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Investigation of the field-induced ferromagnetic phase transition in spin-polarized neutron matter:
A lowest order constrained variational approach
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In this article, the lowest order constrained variational method is used to investigate the magnetic properties of
spin-polarized neutron matter in the presence of strong magnetic field at zero temperature employing the AV18

potential. Our results indicate that a ferromagnetic phase transition is induced by a strong magnetic field with
strength greater than 1018 G, leading to a partial spin polarization of the neutron matter. It is also shown that the
equation of state of neutron matter in the presence of a magnetic field is stiffer than in the absence of a magnetic
field.
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I. INTRODUCTION

The magnetic field of neutron stars most probably originates
from the compression of magnetic flux inherited from the
progenitor star [1]. Using this point of view, Woltjer predicted
a magnetic field strength of order 1015 G for neutron stars [2].
The field can be distorted or amplified by some mixture of
convection, differential rotation, and magnetic instabilities
[3,4]. The relative importance of these ingredients depends on
the initial field strength and the rotation rate of the star. For both
convection and differential rotation, the field and its supporting
currents are not likely to be confined to the solid crust of the
star but instead distributed in most of the stellar interior, which
is mostly a fluid mixture of neutrons, protons, electrons, and
other more exotic particles [1]. Thompson et al. [5] argued that
newborn neutron stars probably combine vigorous convection
and differential rotation, making it likely that a dynamo process
might operate in them. They expected fields up to 1015–1016 G
in neutron stars with few-millisecond initial periods. However,
according to the scalar virial theorem which is based on
Newtonian gravity, the magnetic field strength is allowed by
values up to 1018 G in the interior of a magnetar [6]. However,
general relativity predicts the allowed maximum value of a
neutron star magnetic field to be about 1018–1020 G [7]. By
comparing with the observational data, Yuan et al. [8] obtained
a magnetic field strength of order 1019 G for neutron stars.

The strong magnetic field could have an important influence
on the interior matter of a neutron star. Many studies have
dealt with the magnetic properties and the equation of state
of neutron star matter [9–20] and quark star matter [21–26]
in the presence of strong magnetic fields. Some authors have
considered the influence of strong magnetic fields on neutron
star matter within the mean-field approximation [9,12]. Yuan
et al. [9], using the nonlinear σ -ω model, showed that the
equation of state of neutron star matter becomes softer as the
magnetic field increases. Also, Broderick et al. [10], employ-
ing a field theoretical approach in which baryons interact via
the exchange of σ -ω-ρ mesons, observed that the softening
of the equation of state caused by Landau quantization is
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overwhelmed by stiffening due to the incorporation of the
anomalous magnetic moments of the nucleons. It was shown
that the strong magnetic field shifts the β equilibrium and
increases the proton fraction in neutron star matter [10–12].
Yue et al. [13] studied neutron star matter in the presence of a
strong magnetic field using the quark-meson coupling model.
Their results indicate that the Landau quantization of charged
particles causes a softening in the equation of state, whereas
the inclusion of nucleon anomalous magnetic moments leads
to a stiffer equation of state. The effects of the magnetic field
on neutron star structure, through its influence on the metric,
was studied by Cardall et al. [27]. Their results show that
the maximum mass, in a static configuration for a neutron star
with magnetic field, is larger than the maximum mass obtained
by uniform rotation. Through a field theoretical approach (at
the mean-field level) in which the baryons interact via the
exchange of σ -ω-ρ mesons, Broderick et al. [14] considered
the effects of a magnetic field on the equation of state of dense
baryonic matter in which hyperons are present. They found
that, when the hyperons appear, the pressure becomes smaller
than in the case of pure nucleonic matter for all fields. Within
a relativistic Hartree approach in the linear σ -ω-ρ model, the
effects of a magnetic field on cold symmetric nuclear matter
and the nuclear matter in β equilibrium were investigated by
Chakrabarty et al. [15]. Their results suggest that the neutron
star mass is practically insensitive to the effects of the magnetic
fields, whereas the radius decreases in intense fields.

In some studies, the neutron star matter was approxi-
mated by pure neutron matter. Isayev et al. [16] considered
neutron matter in a strong magnetic field with the Skyrme
effective interaction and analyzed the resultant self-consistent
equations. They found that the thermodynamically stable
branch extends from very low densities to the high-density
region where the spin-polarization parameter is saturated, and
neutrons become totally spin polarized. Perez-Garcia et al.
[18–20] studied the effects of a strong magnetic field on
pure neutron matter with effective nuclear forces within the
framework of the nonrelativistic Hartree-Fock approximation.
They showed that in the Skyrme model there is a ferromagnetic
phase transition at ρ ∼ 4ρ0 (where ρ0 = 0.16 fm−3 is the
nuclear saturation density), whereas it is forbidden in the D1P
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model [18]. In addition to these findings, they found that the
neutrino opacity of magnetized matter decreases compared
to the nonmagnetized case for a magnetic field greater than
1017 G [19]. However, more realistically, for the problem of
neutron star matter in the astrophysics context, it is necessary to
consider the finite temperature [17,18,23,24] and finite proton
fraction effects [9–15]. Isayev et al. [17] showed that the
influence of finite temperatures on spin polarization remains
moderate in the Skyrme model, at least up to temperatures
relevant for protoneutron stars. It was also shown that for
SLy4 effective interaction, even a small admixture of protons
to neutron matter leads to a considerable shift of the critical
density of the spin instability to lower values. For the SkI5
force, however, a small admixture of protons to neutron matter
does not considerably change the critical density of the spin
instability and increases its value [28].

In our previous works, we studied spin-polarized neutron
matter [29], symmetric nuclear matter [30], asymmetric
nuclear matter [31], and neutron star matter [31] at zero
temperature using the lowest order constrained variational
(LOCV) method with realistic strong interaction in the absence
of a magnetic field. We also investigated the thermodynamic
properties of spin-polarized neutron matter [32], symmetric
nuclear matter [33], and asymmetric nuclear matter [34] at
finite temperature with no magnetic field. In the above calcula-
tions, our results do not show any spontaneous ferromagnetic
phase transition for these systems. In the present work, we
study the magnetic properties of spin-polarized neutron matter
at zero temperature in the presence of a strong magnetic field
using the LOCV technique and employing AV18 potential.

II. LOCV FORMALISM FOR SPIN-POLARIZED
NEUTRON MATTER

We consider pure homogeneous spin-polarized neutron
matter composed of spin-up (+) and spin-down (−) neutrons.
We denote the number densities of spin-up and spin-down
neutrons by ρ(+) and ρ(−), respectively. We introduce the
spin-polarization parameter (δ) by

δ = ρ(+) − ρ(−)

ρ
, (1)

where −1 � δ � 1, and ρ = ρ(+) + ρ(−) is the total density of
system.

To calculate the energy of this system, we use the LOCV
method as follows. We consider a trial many-body wave

function of the form

ψ = Fφ, (2)

where φ is the uncorrelated ground-state wave function of N

independent neutrons, and F is a proper N -body correlation
function. Using the Jastrow approximation [35], F can be
replaced by

F = S
∏
i>j

f (ij ), (3)

where S is a symmetrizing operator. We consider a cluster
expansion of the energy functional up to the two-body term,

E([f ]) = 1

N

〈ψ |H |ψ〉
〈ψ |ψ〉 = E1 + E2· (4)

Now, we calculate the energy per particle up to the two-body
term for two cases, in the absence and presence of the magnetic
field, in two separate sections.

A. Energy calculation for spin-polarized neutron matter in the
absence of a magnetic field

The one-body term E1 for spin-polarized neutron matter in
the absence of a magnetic field (B = 0) is given by

E
(B=0)
1 =

∑
i=+,−

3

5

h̄2k
(i)2

F

2m

ρ(i)

ρ
, (5)

where k
(i)
F = (6π2ρ(i))

1
3 is the Fermi momentum of a neutron

with spin projection i.
The two-body energy E2 is

E
(B=0)
2 = 1

2N

∑
ij

〈ij |ν(12)|ij − ji〉, (6)

where

ν(12) = − h̄2

2m

[
f (12),

[∇2
12, f (12)

]] + f (12)V (12)f (12).

In the preceding equation, f (12) and V (12) are the two-body
correlation function and the nuclear potential, respectively. In
our calculations, we employ the AV18 two-body potential [36],

V (12) =
18∑

p=1

V (p)(r12)O(p)
12 , (7)

where

O
(p=1,...,18)
12 = 1, σ1 · σ2, τ1 · τ2, (σ1 · σ2)(τ1 · τ2), S12, S12(τ1 · τ2), L · S, L · S(τ1 · τ2), L2, L2(σ1 · σ2), L2(τ1 · τ2),

L2(σ1 · σ2)(τ1 · τ2), (L · S)2, (L · S)2(τ1 · τ2), T12, (σ1 · σ2)T12, S12T12, (τz1 + τz2). (8)

In the preceding equation,

S12 = [3(σ1 · r̂)(σ2 · r̂) − σ1 · σ2]

is the tensor operator and

T12 = [3(τ1 · r̂)(τ2 · r̂) − τ1 · τ2]
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is the isotensor operator. The above 18 components of the AV18 two-body potential are denoted by the labels c, σ , τ , στ , t , tτ ,
ls, lsτ , l2, l2σ , l2τ , l2στ , ls2, ls2τ , T , σT , tT , and τz, respectively [36]. In the LOCV formalism, the two-body correlation
function f (12) is considered as follows [37]:

f (12) =
3∑

k=1

f (k)(r12)P (k)
12 , (9)

where

P
(k=1,...,3)
12 = (

1
4 − 1

4O
(2)
12

)
,

(
1
2 + 1

6O
(2)
12 + 1

6O
(5)
12

)
,

(
1
4 + 1

12O
(2)
12 − 1

6O
(5)
12

)
. (10)

The operators O
(2)
12 and O

(5)
12 are given in Eq. (8). Using the preceding two-body correlation function and potential, after doing

some algebra, we find the following equation for the two-body energy:

E
(B=0)
2 = 2

π4ρ

(
h̄2

2m

) ∑
JLSSz

(2J + 1)

2(2S + 1)
[1 − (−1)L+S+1]

∣∣∣∣
〈

1

2
σz1

1

2
σz2

∣∣∣∣SSz

〉∣∣∣∣2

×
∫

dr

{[
f (1)

′

α

2
a(1)

α

2
(kf r) + 2m

h̄2

({Vc − 3Vσ + Vτ − 3Vστ + 2(VT − 3VσT ) − 2Vτz}a(1)
α

2
(kf r)

+[Vl2 − 3Vl2σ + Vl2τ − 3Vl2στ ]c(1)
α

2
(kf r)

)
(f (1)

α )2

]
+

∑
k=2,3

[
f (k)

′

α

2
a(k)

α

2
(kf r)

+2m

h̄2

({Vc + Vσ + Vτ + Vστ + (−6k + 14)(Vtτ + Vt ) − (k − 1)(Vlsτ + Vls)

+2[VT + VσT + (−6k + 14)VtT − Vτz]}a(k)
α

2
(kf r) + [Vl2 + Vl2σ + Vl2τ + Vl2στ ]c(k)

α

2
(kf r)

+[Vls2 + Vls2τ ]d (k)
α

2
(kf r)

)
f (k)

α

2
]

+ 2m

h̄2 {Vls + Vlsτ − 2(Vl2 + Vl2σ + Vl2στ + Vl2τ ) − 3(Vls2 + Vls2τ )}b2
α(kf r)f (2)

α f (3)
α

+ 1

r2

(
f (2)

α − f (3)
α

)2
b2

α(kf r)

}
, (11)

where α = {J,L, S, Sz} and the coefficients a(1)
α

2
, etc., are

defined as

a(1)
α

2
(x) = x2IL,Sz

(x), (12)

a(2)
α

2
(x) = x2

[
βIJ−1,Sz

(x) + γ IJ+1,Sz
(x)

]
, (13)

a(3)
α

2
(x) = x2[γ IJ−1,Sz

(x) + βIJ+1,Sz
(x)

]
, (14)

b(2)
α (x) = x2

[
β23IJ−1,Sz

(x) − β23IJ+1,Sz
(x)

]
, (15)

c(1)
α

2
(x) = x2ν1IL,Sz

(x), (16)

c(2)
α

2
(x) = x2

[
η2IJ−1,Sz

(x) + ν2IJ+1,Sz
(x)

]
, (17)

c(3)
α

2
(x) = x2

[
η3IJ−1,Sz

(x) + ν3IJ+1,Sz
(x)

]
, (18)

d (2)
α

2
(x) = x2

[
ξ2IJ−1,Sz

(x) + λ2IJ+1,Sz
(x)

]
, (19)

d (3)
α

2
(x) = x2[ξ3IJ−1,Sz

(x) + λ3IJ+1,Sz
(x)

]
, (20)

with

β = J + 1

2J + 1
, γ = J

2J + 1
, β23 = 2J (J + 1)

2J + 1
, (21)

ν1 = L(L + 1), ν2 = J 2(J + 1)

2J + 1
,

ν3 = J 3 + 2J 2 + 3J + 2

2J + 1
, (22)

η2 = J (J 2 + 2J + 1)

2J + 1
, η3 = J (J 2 + J + 2)

2J + 1
, (23)

ξ2 = J 3 + 2J 2+2J + 1

2J + 1
, ξ3 = J (J 2 + J + 4)

2J + 1
, (24)

λ2 = J (J 2 + J + 1)

2J + 1
, λ3 = J 3 + 2J 2 + 5J + 4

2J + 1
, (25)

and

IJ,Sz
(x) =

∫
dq q2PSz

(q)J 2
J (xq)· (26)

In the last equation, JJ (x) is the Bessel function and PSz
(q) is

defined as

PSz
(q) = 2

3π
{

(kσz1
F )3 + (

k
σz2
F

)3 − 3
2

[(
k

σz1
F

)2 + (
k

σz2
F

)2
]
q

− 3
16

[(
k

σz1
F

)2 − (
k

σz2
F

)2]2
q−1 + q3

}
(27)

for 1
2 |kσz1

F − k
σz2
F | < q < 1

2 |kσz1
F + k

σz2
F |,

PSz
(q) = 4

3π min
((

k
σz1
F

)3
,
(
k

σz2
F

)3)
(28)

for q < 1
2 |kσz1

F − k
σz2
F |, and

PSz
(q) = 0 (29)

for q > 1
2 |kσz1

F + k
σz2
F |, where σz1 or σz2 = +1,−1 for spin up

and spin down, respectively.
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B. Energy calculation of spin-polarized neutron matter in the
presence of a magnetic field

Now we consider the case in which the spin-polarized
neutron matter is under the influence of a strong magnetic
field. Taking the uniform magnetic field along the z direction,
B = Bk̂, the spin-up and spin-down particles correspond to
parallel and antiparallel spins with respect to the magnetic
field. Therefore, the contribution of the magnetic energy of the
neutron matter is

EM = −MzB, (30)

where Mz is the magnetization of the neutron matter, which is
given by

Mz = Nµnδ. (31)

In the preceding equation, µn = −1.9130427(5) is the neutron
magnetic moment (in units of the nuclear magneton). Conse-
quently, the energy per particle up to the two-body term in the
presence of a magnetic field can be written as

E([f ]) = E
(B=0)
1 + E

(B=0)
2 − µnBδ, (32)

where E
(B=0)
1 and E

(B=0)
2 are given by Eqs. (5) and (11),

respectively. It should be noted that in usual thermodynamic
treatments the external magnetic field energy ( 1

8π

∫
dV B2) is

usually left out because it does not affect the thermodynamic
properties of matter [38]. In fact, the magnetic field energy
arises only from the magnetostatic energy in the absence
of matter, but we are interested in the contribution of
internal energy, which excludes the energy of magnetic field.
Therefore, the magnetic field contribution, Emag = B2

8π
, which

is the energy density (or “magnetic pressure”) of the magnetic
field in the absence of matter, is usually omitted [16,38].

Now we minimize the two-body energy with respect to
the variations in the function f (i)

α subject to the normalization
constraint [39],

1

N

∑
ij

〈ij |h2
Sz

− f 2(12)|ij 〉a = 0, (33)

where, in the case of spin-polarized neutron matter, the
function hSz

(r) is defined as follows:

hSz
(r) =

⎧⎪⎪⎨
⎪⎪⎩

[
1 − 9

(
J 2

J (k(i)
F r)

k
(i)
F r

)2
]−1/2

, Sz = ±1,

1, Sz = 0.

(34)

From minimization of the two-body cluster energy, we get a set
of coupled and uncoupled differential equations, which are the
same as those presented in Ref. [39] but with the coefficients
replaced by those indicated in Eqs. (12)–(20). By solving these
differential equations, we can obtain correlation functions to
compute the two-body energy.

III. RESULTS AND DISCUSSION

Our results for the energy per particle of spin-polarized
neutron matter versus the spin-polarization parameter for
different values of the magnetic field at ρ = 0.2 fm−3 are

Spin polarization parameter
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FIG. 1. The energy per particle vs the spin-polarization parameter
(δ) for different values of the magnetic field (B) at ρ = 0.2 fm−3.

shown in Fig. 1. We found that for values of the magnetic field
below 1018 G, the corresponding energies of different magnetic
fields are nearly identical. This shows that the effect of a
magnetic field below B ∼ 1018 G is nearly insignificant. From
Fig. 1, we can see that the spin-polarization symmetry is broken
when the magnetic field is present and a minimum appears
at −1 < δ < 0. By increasing the magnetic field strength
from B ∼ 1018 to B ∼ 1019 G, the value of spin polarization
corresponding to the minimum point approaches −1. We also
see that, by increasing the magnetic field, the energy per
particle at the minimum point (ground-state energy) decreases,
leading to a more stable system. For each density, we found
that, above a certain value of the magnetic field, the system
reaches a saturation point and the minimum energy occurs at
δ = −1. For example, at ρ = 0.2 fm−3, for B >∼ 1.8 × 1019 G,
the minimum energy occurs at δ = −1. However, this thresh-
old value of the magnetic field increases when the density
increases. In Fig. 2, we present the ground-state energy per
particle of spin-polarized neutron matter as a function of
the density for different values of the magnetic field. For
each value of the magnetic field, it is shown that the energy
per particle increases monotonically as the density increases.
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FIG. 2. The ground-state energy per particle as a function of the
density at different values of the magnetic field (B).
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FIG. 3. The energy contribution of spin-polarized neutron matter
in the cluster expansion up to the two-body term (E1 + E2) for the
magnetic fields B = 1018 G (solid curve) and B = 1019 G (dash-
dotted curve), and the contribution of magnetic energy (EM ) for
magnetic fields B = 1018 G (dashed curve) and B = 1019 G (dash-
dot-dotted curve).

However, the increasing rate of energy versus density increases
when the magnetic field increases. This indicates that, at
higher magnetic fields, the increasing rate of the contribution
of magnetic energy versus density is more than that at lower
magnetic fields. To clarify this behavior, we present the
energy contribution of spin-polarized neutron matter up to
the two-body term in the cluster expansion (E1 + E2), and the
magnetic energy contribution (EM ) separately, as a function of
density in Fig. 3. This figure shows that, for the spin-polarized
neutron matter, the difference between the magnetic energy
contributions (EM ) of different magnetic fields is substantially
larger than that for the energy contribution (E1 + E2). Figure 4
shows the ground-state energy per particle of spin-polarized
neutron matter as a function of the magnetic field for different
values of density. We can see that by increasing the magnetic
field up to a value of about 1018 G, the energy per particle
slowly decreases, and then it rapidly decreases for the magnetic
fields greater than this value. This indicates that, above

log10(B(G))

E
ne

rg
y

p
er

pa
rt

ic
le

(M
eV

)

12 14 16 18 20

-500

-400

-300

-200

-100

0

100

ρ = 0.2 fm-3

ρ = 0.4 fm-3

ρ = 0.6 fm-3

FIG. 4. The ground-state energy per particle as a function of the
magnetic field (B) at different values of the density (ρ).
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FIG. 5. The spin-polarization parameter at the equilibrium state
of the system as a function of the density at different values of the
magnetic field (B).

B ∼ 1018 G, the effect of the magnetic field on the energy
construction of the spin-polarized neutron matter becomes
more important.

In Fig. 5, the spin-polarization parameter corresponding to
the equilibrium state of the system is plotted as a function of
density for different values of the magnetic field. It is seen that,
at each magnetic field, the magnitude of the spin-polarization
parameter decreases as the density increases. Figure 5 also
shows that for the magnetic fields below 1018 G, at high
densities, the system nearly becomes unpolarized. However,
for higher magnetic fields, the system has a substantial spin
polarization, even at high densities. In Fig. 6, we plot the
spin-polarization parameter at equilibrium as a function of
the magnetic field at different values of density. This figure
shows that below B ∼ 1018 G no anomaly is observed and
the neutron matter can only be partially polarized. This partial
polarization is maximized at lower densities and amounts to
about 14% of its maximum possible value of −1. From Fig. 6,
we can also see that below B ∼ 1017 G the spin-polarization
parameter is nearly zero. This clearly confirms the absence
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FIG. 6. The spin-polarization parameter corresponding to the
equilibrium state of the system as a function of the magnetic field (B)
at different values of the density (ρ).
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FIG. 7. The magnetic susceptibility (χ/N |µn|) as a function of
the magnetic field (B) at different values of the density (ρ).

of magnetic ordering for neutron matter up to B ∼ 1017 G.
For the magnetic fields greater than about 1018 G, it is shown
that the magnitude of spin polarization rapidly increases as the
magnetic field increases. This shows a ferromagnetic phase
transition in the presence of a strong magnetic field. For each
density, we can see that at high magnetic fields the value of the
spin-polarization parameter is close to −1. The corresponding
value of the magnetic field increases as the density increases.

The magnetic susceptibility (χ ), which characterizes the
response of a system to the magnetic field, is defined by

χ (ρ,B) =
(

∂Mz(ρ,B)

∂B

)
ρ

. (35)

In Fig. 7, we plot the ratio χ/N |µn| for the spin-polarized
neutron matter versus the magnetic field at three different
values of the density. As can be seen from Fig. 7, for each
density, this ratio shows a maximum at a specific magnetic
field. This result confirms the existence of the ferromagnetic
phase transition induced by the magnetic field. We see that the
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FIG. 9. The equation of state of spin-polarized neutron matter for
different values of the magnetic field (B).

magnetic field at the phase transition point, Bm, depends on the
density of the system. Figure 8 shows the phase diagram for the
spin-polarized neutron matter. We can see that, as the density
increases, Bm grows monotonically. It explicitly means that at
higher densities the phase transition occurs at higher values of
the magnetic field.

From the energy of spin-polarized neutron matter, at each
magnetic field, we can evaluate the corresponding pressure
(Pkinetic) using the following relation:

Pkinetic(ρ,B) = ρ2

(
∂E(ρ,B)

∂ρ

)
B

. (36)

Our results for the kinetic pressure of spin-polarized neutron
matter versus density for different values of the magnetic
field are shown in Fig. 9. It is obvious that, as the density
is increased, the difference in the pressure of spin-polarized
neutron matter at different magnetic field becomes more
appreciable. Figure 9 shows that the equation of state of
the spin-polarized neutron matter becomes stiffer as the
magnetic field strength increases. This stiffening is due to the
inclusion of neutron anomalous magnetic moments. This is in
agreement with the results obtained in Refs. [10,13]. It should
be noted here that, to find the total pressure related for the
neutron star structure, the contribution from the magnetic field,
Pmag = B2

8π
, should be added to the kinetic pressure [10,14].

However, in this work we are not interested in the neutron star
structure and thus omit the contribution of “magnetic pressure”
in our calculations for neutron matter [16]. This term, if
included, simply adds a constant amount to the curves depicted
in Fig. 9.

IV. SUMMARY AND CONCLUDING REMARKS

We recently calculated several properties of spin-polarized
neutron matter in the absence of a magnetic field using
the lowest order constrained variational method with AV18

potential. In this work, we generalized our calculations for
spin-polarized neutron matter in the presence of a strong
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magnetic field at zero temperature using this method. We found
that the effect of magnetic fields below B ∼ 1018 G is almost
negligible. It was shown that, in the presence of magnetic field,
the spin-polarization symmetry is broken and the energy per
particle shows a minimum at −1 < δ < 0, depending on the
strength of the magnetic field. We showed that the ground-state
energy per particle decreases as the magnetic field increases.
This leads to a more stable system. It is seen that the increasing
rate of energy versus density increases as the magnetic field
increases. Our calculations show that above B ∼ 1018 G the
effect of the magnetic field on the properties of neutron matter
becomes more important. In the study of the spin-polarization
parameter, we showed that, for a fixed magnetic field, the
magnitude of the spin-polarization parameter at the minimum
point of energy decreases with increasing density. At strong
magnetic fields with strengths greater than 1018 G, our results
show that a field-induced ferromagnetic phase transition
occurs for the neutron matter. By investigating the magnetic
susceptibility of the spin-polarized neutron matter, it is clear
that, as the density increases, the phase transition occurs at
higher values of the magnetic field. Through the calculation
of pressure as a function of density at different values of the
magnetic field, we observed the stiffening of the equation of
state in the presence of the magnetic field.

Finally, we would like to address the question of the
thermodynamic stability of such neutron stars at ultrahigh

magnetic fields. One may wonder if the effect of magnetic
pressure, Pmag = B2

8π
, which we omit here, is added to the

kinetic pressure Pkinetic; then at ultrastrong magnetic fields, the
system might become gravitationally unstable due to excessive
outward pressure. For the fields considered in this work (up to
1020 G), this scenario does not seem likely [7]. We note that the
increase of magnetic field leads to stiffening of the equation
of state (Fig. 9), which in turn leads to larger mass and radius
for the neutron star [40]. This in turn increases the effect
of gravitational energy, offsetting the increased pressure. We
also note that the existence of a well-defined thermodynamic
energy minimum for all fields considered in our work indicates
the thermodynamic stability of our system. The existence
of such well-defined minimum energy is unaffected by the
addition of magnetic energy. The detailed analysis of such
situations along with the accompanying change in proton
fraction is a possible avenue for future research.
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