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Nuclear matter symmetry energy and the symmetry energy coefficient in the mass formula
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Within the Skyrme-Hartree-Fock (SHF) approach, we show that for a fixed mass number A, both the symmetry
energy coefficient asym(A) in the semiempirical mass formula and the nuclear matter symmetry energy Esym(ρA)
at a subsaturation reference density ρA can be determined essentially by the symmetry energy Esym(ρ0) and its
density slope L at saturation density ρ0. Meanwhile, we find the dependence of asym(A) on Esym(ρ0) or L is
approximately linear and very similar to the corresponding linear dependence displayed by Esym(ρA), providing
an explanation for the relation Esym(ρA) ≈ asym(A). Our results indicate that a value of Esym(ρA) leads to a linear
correlation between Esym(ρ0) and L and thus can put important constraints on Esym(ρ0) and L. Particularly,
the values of Esym(ρ0) = 30.5 ± 3 MeV and L = 52.5 ± 20 MeV are simultaneously obtained by combining
the constraints from recently extracted Esym(ρA = 0.1 fm−3) with those from recent analyses of neutron skin
thickness of Sn isotopes in the same SHF approach.
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I. INTRODUCTION

The study of the nuclear matter symmetry energy Esym(ρ),
which essentially characterizes the isospin-dependent part of
the equation of state (EOS) of asymmetric nuclear matter,
is currently an exciting topic of research in nuclear physics.
Knowledge about the symmetry energy is essential in under-
standing many aspects of nuclear physics and astrophysics
[1–6] as well as some interesting issues regarding possible new
physics beyond the standard model [7–10]. In recent years,
significant progress has been made in determining the density
dependence of Esym(ρ) [5,6], especially its value Esym(ρ0) and
its density slope L at saturation density ρ0. While constraints
on Esym(ρ0) and L from different experimental data or methods
become consistently convergent [11–14], they are still far from
an accuracy required for understanding enough precisely many
important properties of neutron stars [3,15]. To narrow the
uncertainty of the constrains on Esym(ρ0) and L by using more
accurate data or new methods is thus of crucial importance.

Recently, based on the calculations within the droplet
model and mean field models using a number of different
parameter sets, Centelles et al. found that the symmetry
energy coefficient asym(A) of finite nuclei with mass number
A in the semiempirical mass formula can approximately equal
to nuclear matter symmetry energy Esym(ρA) at a reference
density ρA in the subnormal density region, i.e., Esym(ρA) ≈
asym(A) [16]. This relation provides the possibility to directly
determine the symmetry energy at subnormal densities from
the semiempirical mass formula and also has many important
implications for extracting the symmetry energy from isospin-
dependent observables of finite nuclei [16]. While this relation
has been used to extract information on the symmetry energy
around the normal density [16,17], its microscopic explanation
is still missing.

Within the Skyrme-Hartree-Fock (SHF) energy density
functional, we demonstrate in the present work that both
asym(A) and Esym(ρA) can be determined essentially by
Esym(ρ0) and L and meanwhile they display very similar

linear dependence on Esym(ρ0) or L, and thus providing an
explanation for the relation Esym(ρA) ≈ asym(A). Furthermore,
we show that a value of Esym(ρA) can put important con-
straints on Esym(ρ0) and L. Combining the constraints from
recently extracted Esym(ρA = 0.1 fm−3) with those from recent
analyses of existing data on neutron skin thickness of Sn
isotopes [18] within the same SHF approach leads to stringent
constraints simultaneously on Esym(ρ0) and L.

II. Esym(ρ) AND asym(A) IN THE SKYRME-HARTREE-FOCK
APPROACH

The EOS of isospin asymmetric nuclear matter, given by its
binding energy per nucleon, can be expanded to second order
in isospin asymmetry δ as

E(ρ, δ) = E0(ρ) + Esym(ρ)δ2 + O(δ4), (1)

where ρ = ρn + ρp is the baryon density with ρn and ρp

denoting the neutron and proton densities, respectively; δ =
(ρn − ρp)/ρ is the isospin asymmetry; E0(ρ) = E(ρ, δ = 0)
is the binding energy per nucleon in symmetric nuclear matter,
and the nuclear symmetry energy is expressed as

Esym(ρ) = 1

2!

∂2E(ρ, δ)

∂δ2

∣∣∣∣
δ=0

= Esym(ρ0) + Lχ + Ksym

2!
χ2 + O(χ3), (2)

with χ = ρ−ρ0

3ρ0
. The coefficients L = 3ρ0

dEsym(ρ)
dρ

|ρ=ρ0 and

Ksym = 9ρ2
0

d2Esym(ρ)
dρ2 |ρ=ρ0 are the slope and curvature parame-

ters of the symmetry energy, respectively. Within the standard
SHF approach, the symmetry energy can be written as (see,
e.g., Ref. [19])

Esym(ρ) = h̄2
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with �sym = 3t1x1 − t2(4 + 5x2) and σ , t0 − t3, x0 − x3 being
the Skyrme interaction parameters.

As shown in Refs. [18,20], the nine Skyrme interaction
parameters, i.e., σ , t0 − t3, x0 − x3 can be expressed analyti-
cally in terms of nine macroscopic quantities ρ0, E0(ρ0), the
incompressibility K0, the isoscalar effective mass m∗

s,0, the
isovector effective mass m∗

v,0, Esym(ρ0), L, gradient coefficient
GS , and symmetry-gradient coefficient GV . In terms of
these macroscopic quantities, the symmetry energy can be
rewritten as

Esym(ρ) = A1Esym(ρ0) + B1L + C1, (4)

with

A1 = (γ u − uγ )/(γ − 1), (5)

B1 = (uγ − u)/[3(γ − 1)], (6)

C1 = Ekin
sym(ρ0)u2/3 + Du5/3

− (3γ − 2)Ekin
sym(ρ0) + (3γ − 5)D

3(γ − 1)
u

+ Ekin
sym(ρ0) − 2D

3(γ − 1)
uγ , (7)

where u = ρ/ρ0 is the reduced density; Ekin
sym(ρ0) =

h̄2

6m
( 3π2

2 ρ0)2/3 is the kinetic symmetry energy at ρ0; and the
parameters D and γ are defined as [21,22]

D = 5

9
E0

kin

(
4

m

m∗
s,0

− 3
m

m∗
v,0

− 1

)
, (8)

γ = σ + 1 = K0 + 2E0
kin − 10C

3E0
kin − 9E0(ρ0) − 6C

, (9)

with C = m−m∗
s,0

m∗
s,0

E0
kin and E0

kin = 3h̄2

10m
( 3

2π2ρ0)2/3.

The symmetry energy coefficient asym(A) of finite nuclei in
the semiempirical mass formula can be expressed as [16]

asym(A) = Esym(ρ0)

1 + xA

with xA = 9Esym(ρ0)

4Q
A−1/3, (10)

where the Q parameter is the so-called neutron-skin stiffness
coefficient in the droplet model [23,24] and it is related to the
nuclear surface symmetry energy [25,26]. Usually for a given
nuclear interaction, the Q parameter can be obtained from
asymmetric semi-infinite nuclear matter calculations [23,24,
26–28]. As a good approximation, the Q parameter can be
expressed as [27]

Q = 9

4

E2
sym(ρ0)

εe
δ

with εe
δ = 2a

rnm

(
L − Ksym

12

)
, (11)

where rnm = ( 4
3πρ0)−1/3 is the radius constant of nuclear

matter and a is the diffuseness parameter in the Fermi-like
function from the parametrization of nuclear surface profile
of symmetric semi-infinite nuclear matter. Many calculations
[25–27] have indicated a ≈ 0.55 fm and then 2a/rnm ≈ 1.

Therefore, the xA parameter can be approximated by

xA = (L − Ksym/12)
A−1/3

Esym(ρ0)
. (12)

It should be noted that Eq. (12) is a good approximation
for evaluating the asym(A), and within the standard SHF
energy density functional the difference between the value
of asym(A = 208) from Eq. (12) and that of using the exact
Q parameter obtained from asymmetric semi-infinite nuclear
matter calculations is essentially less than 1 MeV [29].
Furthermore, within the standard SHF approach, Ksym can
be written in terms of the macroscopic quantites as [22]

Ksym = 3γL + Ekin
sym(ρ0)(3γ − 2)

+ 2D(5 − 3γ ) − 9γEsym(ρ0), (13)

and thus we have

xA =
[

4 − γ

4
L + 3

4
γEsym(ρ0) − (3γ − 2)

12
Ekin

sym(ρ0)

− (5 − 3γ )

6
D

]
A−1/3

Esym(ρ0)
. (14)

For |xA| < 1, asym(A) in Eq. (10) can be expanded as

asym(A) = Esym(ρ0)
(
1 − xA + x2

A − · · ·). (15)

Neglecting the x2
A and higher-order terms in Eq. (15) leads to

asym(A) = A2Esym(ρ0) + B2L + C2, (16)

with

A2 =
(

1 − 3γ

4
A−1/3

)
, (17)

B2 = −4 − γ

4
A−1/3, (18)

C2 =
(

(3γ − 2)

12
Ekin

sym(ρ0) + (5 − 3γ )

6
D

)
A−1/3. (19)

However, the convergence of the expansion in Eq. (15) is
usually very slow and thus Eq. (16) is a very bad approximation
to asym(A) even for heavy nuclei [25,30]. A much better
approximation could be obtained by the two-variable Taylor
expansion with respect to Esym(ρ0) and L at a point of
Esym(ρ0) = S0 and L = L0 as

asym(A) = asym(A)|Esym(ρ0)=S0,L=L0

+ [Esym(ρ0) − S0]
∂asym(A)

∂Esym(ρ0)

∣∣∣∣
Esym(ρ0)=S0,L=L0

+ (L − L0)
∂asym(A)

∂L

∣∣∣∣
Esym(ρ0)=S0,L=L0

+ · · · (20)

and keeping only the first-order terms leads to

asym(A) = A3Esym(ρ0) + B3L + C3, (21)

with

A3 = 1 − 3
4γA−1/3 + 2x0

A(
1 + x0

A

)2 , (22)
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B3 =
γ−4

4 A−1/3

(
1 + x0

A

)2 , (23)

C3 = S0

1 + x0
A

− S0A3 − L0B3, (24)

and

x0
A =

[
3

4
γ S0 + 4 − γ

4
L0 − (3γ − 2)

12
Ekin

sym(ρ0)

− (5 − 3γ )

6
D

]
A−1/3

S0
. (25)

III. NUMERICAL RESULTS AND DISCUSSIONS

One can see from Eq. (4) that Esym(ρ) is linear functions
of Esym(ρ0) and L with the coefficients A1, B1, and C1

determined by the density ρ and nuclear matter macroscopic
quantities ρ0, E0(ρ0), K0, m∗

s,0, and m∗
v,0. Meanwhile, from

Eqs. (10) and (14), one can see that asym(A) is determined by
the mass number A and also the nuclear matter macroscopic
quantities. In particular, asym(A) can also be linear functions
of Esym(ρ0) and L if the approximation (16) or (21) is valid.
As mentioned previously, the relation asym(A) ≈ Esym(ρA) has
been observed within mean field models using a number
of different parameter sets for the nuclear effective inter-
actions. Particularly, one finds asym(A = 208) ≈ Esym(ρA =
0.1 fm−3), asym(A = 116) ≈ Esym(ρA = 0.093 fm−3), and
asym(A = 40) ≈ Esym(ρA = 0.08 fm−3) [16]. This feature
implies that asym(A) and Esym(ρA) would display similar cor-
relation with each nuclear matter macroscopic quantity among
L, GV , GS , E0(ρ0), Esym(ρ0), K0, m∗

s,0, m∗
v,0, and ρ0, which

completely determine the nine Skyrme interaction parameters
σ , t0 − t3, x0 − x3. In the following, we show that this is indeed
the case by analyzing the correlations of Esym(ρ = 0.1 fm−3)
and asym(A = 208) with the nuclear matter macroscopic
quantities. We have also checked the cases of A = 116 and
40, and obtained a similar conclusion as in the case of A =
208 and confirmed the relations asym(A = 116) ≈ Esym(ρA =
0.093 fm−3) and asym(A = 40) ≈ Esym(ρA = 0.08 fm−3).

As a reference for the correlation analyses based on the
standard SHF energy density functional, we use in the present
work the MSL0 parameter set [18], which is obtained by using
the following empirical values for the macroscopic quantities:
ρ0 = 0.16 fm−3, E0(ρ0) = −16 MeV, K0 = 230 MeV, m∗

s,0 =
0.8m, m∗

v,0 = 0.7m, Esym(ρ0) = 30 MeV, and L = 60 MeV,
GV = 5 MeV · fm5, and GS = 132 MeV · fm5. And the spin-
orbit coupling constant W0 = 133.3 MeV · fm5 is used to fit
the neutron p1/2 − p3/2 splitting in 16O. It has been shown [18]
that the MSL0 interaction can describe reasonably the binding
energies and charge rms radii for a number of closed-shell
or semi-closed-shell nuclei. It should be pointed out that the
MSL0 is only used here as a reference for the correlation
analyses. Using other Skyrme interactions obtained from
fitting measured binding energies and charge rms radii of finite
nuclei as in usual Skyrme parametrization will not change our
conclusion.

FIG. 1. (Color online) Esym(ρA) with ρA = 0.09, 0.10, and
0.11 fm−3 as well as asym(A = 208) and its approximation with Taylor
expansion in Eq. (21) (with S0 = 30 MeV and L0 = 60 MeV) from
SHF with MSL0 by varying individually L (a), GV (b), GS (c), E0(ρ0)
(d), Esym(ρ0) (e), K0 (f), m∗

s,0 (g), m∗
v,0 (h), ρ0 (i), and W0 (j).

Shown in Fig. 1 are Esym(ρA) with ρA = 0.09, 0.10, and
0.11 fm−3 as well as asym(A = 208) [from Eq. (10) with
approximation in Eq. (12)] and its approximation with Taylor
expansion in Eq. (21) (with S0 = 30 MeV and L0 = 60 MeV)
obtained from SHF with MSL0 by varying individually L, GV ,
GS , E0(ρ0), Esym(ρ0), K0, m∗

s,0, m∗
v,0, ρ0, and W0, namely,

varying one quantity at a time while keeping all others at
their default values in MSL0. We note here that using the
exact Q parameter obtained from asymmetric semi-infinite
nuclear matter calculations to evaluate the asym(A) does not
change our conclusions [29]. It is interesting to see that within
the uncertain ranges considered here for the macroscopic
quantities, asym(A = 208) displays strong correlations with
both Esym(ρ0) and L while it is almost no dependence on
other macroscopic quantities [from Eqs. (10) and (14), asym(A)
is independent of GV , GS , and W0]. This is understandable
since asym(A) is determined uniquely by the three lowest-
order characteristic parameters of the symmetry energy, i.e.,
Esym(ρ0), L, and Ksym as seen in Eqs. (10) and (12) while
Ksym has been found to strongly correlate with Esym(ρ0) and
L but exhibit very weak dependence on other macroscopic
quantities within the standard SHF energy density functional
as shown in Ref. [20]. Furthermore, asym(A = 208) displays
approximately linear correlations with both Esym(ρ0) and L

which is demonstrated by the good approximation of Eq. (21)
to asym(A = 208) observed in Fig. 1. Similarly, one can see
from Fig. 1 that Esym(ρA) with ρA = 0.09, 0.10, and 0.11 fm−3

display strong linear correlations with both Esym(ρ0) and L

while they are almost independent of other macroscopic quan-
tities except with a small dependence on ρ0 [note Esym(ρA)
is independent of GV , GS , and W0]. These results indicate
that asym(A = 208) and Esym(ρA) at subsaturation reference
densities ρA = 0.09, 0.10, and 0.11 fm−3 are essentially
determined by Esym(ρ0) and L. Furthermore, Fig. 1 shows
that both asym(A = 208) and Esym(ρA) display very similar
linear dependence on Esym(ρ0) or L. Especially, it is seen from
Fig. 1 that Esym(ρA) with ρA = 0.10 fm−3 gives the best fit to
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asym(A = 208). In other words, for any Skyrme force de-
termined by the nine parameters σ , t0 − t3, x0 − x3 or
equivalently the nine macroscopic quantities L, GV , GS ,
E0(ρ0), Esym(ρ0), K0, m∗

s,0, m∗
v,0, ρ0, the value of Esym(ρA =

0.10 fm−3) will be approximately equal to that of asym(A =
208), and this explains the relation Esym(ρA = 0.10 fm−3) ≈
asym(A = 208) observed within mean field models using a
number of different parameter sets. Furthermore, one can
see that the possible small deviations between Esym(ρA =
0.10 fm−3) and asym(A = 208) observed for some different
parameter sets [16] may be mainly due to the different values
of L, Esym(ρ0), and/or ρ0.

Since Esym(ρA = 0.10 fm−3) is essentially determined by
Esym(ρ0) and L and displays linear correlations with the
latter, a determination of Esym(ρA = 0.10 fm−3) will then
put important constraints on Esym(ρ0) and L. As a matter
of fact, the value of the symmetry energy around 0.1 fm−3

has been heavily under investigation in recent years in the
literature [31–46]. For example, an analysis of the giant dipole
resonance (GDR) of 208Pb with Skyrme forces suggests a
constraint Esym(ρA = 0.10 fm−3) = 23.3 − 24.9 MeV [42]
while a relativistic mean-field model analysis of the GDR
of 132Sn leads to Esym(ρA = 0.10 fm−3) = 21.2 − 22.5 MeV
[43]. In a recent work [17], Liu et al. extracted the sym-
metry energy coefficients asym(A) for nuclei with mass
number A = 20 − 250 from more than 2000 measured nuclear
masses and they obtained a value of 20.22 − 24.74 MeV
for asym(A = 208) within a 2σ uncertainty; thus we have
Esym(ρA = 0.10 fm−3) = 20.22 − 24.74 MeV according to
Esym(ρA = 0.10 fm−3) ≈ asym(A = 208). In the following, as
a conservative estimate, we will use Esym(ρA = 0.10 fm−3) =
20.22 − 24.74 MeV since it is essentially consistent with the
other two constraints from the GDR of 208Pb and 132Sn.

Shown in Fig. 2 are the contour curves in the Esym(ρ0)-L
plane for Esym(ρ = 0.1 fm−3) obtained from SHF with MSL0

FIG. 2. (Color online) Contour curves in the Esym(ρ0)-L plane for
Esym(ρ = 0.1 fm−3) . The region between the two thick solid lines rep-
resents the constraint obtained in the present work with 20.22 MeV�
Esym(ρA = 0.10 fm−3) � 24.74 MeV while the region between the
two thick dashed lines is the constraint from the SHF analysis of
neutron skin data of Sn isotopes within a 2σ uncertainty [18]. The
shaded region represents the overlap of the two constraints.

by varying individually Esym(ρ0) and L. The region between
the two thick solid lines in Fig. 2 represents the constraint
of 20.22 MeV � Esym(ρ = 0.10 fm−3) � 24.74 MeV from
the nuclear mass restrictions on asym(A = 208). Also included
in Fig. 2 is a recent constraint (the region between the two
thick dashed lines) from SHF analysis of neutron skin data
of Sn isotopes within a 2σ uncertainty [18]. It is interesting
to note that the constraint from the neutron skin data of Sn
isotopes suggests L decreases with increasing Esym(ρ0) while
the constraint from Esym(ρ = 0.10 fm−3) displays opposite
behaviors. This feature allows us to extract simultaneously
the values of both Esym(ρ0) and L with higher accuracy,
namely, Esym(ρ0) = 30.5 ± 3 MeV and L = 52.5 ± 20 MeV
by combining the two constraints as illustrated by the overlap
of the two constraints represented by the shaded region in
Fig. 2. Furthermore, it is seen from Fig. 2 that a value of
Esym(ρ = 0.10 fm−3) puts a strong linear correlation between
Esym(ρ0) and L, i.e., L increases linearly with Esym(ρ0),
which has been extensively observed in the parametriza-
tion for nuclear effective interactions in mean-field models
[32–38,40,44–46].

The simultaneously extracted values of Esym(ρ0) = 30.5 ±
3 MeV and L = 52.5 ± 20 MeV from the same SHF approach
within a 2σ uncertainty are essentially overlapped with other
constraints extracted from different experimental data or
methods in the literature [11,12,14,16,17,23,26,42,47–49] (see
Ref. [14] for a recent summary) but with higher precision. In
particular, these extracted values are in remarkably good agree-
ment with the Esym(ρ0) = 31.3 ± 4.5 MeV and L = 52.7 ±
22.5 MeV extracted most recently from global nucleon optical
potentials constrained by world data on nucleon-nucleus and
(p, n) charge-exchange reactions [14]. The extracted value of
L = 52.5 ± 20 MeV also agrees well with the value of L =
58 ± 18 MeV obtained from combining the constraint from the
neutron skin data of Sn isotopes [18] with those from recent
analyses of isospin diffusion and the double neutron/proton
ratio in heavy-ion collisions at intermediate energies [11].
Furthermore, the extracted value of L = 52.5 ± 20 MeV is
consistent with the value of L = 66.5 MeV obtained from a
recent systematic analysis of the density dependence of nuclear
symmetry energy within the microscopic Brueckner-Hartree-
Fock approach using the realistic Argonne V18 nucleon-
nucleon potential plus a phenomenological three-body force of
Urbana type [50]. It should be stressed that the simultaneously
extracted values of Esym(ρ0) and L in the present work are
obtained from the same Skyrme-Hartree-Fock energy density
functional.

IV. SUMMARY

We have analyzed the correlations of the nuclear matter
symmetry energy Esym(ρ) at a subsaturation reference density
ρA and the symmetry energy coefficient asym(A) of finite
nuclei in the semiempirical mass formula with nuclear matter
macroscopic quantities within the Skyrme-Hartree-Fock en-
ergy density functional. We have shown that Esym(ρA) displays
explicitly linear correlations with Esym(ρ0) and L and it is
essentially determined by the latters but almost no dependence
on other macroscopic quantities except a small dependence
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on the saturation density ρ0. These features imply that a fixed
value of Esym(ρA) will lead to strong linear correlation between
Esym(ρ0) and L. Furthermore, we have found that the two
macroscopic quantities Esym(ρ0) and L essentially determine
the value of asym(A) and the latter displays approximately
linear correlations with both Esym(ρ0) and L. In particular, the
correlation between asym(A) and Esym(ρ0) (L) is found to be
very similar to that between Esym(ρA) and Esym(ρ0) (L), thus
providing an explanation for the relation Esym(ρA) ≈ asym(A)
observed in mean field models using a number of different
parameter sets.

Using the relation Esym(ρA) ≈ asym(A), we have demon-
strated that within the Skyrme-Hartree-Fock energy density
functional, the value of Esym(ρ = 0.10 fm−3) = 20.22 −
24.74 MeV extracted recently from nuclear masses within a 2σ

uncertainty [17] can put important constraints on Esym(ρ0) and
L. Combining these constraints with those from recent analy-
ses of existing data on neutron skin thickness of Sn isotopes
based on the same Skyrme-Hartree-Fock approach within a
2σ uncertainty [18] allows us to extract simultaneously the
values of both Esym(ρ0) and L, i.e., Esym(ρ0) = 30.5 ± 3 MeV

and L = 52.5 ± 20 MeV. These extracted values are es-
sentially consistent with other constraints extracted from
different experimental data in the literature but with higher
precision.

In the present work, all analyses are based on the standard
Skyrme-Hartree-Fock energy density functional. It will be
interesting to see how our results change if different energy
density functionals are used. On the other hand, it will be
also interesting to see how our results, especially the new
constraints on Esym(ρ0) and L obtained in the present work,
can give implications for the neutron-skin thickness of heavy
nuclei, the isovector giant dipole resonance of finite nuclei,
and properties of neutron stars. These studies are in progress.
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