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Relativistic continuum quasiparticle random-phase approximation in spherical nuclei
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We have calculated the strength distributions of the dipole response in spherical nuclei, ranging all over the
periodic table. The calculations were performed within two microscopic models: the discretized quasiparticle
random-phase approximation and the continuum quasiparticle random-phase approximation, which takes into
account the coupling of the single-particle continuum in an exact way. Pairing correlations are treated with the
BCS model. In the calculations, two density functionals were used, namely, the PC-F1 and the DD-PC1. Both are
based on relativistic point-coupling Lagrangians. It is explicitly shown that this model is capable of reproducing
the giant- as well as the pygmy-dipole resonance for open-shell nuclei in a high level of quantitative agreement
with the available experimental observations.
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I. INTRODUCTION

The investigation of the isovector giant-dipole resonances
(IVGDRs) is one of the fundamental problems in nuclear
physics and astrophysics. These collective resonances can
be studied experimentally by photon scattering (γ,γ ′) or
photodissociation (γ,n) processes, as well as by means of
nuclear-resonance fluorescence using linearly polarized and
unpolarized bremsstrahlung [1]. Theoretical investigations are
based mainly on self-consistent microscopic approaches, such
as the random-phase approximation (RPA) or the quasiparticle
RPA (QRPA), which is a straightforward generalization of the
RPA including pairing correlations.

In solving the RPA equations, one should take into account
all the particle-hole pairs that contribute to the excitation. The
most common but computationally expensive way of doing
this is by discretizing the basis and introducing a truncation
(cutoff) parameter for the otherwise infinite configuration
space. However, despite the fact that these models, in principle,
enable one to reproduce experimental mean energies and total
strengths of the giant resonances, they fail to describe their
finite structure. One of the reasons is that the RPA and the
QRPA do not provide a mechanism that produces the escape
width �↑, which gives a considerable contribution to the total
width of the giant-multipole resonances. In addition, the space
truncation which is required by the numerical calculations
leads to model deficiencies, such as deviations of the resonance
energy or mixing of spurious states coming from symmetry
breaking with the physical states.

There is the alternative method of the continuum RPA
[2] which avoids a basis truncation by treating the single-
particle continuum explicitly. As a consequence, the entire
configuration space is included effectively, without the need
of energy cutoffs. Despite the fact that the continuum RPA
(CRPA) is proven to be a more complete and numerically
faster approach than any other RPA method available, it has
been applied in the past mostly in the nonrelativistic framework
[2–18]. Applications of the relativistic continuum RPA have
been restricted to cases without pairing correlations, i.e., to
doubly magic nuclei [19–22]. Recently, a CRPA approach

based on relativistic point-coupling models has been developed
to study giant-multipole resonances for spherical doubly magic
nuclei in the entire periodic table [23].

Apart from the well-studied giant-dipole resonance (GDR),
the pygmy resonance (IVPR) which appears as a soft low-lying
mode in the dipole spectrum of neutron-rich nuclei has still a
lot to reveal [24]. A concept that attracts most of the attention is
the picture of an oscillation of the excess neutrons against the
isospin-saturated proton-neutron core. Furthermore, low-lying
E1 strength in unstable nuclei is currently also discussed
in the context of the astrophysical r-process nucleosynthesis
[25], since it can affect the neutron capture rates, which are
important quantities in the determination of the r-process path.
The main difficulty in the study of this mode is due to the
fact that its excitation energy is very close to and sometimes
even below the particle emission threshold, hindering in
that way its experimental identification, especially when a
photodissociation (γ ,n) process is used.

In the present paper, we investigate theoretically the dipole
strength distribution for several even-even nuclei all over
the nuclear chart. The calculations are performed within
the framework of continuum QRPA (CQRPA) as well as
of conventional QRPA, where the continuum is discretized.
Pairing correlations in open-shell nuclei are treated within the
BCS model. Introducing finite occupation probabilities for the
single-particle spectrum of the relativistic mean field (RMF)
theory is a very successful scheme for treating pp correlations
in these nuclei. In addition, dynamical pairing is applied on
the RPA level with an additional pp term in the effective
interaction. In this way, the approach is fully self-consistent
and spurious states due to restoration of symmetries, such
as translation and particle-number invariance, are properly
separated from the rest of the spectrum.

It has to be emphasized, however, that the BCS model faces
serious problems in nuclei with a large neutron excess in the
neighborhood of the drip line where the Fermi level is close to
the continuum. In these cases, one has to use the full Hartree-
Fock-Bogoliubov [26,27] or relativistic-Hartree-Bogoliubov
(RHB) [28–30] theory which treats pairing correlations in a
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more consistent way. But, since we concentrate here on stable
nuclei far from the drip lines, BCS is a suitable model.

The paper is organized as follows. In Sec. II, we briefly
describe the continuum QRPA based on relativistic point-
coupling Lagrangians. In Sec III, we perform calculations on
isovector dipole and pygmy resonances for several Sn isotopes
and compare the results using the various successful parameter
sets. Conclusions are drawn in Sec. IV.

II. THE POINT-COUPLING MODEL

As in all relativistic models, the nucleons are described as
pointlike Dirac particles. In contrast to the Walecka model
[31], however, where these particles interact by the exchange
of effective mesons with finite mass, point-coupling models
[32,33] neglect mesonic degrees of freedom and consider
only interactions with zero range. In principle, these models
are similar to the Nambu–Jona-Lasinio model [34] used
extensively in hadron physics. There is, however, an important
difference: In order to obtain a satisfactory description of the
nuclear surface properties, one also needs gradient terms in the
Lagrangian simulating a finite range of the interaction. In this
work, we use two different point-coupling Lagrangians: the set
PC-F1 introduced by Bürvenich et al. in Ref. [35] and the more
recent set DD-PC1 introduced by Nikšić et al. [36]. In both
cases, the Lagrangian is represented in terms of the nucleon
scalar (S), vector (V), and isovector vector (TV) fields:

L = ψ̄(iγ · ∂ − m)ψ −
∑

i

1

2
αi[ρ](ψ̄�̂iψ)(ψ̄�̂iψ)

− 1

2
δi(∂νψ̄�̂iψ)(∂νψ̄�̂iψ) − e2(ψ̄�̂Cψ)(ψ̄�̂Cψ), (1)

where the Dirac vertices �̂i (i = S, V, TV) and the electro-
magnetic vertex �̂C have the explicit form

�̂S = 1, �̂V = γµ, �̂TV = γµ�τ , �̂C = γµ

(1 − τ3)

2
.

(2)

The coupling constants αi depend on the density, and this
density dependence is different for the two forces. While,
for PC-F1, each αi[ρi] in the various spin-isospin channels
depends on the corresponding local densities ρi , for DD-PC1,
all the couplings αi[ρ] depend on the baryon density ρ = ρV

alone. In particular, one has

αi[ρ] =
{

ai + biρi + ciρ
2
i for PC − F1,

ai + (bi + cix)e−dix for DD − PC1,
(3)

where x = ρ/ρsat denotes the nucleon density in units of the
saturation density in symmetric nuclear matter.

In addition, DD-PC1, unlike its predecessors, has not been
adjusted to spherical nuclei, but to ab initio calculations
together with nuclear matter data and to a large set of axially
deformed nuclei. The two sets are listed in Table I, and they
have been tested in the calculation of many ground-state
properties of spherical and deformed nuclei all over the
periodic table [37]. The results are very well comparable with
reasonable effective meson-exchange interactions [38–40].

TABLE I. Coupling constants for the density functionals PC-F1
and DD-PC1 resulting from the fitting procedures in Ref. [35] and Ref.
[36], respectively. The parameters di of DD-PC1 are dimensionless.

PC-F1 DD-PC1

aS −14.935 894 fm−2 −10.0462 fm−2

bS 22.994 736 fm−5 −9.1504 fm−2

cS −66.769 116 fm−8 −6.4273 fm−2

dS 1.3724
δS −0.634 576 fm−2 −0.8149 fm−4

aV 10.098 025 fm−2 5.9195 fm−2

bV 0.0 8.8637 fm−2

cV −8.917 323 fm−8 0.0
dV 0.6584
δV −0.180746 fm−2 0.0
aTV 1.350 268 fm−2 0.0
bTV 0.0 1.8360 fm−2

cTV 0.0 0.0
dTV 0.6403
δTV −0.063 680 fm−2 0.0

However, the success of a particular interaction relies on
the ability to reproduce, apart from the static properties of a
broad range of nuclei, also their dynamical properties, as, for
instance, the properties of collective multipole resonances via
the microscopic RPA approaches, which we will discuss in the
next section.

A. Linear response theory

If a nucleus is exposed to an external field, such as in the
photoabsorption process, the strength function

S(ω) = − 1

π
Im

∑
αβ

F ∗
α Rαβ(ω)Fβ (4)

measures the change of the nuclear density due to the influence
of this field. TheGreek indices α and β indicate the various
degrees of freedom of a nucleus (r, L, S, T ), while F is the
operator of the external field.

If we consider only small amplitude variations of the
density taking into account only one-particle-one-hole (1ph)
excitations, the response function R(ω) can be deduced from
the linearized Bethe-Salpeter equation

Rαβ(ω) = R 0
αβ(ω) +

∑
γ δ

R0
αγ (ω)V ph

γ δ Rδβ(ω). (5)

This method is usually referred to as a response-function
formalism of the random-phase approximation to distinguish it
from the more frequently used configuration-space formalism
[41]. The reason we chose this formalism is because it is
essential for an exact treatment of the continuum coupling.

1. The residual interaction

As explained in textbooks [42,43], the residual interaction
V

ph

αβ of Eq. (5) is connected to the static problem via the second
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derivative of the energy functional

V
ph

αβ = δ2E[ρ̂]

δρ̂αδρ̂β

, (6)

and hence, it depends on the same coupling constants αi[ρ̂]
and their derivatives with respect to the densities. In this way,
one ensures a fully self-consistent treatment of the dynamical
problem. The point-coupling scheme allows one to write
V ph as a sum of separable terms, simplifying considerably
the numerical solution of the Bethe-Salpeter equation. In
particular, one can write

V ph(1, 2) =
∑

c

∫ ∞

0
drQ(1)

c (r)υcc′(r)Q†(2)
c′ (r), (7)

where the upper indices (1) and (2) indicate that these
operators act on the “coordinates” 1 = (r1�1s1d1t1) and 2 =
(r2�2s2d2t2).

Each separable term is characterized by (c,r), the channel
index c given by the discrete numbers {D, S,L, J, T } and
the radial mesh point r . In the point-coupling models under
investigation, there are overall seven channels: one scalar S,
three isoscalar V, and three isovector TV vectors. Assuming a
coordinate mesh of 50 points, the final size of the interaction
matrix is not larger than 350 × 350. The corresponding
channel vertices Q̂(1)

c (r) are local single-particle operators

Q̂(1)
c (r) = (−)Sc

δ(r − r1)

rr1
�̂(1)

c YL(�1). (8)

Therefore, the Bethe-Salpeter [Eq. (5)] becomes

Rcc′ (ω) = R 0
cc′ (ω) +

∑
c1c2

R 0
cc1

(ω)υc1c2
Rc2c′(ω), (9)

which has the same formal solution as in Eq. (5). For the
continuous variables of the channel index c, such as the radial
coordinate r , Eq. (9) is an integral equation.

The interaction υcc′ can be expressed as a matrix in the
spin-isospin space, indicated by the index c. Apart from the
direct terms αi[ρ̂] of the Lagrangian, υcc′ also consists of
the so-called rearrangement terms, as a result of the double
variation of Eq. (6). Furthermore, the gradient term is described
by the operator [23]

� = r2←−∂ r

1

r2

−→
∂ r + L(L + 1) − 2

r2
. (10)

In Tables II and III, the exact form of the interaction matrices
is displayed for the two parameter sets PC-F1 and DD-PC1.
Further details can be found also in Refs. [23,44].

TABLE II. Structure of the matrix υcc′ in spin-isospin space for the
PC-F1 parametrization. The functional Fi[ρ] = αi[ρi] + 2α′

i[ρi]ρi +
(1/2)α′′

i [ρi]ρ2
i + δi�.

PC-F1 S V TV

S FS[ρS] 0 0
V 0 FV[ρV] 0
TV 0 0 FTV[ρTV]

TABLE III. Structure of the matrix υcc′ for the DD-
PC1 parametrization. The functional FV[ρ] = {αV[ρ] + 2α′

V[ρ]ρ +
(1/2)α′′

V[ρ]ρ2} + (1/2)α′′
S[ρ]ρ2

S + (1/2)α′′
TVρ2

TV.

DD-PC1 S V TV

S αS[ρ] + δS� α′
S[ρ]ρS 0

V α′
S[ρ]ρS FV[ρ] α′

TV[ρ]ρTV

TV 0 α′
TV[ρ]ρTV αTV[ρ]

Apart from the Coulomb force

υC(r, r ′) = 4πe2

2L + 1

rL
<

rL+1
>

, (11)

all other interaction terms are diagonal in r . Here, r< and
r> are the smaller and the greater of r and r ′. This force
breaks isospin symmetry. Hence, one has to expand υC in its
spin-isospin components:

VC(1, 2) =
(

1

2
(1 + τ3)

)(1)
e2

|r1−r2|
(

1

2
(1 + τ3)

)(2)

= 1

4

e2

|r1−r2| (1(1)1(2) − 1(1)τ
(2)
3 − τ

(1)
3 1(2) + τ

(1)
3 τ

(2)
3 ).

(12)

This means that in spin-isospin space, the Coulomb interaction
can be split into four parts, but thankfully not into four
additional channels. In particular, the two diagonal terms are
added to the already existing isoscalar and isovector vector
channels, while the other two correspond to off-diagonal terms.
This leads to a Coulomb matrix υC

cc′ (r,r ′) as shown in Table IV.

2. The free response function

The free response function R0
cc′ (ω) is the key point for a

successful description of the RPA problem, since it includes
all the microscopic properties of the nucleus under investiga-
tion. In the discrete quasiparticle space, i.e., in the spectral
representation, it can be written as

R0
2qp =

Emax
ph∑

α�β

1

1 + δαβ

ηS
αβ〈α||Q†

c||β〉rηS ′
αβ〈α||Qc′ ||β〉r ′

×
(

1

ω − Eαβ + iη
− 1

ω + Eαβ + iη

)
, (13)

where the indices α and β refer to the two-quasiparticle
states in the excitation, while |α〉r = |α(r)〉 and |β(r)〉 are
the corresponding radial single-particle wave functions. The

TABLE IV. Structure of the channel matrix υC
cc′ for the Coulomb

interaction.

S V TV

S 0 0 0
V 0 1

4 υC − 1
4 υC

TV 0 − 1
4 υC

1
4 υC
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factors ηc
αβ = uαvβ + (−)Scuαvβ include the BCS occupations

uα and vα . The energy Eαβ = Eα + Eβ is the sum of two
quasiparticle energies. In addition, the smearing parameter
η is used in Eq. (13) in order to avoid a divergence of the
free response function, and its value is often adjusted to the
observed width of the giant resonances. It has to be emphasized
that according to the no-sea approximation in the relativistic
RPA the sum in Eq. (13) includes also transitions to negative
energy solutions [41,45] since the vacuum polarization is
neglected.

One of the important questions which arises by using
the spectral representation of Eq. (13) is the question of
completeness of the basis. Numerical limitations require a
basis truncation, which can play a role in the final solution. In
practical calculations, an energy cutoff E

ph
cut = 500 MeV for

the particles and a corresponding Eah
cut = −2000 MeV for the

antiparticles is required to achieve a converged solution. This
fact, combined with the additional excitations to the antiparti-
cle states, leads to a very large configuration space [41].

In continuum QRPA, however, the situation is very differ-
ent. Here, one makes use of the nonspectral representation of
the free response function, which is given by

R0
cc′ =

∑
α

u2
α〈α(r)|Q̂†

cgκα
(ω + εα)Q̂c′ |α(r ′)〉

+ 〈α(r)|Q̂†
c′gκα

(−ω + εα)Q̂c|α(r ′)|〉, (14)

where the relativistic Green function is

gκ (E) =
{

|wκ (r)〉〈u∗
κ (r ′)|/W for r > r ′,

|uκ (r)〉〈w∗
κ (r ′)|/W for r < r ′.

(15)

The two-dimensional spinors

|uκ (r)〉 =
(

fu(r)

igu(r)

)
and

|wκ (r)〉 =
(

fw(r)

igw(r)

)
are the regular and the irregular wave functions of a continuum
state with the quantum number κ = (lj ) and the energy E.
Further details are given in Ref. [23]. Since |wκ (r)〉 behaves
as an outgoing wave as r → ∞, it is a complex quantity. In
this way, the strength function in Eq. (4) has a nonvanishing
imaginary part without the need of any smearing parameter, as
in Eq. (13). The denominator W describes the Wronskian of
the system,

W = 〈wκ (r)|u∗
κ (r)〉 = fw(r)gu(r) − gw(r)fu(r), (16)

and is independent of r . In the particular case where the energy
of the continuum state meets the value of an eigenstate E =
ω + εα = εp, the two wave functions |uκ〉 and |wκ〉 become
identical and the Green function diverges, similar to the case in
Eq. (13). So, the two expressions of the free response functions
in Eqs. (13) and (14) are in principle identical, but in practice
and due to the space truncation of the spectral representation,
differences are expected.

Consequently, one of the big advantages of the nonspectral
or continuum representation [Eq. (14)] is the inclusion of the

R0

R
0

R
0

(cont) (2qp) (corr)

FIG. 1. Various configurations used for the calculation of the
free quasiparticle response. Filled circles (•) refer to a pure particle
(v2

k = 0), while empty circles (◦) indicate quasiparticles (v2
k > 0).

Details are given in the text.

entire configuration space, without the need of any truncation
technique. This is achieved by summing over blocks of
well-defined quantum numbers κ . The wave functions are
exact and obey the proper boundaries at infinity. In this way, the
numerical effort can be reduced by more than one order of mag-
nitude, as compared to the conventional RRPA approaches,
where the continuum is discretized [37]. Finally, as far as the
solution is concerned, the inclusion of the full space ensures a
more realistic description of the nuclear collective properties
and better agreement with the experimental data [23].

Despite its simplicity, a problem arises when pairing
correlations are included. From Eq. (14), we see that all
levels lying in the continuum have uβ = 1, i.e., they are
all considered as pure particles. But this is not the case in
the QRPA model, where levels close to the Fermi surface
(some of them above the single-particle continuum limit) must
be treated as quasiparticles. That implies that in order to be
consistent, we need to modify the continuum representation to
properly account for the states within the space, where pairing
is active.

In Fig. 1, we schematically illustrate our technique, which
has been used in the past to define the continuum QRPA
in nonrelativistic models [9,10]. In this figure, the allowed
transitions are displayed as a sum of three different terms.
At first, the continuum term R0

cont of Eq. (14) includes the
transitions to the entire single-particle space.

The two-quasiparticle excitations within the pairing active
space are treated by the two-quasiparticle response function
Eq. (13) up to the pairing cutoff, which does not exceed the
Ep = +20 MeV.

However, in order to avoid double counting of the excita-
tions in the active pairing space, one needs to subtract a cor-
rection term, which describes transitions from a quasiparticle
to a pure particle using the expression

R0
corr =

Ep∑
α�β

1

1 + δαβ

〈α||Q†
c||β〉r〈α||Qc′ ||β〉r ′

×
{

v2
α

ω − �α,β + iη
− v2

α

ω + �α,β + iη

+ v2
β

ω − �β,α + iη
− v2

β

ω + �β,α + iη

}
, (17)
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where �α,β = Eβ + εα − λ. The indices α and β run only
over the partially occupied states below the continuum limit
(εα < 0). Consequently, a proper treatment of the quasiparticle
CRPA requires that the response function

R0(r, r ′ ω) = R0
cont(r, r

′ ω) + R0
2qp(r, r ′ ω) − R0

corr(r, r
′ ω)

(18)

is used in Eq. (5).
It has to be emphasized that all the particle states above the

pairing window as well as the states in the Dirac sea do not
participate in the above calculation, since they are completely
taken into account in the continuum part R0

cont(r, r
′ ω) in an

exact way.

III. RESULTS AND DISCUSSIONS

In this section, we show the IVGDR results for various
spherical open-shell nuclei, using both the continuum and the
discrete QRPA models.

As a first step, the ground state of the nucleus is determined
by solving the self-consistent RMF equations for the parameter
sets PC-F1 and DD-PC1 given in Table I. Pairing correlations
are treated within the BCS model with a constant gap. For the
pairing gap, either the empirical expression �n,p = 12.0/

√
A

or the gaps deduced from nuclear mass tables [47] can be used,
with the difference to be insignificant to the final outcome.

Using the single-particle wave functions and the corre-
sponding quasiparticle energies of this static solution, we
determine the free response R0 of Eq. (18). Finally, we solve
the Bethe-Salpeter Eq. (9) to get the strength distribution S(ω).

At the same time, we perform similar calculations using
the conventional RPA approach, where the continuum is
fully discretized. For those calculations, we have used an
energy cutoff |εp − εh| < E

ph
cut = 300 MeV for the configu-

rations with particles above the Fermi sea and |εa − εh| <

Eah
cut = 2000 MeV for configurations with anti-particles in the

Dirac sea.
In the left panel of Fig. 2, we show the cross section for the

IVGDR in the open-shell nucleus 124Sn for the two parameter
sets PC-F1 (red solid line) and DD-PC1 (blue dashed line),
as well as the experimental values from Ref. [46]. The cross
section is linear to the E1 strength of Eq. (4) according to

σ (E) = 16π3e2

9h̄ c
E S(E) fm2

= 4.022 E S(E) mb. (19)

The two parametrizations PC-F1 and DD-PC1 perform very
well in reproducing the giant-dipole resonance, as compared
to experimental data [46]. The energy-weighted sum rule
for the two forces are found at m1 = 2043.47 and m1 =
2151.85 mb MeV, respectively. These results are in agreement
with results of the discrete QRPA and, as usual, somewhat
(13.7% and 19.7%) larger than those obtained from the
classical Thomas-Reiche-Kuhn (TRK) sum rule

mTRK = 60.0
NZ

A
= 1782.32 mb MeV. (20)
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0

50

100

150

200

250

300

350

σ(
E

) 
[m

b]

DDPC1
PCF1

0 2 4 6 8 10 12
r [fm]

-3

-2

-1

0

1

2

3

δρ
 [

10
-1

fm
-3

]

π
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(a) (b)

FIG. 2. (Color online) (a) IVGDR strength distributions for 124Sn
using the forces PC-F1 (red solid line) and DD-PC1 (blue dashed
line). The experimental results are taken from Ref. [46]. (b) Neutron
and proton transition densities for the GDR at E = 14.40 MeV.

Because of the exact coupling to the continuum, the escape
width �↑ of the IVGDR is automatically taken into account.
However, in heavy nuclei, �↑ is very small, due to the high
Coulomb and centrifugal barriers, which prevent the excited
nucleon from escaping. The rest of the total width comes
mainly from the coupling to more complex configurations
(2ph, 3ph, etc.). Here, this part is treated approximately by
an additional smearing parameter, which can be energy or
temperature dependent [48], according to the expression

�(E) = �0
E2 + 4π2T 2

E2
GDR

. (21)

In our study, we have calculated the width by using �0 =
1.4 MeV and T = 0. In the right panel of Fig. 2, we give the
proton and neutron transition densities δρ(r) associated with
the GDR peak at E = 14.40 MeV. We see that the excitation
at this energy has a pure isovector character, since the neutrons
are coherently oscillating against the protons.

In Fig. 3, the centroid energies of the IVGDR are revealed
for several Sn isotopes, which have been well identified
experimentally [1,46,49]. The centroid energy Ē = m1/m0

is calculated in the same energy window as the one used in
the experimental analysis, i.e., between 13 and 18 MeV. It
can be clearly seen that both discrete and continuum QRPA
approaches predict a similar decrease of the centroid energies
with respect to the mass number of the isotope, but the
agreement with the experimental data is better reproduced
with the continuum approach.

In Table V, results for the two density functionals PC-F1
and DD-PC1 are compared using the continuum approach.
We have studied a series of stable spherical nuclei, which
have experimentally well-defined collective properties. It
appears that the force PC-F1 is, in general, slightly better
in performance, although both sets are very successful in
predicting the collective properties.

As it is, for instance, clearly seen in Fig. 2, in the case of
neutron-rich nuclei, in addition to the giant-dipole resonance, a
small peak appears at the energy region of the neutron emission
threshold around E ∼ 8 MeV. This pygmy mode is classically
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FIG. 3. (Color online) Centroid energies for several Sn isotopes
using the discretized RPA (DRPA) (blue boxes) and the CRPA
(red circles) approaches. The experimental results are deduced from
Refs. [1,46,49].

interpreted as an oscillation of the neutron skin against the
isospin-saturated proton-neutron core, and it seems to have a
collective character as well.

The collectiveness of this pygmy mode can be studied
by plotting the evolution of its strength with respect to the
mass number. As we show in the upper panel of Fig. 4, the
contribution of the pygmy-dipole resonance (PDR) strength to
the Thomas-Reiche-Kuhn sum rule increases considerably as
we move to heavier isotopes, meaning that all the additional
neutrons participate in this resonance. In particular, we find
that there is a sharper increase after the doubly magic isotope
132Sn, which is observed in both the continuum and the discrete
approach. This can be connected to the sharp decrease of
the particle emission threshold at exactly the same isotope,
as we see in the lower panel of Fig. 4.

A more careful study in this low-lying mode has shown
that its determination is not easy for two main reasons. First,
the experimental identification is very difficult in this area,
since it often lies below the particle emission threshold, where
(γ,n) reactions are no more possible. The other reason is that

TABLE V. Excitation energy of the isovector dipole resonance
for several nuclei, using both DD-PC1 and PC-F1 self-consistent
interactions. The centroid energies have been calculated in the area
11–18 MeV.

DD-PC1 PC-F1 Expt. [MeV] Ref.

70Zn E0 17.50 16.70 17.25 ± 0.08 [50]
Ē 16.00 15.86 15.68 ± 0.02

94Zr E0 16.60 15.60 16.67 ± 0.07 [51]
Ē 15.90 15.58 16.00 ± 0.01

124Sn E0 15.40 14.40 14.67 ± 0.08 [1]
Ē 14.99 14.70 14.34 ± 0.02

130Te E0 15.30 14.60 14.53 ± 0.13 [52]
Ē 14.96 14.66 14.27 ± 0.01

138Ba E0 15.20 14.40 15.29 ± 0.15 [53]
Ē 14.89 14.55 14.64 ± 0.01

144Sm E0 15.10 14.50 15.37 ± 0.13 [54]
Ē 15.39 14.58 14.77 ± 0.02

208Pb E0 13.60 12.80 13.50 ± 0.19 [55]
Ē 14.13 13.78 13.52 ± 0.04
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FIG. 4. (Color online) (a)Ratio of the PDR strength to the TRK
sum rule for various Sn isotopes. The blue circles indicate discrete
RPA results, while the red triangles are continuum RPA results. The
calculated PDR is integrated up to 11 MeV. In both cases, the force
PC-F1 has been used. (b) Neutron emission threshold for the same
range of Sn isotopes. Here the force PC-F1 is used.

the exact position of this soft mode has been found to be
very sensitive to the basis truncation, i.e., to the choice of the
energy cutoff E

ph
cut . This can be clearly seen in Fig. 5, where

we compare the E1 strength of 124Sn derived from the discrete
RPA approach with various energy cutoffs with results from
continuum RPA. For the sake of the present discussion, a very
small smearing parameter � has been used. It is very interesting
to see how the position of the pygmy mode moves to lower
energies as we increase the configuration space, and also that
it approaches the position of the continuum RPA, in which the
entire configuration space is included.

Therefore, it becomes evident that a proper treatment of the
continuum seems to be very important in the calculation of the
low-lying collective phenomena. It has to be emphasized that
till now in all the previous relativistic investigations, this has
not been possible. In Fig. 6, we go further and show the details
of the PDR in the isotope 132Sn, which has only recently been
identified experimentally [56].

In the left panel of Fig. 6, the blue dashed line corresponds
to the discrete RPA, while the red solid one shows the
continuum RPA calculations. Although the experimental
uncertainties are still large in this neutron-rich nucleus, we
find a nice agreement with the relativistic-RPA model, in
particular, in the continuum approach. In the right panel of
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FIG. 6. Panel (a): The low-lying E1 strength distributions for
132Sn using Discrete (blue dashed line) and Continuum RPA (red
solid line). In both cases, the point-coupling force PC-F1 has been
applied. Panel (b): The proton and neutron transition densities at the
peak of the soft mode. The experimental data are taken from Ref. [56].

Fig. 6, the proton and neutron transition densities at the peak
energy are used to show the pygmy character of this mode,
i.e., the oscillation of a relatively pure neutron skin against
the isospin-saturated proton-neutron core.

IV. CONCLUSIONS

Starting from a point-coupling Lagrangian, we have used
the relativistic continuum QRPA approach to examine the E1
collective excitation spectra of spherical open-shell nuclei.
This nonspectral method has several advantages. The use
of exact scattering wave functions with proper boundary
conditions instead of expansions in a harmonic oscillator basis
in the continuum allows for the simultaneous inclusion of
the entire continuum and the contributions of the Dirac sea.
Furthermore, large sums over unbound states are avoided,
which is extremely important in relativistic model, since the
unbound states in the Dirac sea are the root for computationally
very expensive calculations.

In these investigations the ground-state properties are
calculated using a relativistic point-coupling Lagrangian with
the parameter sets PC-F1 and DD-PC1. The RMF equations
are solved in r space self-consistently. For open-shell nuclei,
the BCS model is applied to treat the pairing correlations
properly.

The residual particle-hole interaction used in the QRPA
calculations is derived from the same parameter sets as
the second derivative of the energy functional with respect to
the density. In this way, no additional parameter is required for
the study of the dynamical problem. One has current conser-
vation and an exact separation of the spurious modes, and one
is able to reproduce the collective properties, as for instance,
the giant-multipole resonances, in a fully self-consistent way.

The calculations are carried out by using two different
point-coupling forces, namely the PC-F1 and DD-PC1. The
interaction then includes the basic zero range terms, rearrange-
ment terms due to density dependence, the derivative terms
which simulate the finite range of the nuclear interaction,
the various current-current terms, and finally, the Coulomb
interaction between protons.

We have used the continuum QRPA approach to study
collective properties, which are initiated by photo-absorption
processes. We have shown that the model performs well in
describing both the giant-dipole and the soft-pygmy resonance.
In particular, although there are not large differences in
the details between the continuum and the discrete RPA
calculations as far as the GDR is concerned, there is still
some systematic difference close to the neutron separation
threshold of stable nuclei and an even larger one for the extreme
neutron-rich nuclei. New (γ,γ ′) experiments on this low-lying
area [57] are expected to be of paramount importance to the
understanding of the real contribution of the exact coupling to
the continuum.

Finally, this approach accounts for nuclei far from the drip
lines where no level in the continuum is occupied, and thus the
BCS models can be safely applied. For nuclei up to the drip
line, the relativistic Hartree-Bogoliubov approximation would
be required. Investigations in this direction are in progress.
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[37] T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 72, 014312

(2005).
[38] G. A. Lalazissis, S. Karatzikos, R. Fossion, D. Peña Arteaga,

A. V. Afanasjev, and P. Ring, Phys. Lett. B 671, 36 (2009).
[39] G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev.

C 71, 024312 (2005).
[40] J. Daoutidis and G. A. Lalazissis, J. Phys. G 31, 659 (2005).
[41] P. Ring, Z.-Y. Ma, N. Van Giai, D. Vretenar, A. Wandelt, and

L.-G. Cao, Nucl. Phys. A 694, 249 (2001).
[42] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer-Verlag, Berlin, 1980).

[43] M. A. L. Marques, C. A. Ullrich, F. Nogueira, A. Rubio,
K. Burke, and E. G. U. Gross (eds.), Time-Dependent Density
Functional Theory (Springer, Heidelberg, 2006).

[44] J. K. Daoutidis, Ph.D. thesis, Technical University of Munich,
2009.

[45] J. F. Dawson and R. J. Furnstahl, Phys. Rev. C 42, 2009 (1990).
[46] S. C. Fultz, B. L. Berman, J. T. Caldwell, R. L. Bramblett, and

M. A. Kelly, Phys. Rev. 186, 1255 (1969).
[47] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 82,

035804 (2010).
[48] E. Betak, J. Kopecky, and F. Cvelbar, Phys. Rev. C 46, 945

(1992).
[49] V. V. Varlamov, Yad. Konst. 1, 52 (1993).
[50] A. Goryachev and G. Zalesnyy, Vopr. Teor. Yad. Fiz. 8121

(1982).
[51] B. L. Berman, J. T. Caldwell, R. R. Harvey, M. A. Kelly, R. L.

Bramblett, and S. C. Fultz, Phys. Rev. 162, 1098 (1967).
[52] A. Lepretre, H. Beil, R. Bergere, P. Carlos, J. Fagot,

A. Miniac, A. Veyssiere, and H. Miyase, Nucl. Phys. A 258,
350 (1976).

[53] B. Berman, S. Fultz, J. Caldwell, M. Kelly, and S. Dietrich,
Phys. Rev. C 2, 2318 (1970).

[54] P. Carlos, H. Beil, R. Bergere, A. Lepretre, A. de Minac, and
A. Veyssiere, Nucl. Phys. A 159, 561 (1970).

[55] A. Veyssiere, H. Beil, R. Bergere, P. Carlos, and A. Lepretre,
Nucl. Phys. A 159, 561 (1970).

[56] P. Adrich, A. Klimkiewicz, M. Fallot, K. Boretzky, T. Aumann,
D. Cortina-Gil, U. D. Pramanik, T. W. Elze, H. Emling,
H. Geissel, M. Hellström, K. L. Jones, J. Kratz, R. Kulessa,
Y. Leifels, C. Nociforo, R. Palit, H. Simon, G. Surówka,
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