number Z for the even-even
isotones, which show the effects of the spherical shell Z = 82 and the
deformed shell Z = 100.

in the present study, except for the 294117 decay chain. In
particular, the discrepancy between theory and experiment
is obviously large for 282111 and 290115. As mentioned
in Ref. [21], only one decay event is observed originating
from the isotope 294117 in the synthesized experiment. In
addition, the experimental error bar of the Q value for 290115
is 0.40 MeV, which could cause large uncertainty in the
calculation of α-decay half-lives. It will be interesting to
investigate the cause of this discrepancy in detail. In general,

as shown in the tables, the MTPA within a deformed version
of the cluster model gives a good description of α decay.

IV. CONCLUSION

In summary, the modified two-potential approach is em-
ployed and extended to give a systematic calculation of the
α-decay half-lives of even-even heavy nuclei within the cluster
model, taking into account the nuclear deformation effect.
The deformation-dependent α-nucleus potential is applied to
evaluate the α-decay width. We also extend the calculation to
the observed α-decay chains of recently synthesized SHEs and
isotopes. The α preformation factor is considered constant for
each kind of nucleus. The shell effect on α transitions is also
discussed to some extent. Moreover, we have evaluated the
α-decay half-lives in the empirical formulas for comparison.
As shown in Tables I and II, there is good agreement between
the calculated half-lives and the experimental data. The present
work has the potential to be extended to further investigation of
α-decay properties within reasonable nuclear structure models.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (Grants No. 11035001, No. 10735010,
and No. 10975072), the 973 National Major State Basic Re-
search and Development of China (Grants No. 2007CB815004
and No. 2010CB327803), CAS Knowledge Innovation Project
No. KJCX2-SW-N02, and Research Fund of Doctoral Point,
Grant No. 20100091110028.

[1] G. Gamow, Z. Phys. 51, 204 (1928).
[2] E. U. Condon and R. W. Gurney, Nature (London) 122, 439

(1928).
[3] K. Varga, R. G. Lovas, and R. J. Liotta, Phys. Rev. Lett. 69, 37

(1992).
[4] B. Buck, A. C. Merchant, and S. M. Perez, At. Data Nucl. Data

Tables 54, 53 (1993).
[5] P. Mohr, Phys. Rev. C 73, 031301(R) (2006).
[6] J. C. Pei, F. R. Xu, Z. J. Lin, and E. G. Zhao, Phys. Rev. C 76,

044326 (2007).
[7] G. Royer, J. Phys. G: Nucl. Part. Phys. 26, 1149 (2000).
[8] N. G. Kelkar and H. M. Castañeda, Phys. Rev. C 76, 064605
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