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We extend our formulation of relativistic three-nucleon Faddeev equations to include both pairwise interactions
and a three-nucleon force. Exact Poincaré invariance is realized by adding interactions to the mass Casimir
operator (rest Hamiltonian) of the noninteracting system without changing the spin Casimir operator. This is
achieved by using interactions defined by rotationally invariant kernels that are functions of internal momentum
variables and single-particle spins that undergo identical Wigner rotations. To solve the resulting equations
one needs matrix elements of the three-nucleon force with these properties in a momentum-space partial-wave
basis. We present two methods to calculate matrix elements of three-nucleon forces with these properties. For a
number of examples we show that at higher energies, where effects of relativity and of three-nucleon forces are
non-negligible, a consistent treatment of both is required to properly analyze the data.
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I. INTRODUCTION

High-precision nucleon-nucleon potentials such as AV18
[1], CDBonn [2], and Nijm I, II, and 93 [3] provide a very good
description of the nucleon-nucleon data set up to ∼350 MeV.
When these forces are used to predict binding energies of
three-nucleon systems they underestimate the experimental
bindings of 3H and 3He by ∼0.5–1 MeV [4,5]. This missing
binding energy can be restored by introducing a three-nucleon
force into the nuclear Hamiltonian [5].

Also, the study of elastic nucleon-deuteron scattering and
nucleon-induced deuteron breakup revealed a number of cases
where the nonrelativistic description using only pairwise
forces is insufficient to explain the data. Generally, the studied
discrepancies between a theory using only nucleon-nucleon
potentials and experiment become larger with increasing
energy of the three-nucleon system. Adding a three-nucleon
force to the pairwise interactions leads in some cases to a
better description of the data. The elastic nucleon-deuteron
angular distribution in the region of its minimum and at
backward angles is the best studied example [6,7]. The
clear discrepancy in these angular regions at energies up to
≈100 MeV nucleon laboratory energy between a theory using
only nucleon-nucleon potentials and the cross-section data
can be removed by adding a modern three-nucleon force to
the nuclear Hamiltonian. Such a three-nucleon force must be
adjusted with each nucleon-nucleon potential separately to
the experimental binding of 3H and 3He [6–8]. At energies
higher than ≈100 MeV current three-nucleon forces only
partially improve the description of cross-section data, and
the remaining discrepancies, which increase with energy,

indicate the possibility of relativistic effects. The need for
a relativistic description of three-nucleon scattering was also
raised when precise measurements of the total cross section
for neutron-deuteron scattering [9] were analyzed within
the framework of nonrelativistic Faddeev calculations [10].
Nucleon-nucleon forces alone were insufficient to describe
the data above ≈100 MeV. The effects due to relativistic
kinematics considered in Ref. [10] were comparable at higher
energies to the effects due to three-nucleon forces. These
results showed the importance of a study taking relativistic
effects in the three-nucleon continuum into account.

In Refs. [11] and [12] the first results on relativistic
effects in the three-nucleon continuum have been presented.
The dynamics was defined by a three-nucleon center-of-
momentum Hamiltonian or mass operator including only
pairwise interactions. The mass operator was used to calcu-
late three-nucleon scattering observables. The input to that
approach is a “Lorentz-boosted” nucleon-nucleon potential,
which generates the nucleon-nucleon t matrix in a moving
frame by solving a standard Lippmann-Schwinger equation.
To get the nucleon-nucleon potential in an arbitrary moving
frame, one needs the interaction in the two-nucleon center-of-
momentum system, which appears in the relativistic nucleon-
nucleon Schrödinger or Lippmann-Schwinger equation. The
relativistic Schrödinger equation in the two-nucleon center-of-
momentum system differs from the nonrelativistic Schrödinger
equation just by the relativistic form for the kinetic energy.
Current realistic nucleon-nucleon potentials are defined and fit
by comparing the solution of the nonrelativistic Schrödinger
equation to experimental data. Up to now, nucleon-nucleon
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potentials refitted with the same accuracy in the framework
of the relativistic nucleon-nucleon Schrödinger equation do
not exist. Such refitting can be, however, avoided by solving
a quadratic integral equation whose solution is a relativistic
potential which is phase equivalent to a given input high-
precision nonrelativistic nucleon-nucleon potential [13]. An
alternative equivalent approach toward a relativistic nucleon-
nucleon t matrix in another frame is provided in Ref. [14].

In our previous studies with only nucleon-nucleon interac-
tions we found that when the nonrelativistic form of the kinetic
energy is replaced by the relativistic one and a proper treatment
of the relativistic dynamics is included, the elastic scattering
cross section is only slightly influenced by relativity. Only
at backward angles and higher energies are the elastic cross
sections increased by relativity [11]. It is exactly the region
of angles and energies where the effects of three-nucleon
forces are also significant [8]. Also, for nucleon-deuteron
breakup reactions regions of phase space were found at higher
energies of the incoming neutron where relativity significantly
changes the breakup cross sections [15,16]. For some spin
observables large effects due to relativity and three-nucleon
forces have been reported in nucleon-deuteron breakups for
an incoming deuteron energy of 270 MeV, some of which
seem to be supported by proton-deuteron data [17]. These
observations call for three-nucleon continuum relativistic
Faddeev calculations which include three-nucleon forces.
Only such consistent calculations should be used to analyze
the data in cases when both relativity and three-nucleon force
effects are large.

The paper is organized as follows. Section II provides
the conceptual basis for the choice of the momentum-space
representation and the definition of spin in the relativistic
context. In Sec. III we summarize the formalism underlying
relativistic three-nucleon Faddeev calculations with only
nucleon-nucleon interactions, presented in detail in Refs. [11]
and [12]. In Sec. IV we focus on the three-nucleon Faddeev
equation with an included three-nucleon force and discuss two
methods to compute matrix elements of the three-nucleon force
in the partial-wave basis used in our relativistic calculations. In
Sec. V we apply our formulation to elastic nucleon-deuteron
scattering and breakup and show and discuss the results. Sec-
tion VI contains our conclusions and summary. Appendixes A
and B formulate three-nucleon forces in the momentum-space
representation adapted to Poincaré invariance.

II. RELATIVISTIC DYNAMICS

Relativistic invariance of a quantum theory means that the
Poincaré group (inhomogeneous Lorentz group) is a symmetry
group of the theory. This requires the existence of a unitary
representation of the Poincaré group [18]. The Poincaré group
has ten generators, six Lorentz generators Jµν , and four space-
time translation generators, P µ. The dynamics of the system
is given by the Hamiltonian, H = P 0. The Lie algebra has two
polynomial invariants,

M2 = −P µPµ, W 2 = WµWµ, (1)

where Wµ is the Pauli-Lubanski vector [19]

Wµ := −1

2
εµαβγ PαJβγ . (2)

It satisfies

[P µ,Wν] = 0, P µWµ = 0, [Wµ,Wν] = iεµναβPαWβ.

(3)

Equation (1) implies that the Hamiltonian can be expressed in
terms of the mass operator, H = √

M2 + P 2, where P 2 := P2.
Thus, given a representation for P, the dynamics is defined
by the mass operator M , which plays the same role in
Poincaré invariant quantum mechanics as the center-of-mass
Hamiltonian h = H − P 2/2M does in Galilean invariant
quantum mechanics.

In the absence of interactions, the mass operator M be-
comes the invariant mass operator M0 of three noninteracting
relativistic particles. The full interaction is defined by

V := M − M0. (4)

For a system of three particles interacting with short-range
interactions, two-body interactions are defined by

V(ij )(k) := M(ij )(k) − M0, (5)

where M(ij )(k) is obtained from M by turning off all interactions
in M that involve particle k. The difference

V4 := V − V(12)(3) − V(23)(1) − V(31)(2) (6)

defines a three-body interaction. With these definitions the
mass operator has the form

M = M0 + V(12)(3) + V(23)(1) + V(31)(2) + V4. (7)

This has the same form as the nonrelativistic three-body
center-of-mass Hamiltonian with two- and three-body forces,
except the nonrelativistic kinetic energy is replaced by the
relativistic invariant mass of the noninteracting system. As in
the nonrelativistic case, bound and scattering eigenstates of this
mass operator can be computed using the Faddeev equations
with two- and three-body interactions. For identical nucleons
the coupled relativistic Faddeev equations can be replaced by
a single equation. Details are discussed in the next section.

In addition to the constraints imposed by discrete symme-
tries, translational invariance, and particle exchange symmetry,
there are nontrivial constraints on the interactions due to both
the Poincaré symmetry and cluster properties. The constraints
on the interaction due to Poincaré invariance come from the
commutator

[P j , J 0k] = iδjkH, (8)

which means that interactions appearing in H must be
generated by the operators in the commutator. One way
to satisfy the constraints due to Poincaré invariance was
suggested by Bakamjian and Thomas [20]. Their construction
adds interactions to the mass Casimir operator that commute
with the spin Casimir operator,

j2 := W 2/M2. (9)
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The required interactions commute with and are independent
of the total momentum and commute with the noninteracting
three-body canonical spin operator.

Spin is associated with rotational degrees of freedom that
appear in the rest frame. Because the Lorentz boost generators,
J 0i , do not form a closed subalgebra, a sequence of Lorentz
boosts that map the rest frame to the rest frame can generate a
rotation. Thus in order to obtain a well-defined relativistic spin
it is necessary to define a standard procedure for measuring
the spin. This normally requires the specification of a special
frame where spins can be compared (usually the rest frame)
and a standard set of Lorentz transformations B−1(P )µν ,
parametrized by momentum, which transform arbitrary frames
to the special frame. The three-body canonical spin is defined
in terms of the Pauli-Lubanski vector by [21]

(0, jc)µ := 1

M
B−1

c (P )µνW
ν, (10)

where B−1
c (P )µν is the rotationless Lorentz transformation-

valued function of the four-momentum P ,

B−1
c (P )µν :=

(
P 0/M −P/M

−P/M I + P⊗P
M(P 0+M)

)
. (11)

This Lorentz transformation (11) satisfies

B−1
c (P )µνP

ν = (M, 0)µ. (12)

Equations (3) and (12) can be used to show that the components
of jc satisfy SU(2) commutation relations. The spin (0, jc)µ is
not a four-vector because B−1

c (P )µν is a matrix of operators,
rather than a constant Lorentz transformation. Under Lorentz
transformation the canonical spin Wigner rotates,

(0, j′c)µ := Rwc(�,P )µν(0, jc)ν, (13)

where Rwc(�,P )µν := [B−1
c (�P )�Bc(P )]µν .The spin

Casimir operator j2 = jc · jc is independent of the choice
of boost (11) used to define the spin. The noninteracting
(kinematic) canonical spin, jc0, is obtained from (10) by
replacing M → M0, Wµ → W

µ

0 in (10) and M → M0 in
(11). Thus, Poincaré invariance can be satisfied provided the
interactions V(ij )(k) and V4 commute with jc0.

The other nontrivial constraint on the interactions is
imposed by cluster properties. The problem arises due to
the nonlinear relation between the two-body interaction vij

in the two-body problem and the corresponding two-body in-
teraction, V(ij )(k), in the three-body problem. Cluster properties
relate V(ij )(k) to the Poincaré generators for the interacting ij

pair and spectator k. Unfortunately, each 2 + 1 mass operator
constructed by requiring cluster properties commutes with
a different spin Casimir operator, which means that linear
combinations of these interactions will break Poincaré invari-
ance. Coester [22] observed that these interactions could be
replaced by phase-equivalent interactions that commute with
jc0. These interactions are designed to satisfy cluster properties
in the three-body rest frame. Using the Bakamjian-Thomas
construction, linear combinations of the phase equivalent
V(ij )(k)’s can be added in a manner that preserves the overall
Poincaré invariance. While these interactions do not lead to
generators that satisfy cluster properties, cluster properties in
the three-body rest frame and Poincaré invariance of the S

matrix ensures that the three-body S-matrix retains cluster
properties in all frames.

To construct two-body interactions, the two-body interac-
tions in the two-body problem that commute with the two-body
canonical spin are replaced by phase-equivalent two-body
interactions in the three-body problem that commute with the
three-body canonical spin. The phase-equivalent interactions
are identified in the rest frame of the three-body system. They
are determined in all other frames by the requirement that the
three-body spin remains kinematic (in the Bakamjian-Thomas
construction this choice fixes the representation of the boost
generators).

To construct interactions that commute with the three-body
kinematic canonical spin, it is useful to introduce momenta and
spin variables that have the same Wigner rotation properties
as the three-body kinematic canonical spin. This is because
the kinematic canonical spin can be constructed out of these
degrees of freedom using conventional methods for adding
angular momenta.

The desired momentum operators are the relativistic analog
of Jacobi momenta. In the nonrelativistic case Jacobi momenta
can be defined using Galilean boosts to the two- and three-body
rest frames. In the relativistic case the Galilean boosts are
replaced by the rotationless boost (11) and the relevant Jacobi
momenta are [22]

q
µ

i = B−1
c (P )µνp

ν
i , P µ = p

µ

1 + p
µ

2 + p
µ

3 ,

q
µ

i =
(√

q2
i + m2, qi

)
, (14)

k
µ

ij = B−1
c (qij )µνq

ν
i , q

µ

ij := q
µ

i + q
µ

j . (15)

In terms of these variables

M0 =
3∑

i=1

√
m2 + q2

i =
√

m2
ij0 + q2

k +
√

m2 + q2
k , (16)

where the two-body invariant mass is

mij0 = √−(qi + qj )µ(qi + qj )µ
(17)

=
√

m2
i + k2

ij +
√

m2
j + k2

ji .

The vector variables satisfy

3∑
i=1

qi = 0 kij + kji = 0. (18)

The relevant property of these momentum vectors is that
they experience the same Wigner rotations as the three-body
kinematic canonical spin (13),

q
µ

i → q
µ′
i = [

B−1
c (�P )�Bc(P )B−1

c (P )
]µ

νp
ν
i

= Rwc(�,P )µνq
ν
i . (19)

Similarly,

k
µ

ij → k
µ′
ij

= B−1
c (q ′

ij )µνq
ν′
i = [

B−1
c (Rwc(�,P )qij )Rwc(�,P )

]µ
νq

ν
i

= [
B−1

c (Rwc(�,P )qij )Rwc(�,P )Bc(qij )
]µ

νk
ν
ij

= Rwc(�,P )µνk
ν
ij (20)

044001-3



H. WITAŁA et al. PHYSICAL REVIEW C 83, 044001 (2011)

where the last line follows from the property of the rota-
tionless boosts (11) that the Wigner rotation of a rotation is
the rotation [21]

Rwc(R,P )µν = Rµ
ν (21)

for any P. Thus the qi and kij all undergo the same Wigner
rotations as the three-body kinematic canonical spin.

Next we introduce single-particle spins with the same
property. Single-particle canonical spins can be constructed
from single-particle Poincaré generators using

(0, jci)µ := 1

m
B−1

c (pi)
µ

νW
ν
i , (22)

where the operators on the right-hand side of (22) are
constructed by replacing all of the three-body generators in
(2), (10), and (11) by the corresponding one-body generators.

Under kinematic Lorentz transformations the single-
particle canonical spins experience Wigner rotations,
Rwc(�,pi)µν , that depend on the single-particle momenta.
These rotations differ from the Wigner rotations experienced
by qi , kij , and jc0. This can be changed by introducing new
single-particle spin operators that replace the rotationless boost
in (22) by a two-step boost,

B−1
c (pi)

µ
ν → [

B−1
c (qi)B

−1
c (P )

]µ
ν. (23)

These two boosts agree when P = 0. Note that both of
these boosts transform p

µ

i → (m, 0, 0, 0)µ, so they differ by
momentum-dependent rotations. We call these spins three-
body constituent spins to distinguish them from single-particle
canonical spins. The constituent spin operators are defined
by [22]

(0, j3csi)
µ := 1

m

[
B−1

c (qi)B
−1
c (P )

]µ
νW

ν
i . (24)

When P = 0, B−1
c (pi) → B−1

c (qi), which means that single-
particle canonical spins and three-body constituent spins agree
in the three-body rest frame. For a three-body system the total
spin is identified with total angular momentum in the three-
body rest frame, which is the sum of the single-particle angular
momenta. The angular momentum of a single particle in
the three-body rest frame is the sum of the single-particle
constituent spin and a contribution from the single-particle
orbital angular momenta.

A calculation, using the property (21), shows that under
Lorentz transformations,

(0, j′3csi)
µ := Rwc(�,P )µν(0, j3csi)

ν, (25)

Wigner rotates with the same rotation as the vectors qi

and kij and the three-body kinematic canonical spin. The

three-body kinematic canonical spin is the sum of the or-
bital angular momenta associated with qk and kij and the
single-particle three-body constituent spins. The requirement
that an interaction commutes with the kinematic three-body
canonical spin is equivalent to the requirement that the
interaction have a rotationally invariant kernel when expressed
in terms of these variables. Thus the required interac-
tions in the Bakamjian-Thomas construction are given by
kernels of the form

〈P, qi , kjk, µ1, µ2, µ3|V |P′, q′
i , k′

jk, µ
′
1, µ

′
2, µ

′
3〉

= δ(P − P′)〈qi , kjk, µ1, µ2, µ3‖V ‖q′
i , k′

jk, µ
′
1, µ

′
2, µ

′
3〉,

(26)

where the reduced kernel is a rotationally invariant function of
qi , kjk and the three-body constituent spins.

Two-body interactions in the two-body problem v12 have a
similar form,

〈P12, k12, µ1, µ2|v12|P′
12, k′

12, µ
′
1, µ

′
2〉

= δ(P12 − P′
12)〈k12, µ1, µ2‖v12‖k′

12, µ
′
1, µ

′
2〉, (27)

where

k
µ

12 = B−1
c (p1 + p2)µνp

µ

i (28)

is the two-body relative momentum and the magnetic quantum
numbers are associated with the two-body constituent spins,

(0, j2csi)
µ = 1

m
[B−1(kij )B−1(pi + pj )]µνW

ν
i . (29)

When these interactions are embedded in the three-body
Hilbert space, the kernels (27) are replaced by kernels that
are rotationally invariant functions of the three-body Jacobi
momenta and the three-body constituent spins. In order to
satisfy cluster properties, kij given by (28) is replaced by
the kij given by (15), the pi are replaced by the corre-
sponding qi , and the two-body constituent spins (29) are
replaced by

(0, j2(3)csi)
µ = 1

m
[B−1(kij )B−1(qi + qj )B−1(P )]µνW

ν
i .

(30)

These operators represent two-body constituent spins in
the three-body rest frame. They agree with the two-body
constituent spins (29) that they replace in the three-body rest
frame, but are defined so they remain unchanged by canonical
boosts out of the three-body rest frame. This ensures that they
undergo the same Wigner rotations as the kinematic three-body
canonical spin under kinematic Lorentz transformations. Thus,
the kernels (27) are related by

〈P, qi , kjk, µ1, µ2, µ3|vjk|P′, q′
i , k′

jk, µ
′
1, µ

′
2, µ

′
3〉

= δ(P − P′)δ(qi − q′
i)δµiµ

′
i

∑
D

1/2
µj µ̄j

[Bc(qj )Bc(qj + qk)Bc(kjk)]D1/2
µkµ̄k

[Bc(qk)Bc(qj + qk)Bc(−kjk)]

×〈kjk, µ̄j , µ̄k‖vjk‖k′
jk, µ̄

′
j , µ̄

′
k〉D1/2

µ̄′
j µ

′
j

[
B−1

c (k′
jk)B−1

c (q ′
j + q ′

k)B−1
c (q ′

j )
]
D

1/2
µ̄′

kµ
′
k

[
B−1

c (−k′
jk)B−1

c (q ′
j + q ′

k)B−1
c (q ′

k)
]
. (31)
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Here the unbarred magnetic quantum numbers are three-body
constituent spins while the barred magnetic quantum numbers
are the two-body constituent spins in the three-body rest frame.

Even though the spins in (30) transform the same way as the
three-body constituent spins, they differ from the three-body
constituent spins (24) by the Wigner rotation,

(0, j2(3)ics)
µ = [(B−1(kij )B−1(qi + qi)B

−1(qi)]
µ

ν(0, j3ics)
µ.

(32)

When the two-body interactions are embedded in the three-
body system, the spins are identified with the two-body
constituent spins in the three-body rest frame, as would be
expected by cluster properties, but in other frames they are
defined to remain unchanged with respect to canonical boosts
out of the three-body rest frame. The Wigner rotations (44) and
(A2) arise because the two-body subsystem is moving in the
three-body rest frame; however, because the Wigner rotations
in (32) are functions of the qi rather than the pi , both spins
in (32) undergo the same Wigner rotations under kinematic
Lorentz transformation. Because of this it is also possible
to construct the three-body canonical spin using partial-wave
methods directly in a mixed representation involving the barred
spins in the interacting pair and the unbarred spin for the
spectator. In the mixed representation the two-body interaction
in the three-body Hilbert space has the simple form

〈P, qi , kjk, µ̄1, µ̄2, µ3|vjk|P′, q′
i , k′

jk, µ̄
′
1, µ̄

′
2, µ

′
3〉

= δ(P − P′)δ(qi − q′
i)δµiµ

′
i
〈kjk, µ̄j , µ̄k‖vjk‖k′

jk, µ̄
′
j , µ̄

′
k〉.

(33)

For the two-body problem in the three-body Hilbert space,
it is advantageous to use (33) because spins (30) do not require
Wigner rotations. However, with this choice each interacting
pair of particle must be treated using a permuted basis, which
requires Wigner rotations in the permutation operators. The
three-body forces are naturally expressed by a rotationally
invariant kernel in the three-body constituent spins. When
they are transformed to a mixed basis that involves the spin
(30) for one pair, then it is necessary to transform two of the
three-body constituent spins with the Wigner rotations in (32).
The calculations performed in this work use a partial-wave
projection of the mixed basis (33), although the Wigner
rotations in the three-body interaction are not yet included.

III. RELATIVISTIC THREE-NUCLEON FADDEEV
EQUATIONS WITH NUCLEON-NUCLEON FORCES

The nucleon-deuteron scattering with neutron and protons
interacting through only a nucleon-nucleon interaction vNN

is described in terms of a breakup operator T , satisfying the
Faddeev-type integral equation [23,24]

T |φ〉 = tP |φ〉 + tPG0T |φ〉. (34)

The two-nucleon t-matrix t is the solution of the Lippmann-
Schwinger equation with the interaction vNN . The permutation
operator P = P12P23 + P13P23 is given in terms of the
transposition operators, Pij , which interchanges nucleons i
and j. The incoming state |φ〉 = |q0〉|φd〉 describes the free

nucleon-deuteron motion with relative momentum q0 and the
deuteron state vector |φd〉. Finally G0 is resolvent of the
three-body center-of-mass kinetic energy. Transition operators
for the elastic nd scattering, U , and breakup, U0, are given in
terms of T by [23,24]

U = PG−1
0 + PT, U0 = (1 + P )T . (35)

This is our standard nonrelativistic formulation, which is
equivalent to the nonrelativistic three-nucleon Schrödinger
equation plus boundary conditions. The formal structure of
these equations in the relativistic case remains the same but the
ingredients change. As explained in Ref. [25], the relativistic
three-nucleon rest Hamiltonian (mass operator) has the same
form as the nonrelativistic one, and only the momentum
dependence of the kinetic energy and the relation of the pair
interactions in the three-body problem to the pair interactions
in the two-body problem change. Consequently all the formal
steps leading to (34) and (35) remain the same.

The free relativistic invariant mass of three identical
nucleons of mass m has the form [12] [see Eq. (16)]

M0 =
√

m2
230 + q2 +

√
m2 + q2, (36)

with spectator momentum q := q1 and the free two-body mass
operator m230 expressed in terms of the relative momentum
k := k23 in the 2–3 center-of-momentum frame by [see Eq.
(17)]

m230 ≡ 2
√

k2 + m2 ≡ 2ωm(k). (37)

As introduced in Ref. [22] and in Eq. (5) the pair forces in
the relativistic three-nucleon 2 + 1 mass operator are related
to the two-body forces in the two-body problem, vij , by

V(ij )(k) =
√

(mij0 + vij )2 + q2 −
√

m2
ij0 + q2, (38)

where V = V (q2) reduces to the interaction v for q = 0, which
acts in the two-body center-of-momentum frame. The mo-
mentum dependence ensures that the resulting three-nucleon
scattering matrix satisfies spacelike cluster properties in all
frames [22].

The transition matrix t that appears in the kernel of the
Faddeev equation (34) is obtained by solving the relativistic
Lippmann-Schwinger equation as a function of q2:

t(k, k′; q2) = V (k, k′; q2) +
∫

d3k′′

× V (k, k′′; q2)t(k′′, k′; q2)√
[2ωm(k′)]2 + q2 −

√
[2ωm(k′′)]2 + q2 + iε

.

(39)

The input two-body interaction V is computed by solving
the nonlinear equation [13]{√

m2
ij0 + q2, V(ij )(k)

}
+ V 2

(ij )(k) = 4mvNN, (40)

where vNN is a nonrelativistic nucleon-nucleon potential fitted
to the nucleon-nucleon data basis and where anticommutator
{A,B} ≡ AB + BA. In the case of q = 0, that equation
reduces to a nonlinear equation for the relativistic two-
body interaction v. Therefore the problem of refitting all
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two-nucleon data when changing from a nonrelativistic to
a relativistic Lippmann-Schwinger equation is avoided. The
nonlinear equation (40) can be solved by iteration [13]. An
alternative approach to determine t(k, k′; q2) is described in
Ref. [14].

The new relativistic ingredients in (34) and (35) will
therefore be the t operator (39) (expressed in partial waves)
and the resolvent of the three-nucleon invariant mass,

G0 = 1

E + iε − M0
, (41)

with M0 given by (36). E is the total three-nucleon invariant
mass expressed in terms of the initial neutron momentum q0

relative to the deuteron by

E =
√

M2
d + q 2

0 +
√

m2 + q 2
0 , (42)

with Md the deuteron rest mass. Related to the choice of the
permutation operator P the pair i-j is chosen as 2–3.

Currently the Faddeev equation (34) in its nonrelativistic
form is numerically solved for any nucleon-nucleon interaction
using a momentum space partial-wave decomposition. Details
are presented in Ref. [23]. Projecting (34) on such a basis turns
it into a coupled set of two-dimensional integral equations.
As shown in Refs. [11] and [12], in the relativistic case we
can keep the same formal structure, though the permutation
operators are replaced by the corresponding Racah coefficients
for the Poincaré group, which include both Jacobians and
Wigner rotations that do not appear in the nonrelativistic
permutation operators [24,26].

In the nonrelativistic case the partial-wave projected
momentum-space basis is∣∣pq(ls)j

(
λ 1

2

)
IJ

(
t 1

2

)
T

〉
, (43)

where p and q are the magnitudes of standard Jacobi momenta
(see Refs. [24] and [26]), obtained by transforming single-
particle momenta to the rest frame of a two- or three-body
system using a Galilean boost, and (ls)j are two-body quantum
numbers with obvious meaning, (λ1/2)I refer to the third
spectator nucleon, taken as the nucleon 1 and described by the
momentum q, J is the total three-nucleon angular momentum,
and the rest are isospin quantum numbers. In the relativistic
case this basis is replaced by the Poincaré irreducible states
defined as [12]

〈p1, µ
′
1, p2, µ

′
2, p3, µ

′
3|(J, q)P = 0, µ; λ, I, j23, k23, l23, s23〉

= δ(0 − q1 − q2 − q3)

× 1

N (q2, q3)

δ(q1 − q)

q2

δ(k(q2, q3) − k)

k2

×
∑

µ2µ3µs

∑
µlµλµI

(
1

2
, µ2,

1

2
, µ3|s, µs

)
(l, µl, s, µs, |j, µj )

×
(

λ,µλ,
1

2
, µ′

1|I, µI

)
(j, µj , I, µI |J,µ)

×Yλµλ
(q̂1)Ylµl

(k̂(q2, q3))D
1
2

µ′
2µ2

[Rwc(Bc(−q1), k2(q2, q3))]

×D
1
2

µ′
3µ3

[Rwc(Bc(−q1), k3(q2, q3))], (44)

where N (q2, q3) is given by (A3) in Appendix A and k(q2, q3)
by (B1) in Appendix B. These states are labeled by the same
quantum numbers as the corresponding nonrelativistic basis
states.

The basis states (44) are used for the evaluation of the
partial-wave representation of the permutation operator P with
Wigner rotations of spin states for nucleons 2 and 3 included.
In the relativistic case we adopt the following short-hand
notation for the Poincaré irreducible three-body states, which
also includes isospin quantum numbers coupled in the same
order:

|k, q, α〉 : = ∣∣kq(ls)j
(
λ, 1

2

)
IJ

(
t 1

2

)
T

〉
= |(J, q)P = 0, µ; λ, I, j23, k23, l23, s23〉

∣∣(t 1
2

)
T

〉
.

(45)

Equipped with that, projecting (34) onto the basis states
|k, q, α〉, one encounters, using the nonrelativistic notation
of Ref. [26],

1〈kqα|P |k′q ′α′〉1 = 1〈kqα|k′q ′α′〉2 +1 〈kqα|k′q ′α′〉3

= 21〈kqα|k′q ′α′〉2. (46)

This is evaluated by inserting the complete basis of single-
particle states |p1, µ1, p2, µ2, p3, µ3〉 and using (44). It can be
expressed in a form which resembles closely the corresponding
nonrelativistic expression [24,26]

1〈kqα|P |k′q ′α′〉1 =
∫ 1

−1
dx

δ(k − π1)

k2

δ(k′ − π2)

k′2

× 1

N1(q, q ′, x)

1

N2(q, q ′, x)
GBB

αα′ (q, q ′, x),

(47)

where all ingredients are defined in Appendix (A2) of
Ref. [12]. The rotational invariance of the nucleon-nucleon
interaction in this basis ensures that all three nucleon-nucleon
interactions commute with the spin Casimir operator of the
noninteracting three-nucleon system. This allows the interac-
tions to be added in a manner that preserves the underlying
Poincaré symmetry.

Due to the short-range nature of the nucleon-nucleon
interaction, it can be considered negligible beyond a certain
value jmax of the total angular momentum in the two-nucleon
subsystem. Generally with increasing energy jmax will also
increase. For j > jmax we set the t matrix to zero, which yields
a finite number of coupled channels for each total angular
momentum J and total parity π = (−)l+λ of the three-nucleon
system. To achieve converged results at incoming nucleon
laboratory energies below ≈250 MeV, all partial-wave states
with total angular momenta of the two-nucleon subsystem up
to jmax = 5 and all total angular momenta of the three-nucleon
system up to J = 25/2 must be taken into account. This leads
to a system of up to 143 coupled integral equations in two
continuous variables for a given J and parity. For the details
of the numerical performance we refer to Refs. [11], [24],
and [26]. The solution of these equations can be used to
construct an exactly Poincaré invariant scattering operator.
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IV. RELATIVISTIC THREE-NUCLEON FADDEEV
EQUATIONS WITH A THREE-NUCLEON

FORCE INCLUDED

In the standard nonrelativistic formulation when, in addition
to pairwise interactions vNN between three nucleons, also a
three-nucleon force is included, a new term V4 appears in a
potential energy of the three-nucleon system

V4 = V
(1)

4 + V
(2)

4 + V
(3)

4 . (48)

Each V
(i)

4 is symmetric under exchange of the nucleons j

and k (i, j, k = 1, 2, 3 and j �= i �= k). In the 2π -exchange
three-nucleon force V

(1)
4 is a contribution to the three-nucleon

potential from (off-shell) rescattering of a pion on nucleon 1.
When a three-nucleon force is acting then on top of

rescatterings among three nucleons induced by pairwise forces
only, which are summed up in integral equation (34), additional
rescatterings induced by three-nucleon force and nucleon-
nucleon force appear.

Therefore Faddeev equation (34) changes to

T |φ〉 = tP |φ〉 + (1 + tG0)V (1)
4 (1 + P )|φ〉 + tPG0T |φ〉

+ (1 + tG0)V (1)
4 (1 + P )G0T |φ〉, (49)

with one new contribution in the leading term and in the kernel
[24,27]. While the breakup transition operator U0 preserves
its form (35), in the elastic scattering operator U two new
contributions appear [24,27],

U = PG−1
0 + V

(1)
4 (1 + P ) + PT + V

(1)
4 (1 + P )G0T . (50)

The second term is due to a single interaction of three
nucleons via a three-nucleon force and the fourth results
from rescattering among three nucleons induced by two- and
three-nucleon forces with a three-nucleon force as the final
interaction.

After projecting on a partial-wave momentum-space basis,
Eq. (49) becomes a system of two-dimensional coupled
integral equations which can be solved numerically exactly
for any nuclear force. Since the three-nucleon force is short
ranged, its inclusion needs to be carried through only for
all total angular momenta of the three-nucleon system up
to J = 13/2. As mentioned in Sec. III, the longer-ranged
two-nucleon interactions require states up to J = 25/2. For
details of the formalism and numerical performance in the case
of the nonrelativistic formulation when three-nucleon force is
included, we refer to Refs. [23], [24], and [28].

For relativistic calculations without a three-nucleon force,
briefly described in the previous section, the details of the
numerical treatment are given in Refs. [11] and [12]. When a
three-nucleon force is added, two new terms in (49) contain the
free three-nucleon propagator G0. Since in the basis |k, q〉 (see
Appendix B) the three-nucleon invariant mass M0 is diagonal,
G0 is given by

〈k, q|G0|k′, q′〉= δ(k − k′)δ(q − q′)

× 1

E −
√

m2 + q2 −
√

4(k2 + m2) + q2 + iε
.

(51)

That means that performing integrations over momenta k′ and
q ′ in the intermediate states |k′, q ′, α′〉 during the calculation
of matrix elements for these new terms, the simple pole
singularity occurs for momenta q ′ < qmax at k′ = k0, where
qmax is given by the total three-nucleon center-of-momentum
energy E through E = √

4m2 + q2
max + √

m2 + q2
max.

For a given q ′ value the momentum k0 is the solution of E =√
4(m2 + k2

0) + q ′2 +
√

m2 + q ′2. The treatment of that pole,
as well as of the deuteron bound state pole in T , which occurs
at q ′ = q0 for channels α′ containing the deuteron quantum
numbers, was done using a subtraction method [23,24].

The nonrelativistic treatment of (49) requires matrix ele-
ments of V

(1)
4 (1 + P ) calculated in a partial-wave basis with

standard Jacobi momenta: 〈p, q, α|V (1)
4 (1 + P )|p′, q ′, α′〉. In

the relativistic calculations, however, one needs them in the
new, relativistic basis |k, q, α〉. The generation of three-
nucleon force partial-wave matrix elements is the most time-
consuming part of three-nucleon continuum Faddeev calcu-
lations. One way to reduce the computer time is to perform
a transformation of the existing, standard Jacobi momenta
matrix elements to the relativistic basis. In Appendix A we
give expression (A17) for such a transformation, which is valid
in the general case, when, in addition to boost, Wigner spin
rotations are also taken into account. The complex structure of
that transformation, where in addition to the summation over
numerous intermediate states with geometrical coefficients,
also involved are two integrations and two interpolations over
the momenta p and p′, and which prevents, due to the large
amount of computing time and computer resources required,
the application of that transformation in fully converged
calculations.

It thus seems unavoidable that in order to get matrix
elements 〈k, q, α|V (1)

4 |k′, q ′, α′〉, one must start from a com-
monly given expression for a three-nucleon force in terms of
the individual nucleons’ momenta and their spin and isospin
operators and to apply to that expression the recently proposed
automatized partial-wave decomposition [29,30]. To that aim
we derived in Appendix B relation (B4), which allows to
express the matrix element of a three-nucleon force in a
three-dimensional relativistic basis 〈k, q|V (1)

4 |k′, q′〉 by its
matrix element in the individual nucleons’ momenta basis.
In this basis q and k undergo identical Wigner rotations
under a kinematic boost of the three-nucleon system. The
nucleon spins are defined to be the three-body constituent spins
(canonical spins measured by using a rotationless boost to the
three-body center-of-momentum frame). To use them in the
|k, q, α〉 basis, the spins for the α pair must be Wigner rotated
before they are coupled. The alternative is to use the repre-
sentation where three spins are three-body constituent spins;
in this case all three of the two-body interactions will have
Wigner rotations that convert the two-body constituent spins
in the three-body rest frame to three-body constituent spins.
The three-nucleon force will have no Wigner rotations. In this
representation all of the spins can be coupled using standard
partial-wave methods. For our calculations we work in the
|k, q, α〉 basis, but do not account for the Wigner rotations in
the three-nucleon interaction for the reasons discussed above.
This allows us to treat the spins in the three-nucleon force using
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conventional methods. This assumes the Wigner rotations in
the three-nucleon force can be neglected. Neglecting these
Wigner rotations has no effect on the relativistic invariance or
S-matrix cluster properties.

V. RESULTS

To study the importance of a consistent treatment of both
relativity and a three-nucleon force, we numerically solved
the three-nucleon Faddeev equations for neutron-deuteron
scattering at the neutron laboratory energies Elab

n = 70, 135,
200, and 250 MeV. As dynamical input we took the nonrel-
ativistic nucleon-nucleon potential CD Bonn [2] and TM99
three-nucleon force [31–33]. The cutoff parameter � of that
three-nucleon force was adjusted to � = 4.469 in units of the
pion mass, mπ , to give, together with the CD Bonn potential,
the experimental binding energy of 3H. At each energy we
generated solutions of a nonrelativistic and a relativistic three-
nucleon Faddeev equation, without and with TM99 three-
nucleon force included. For the relativistic case we produced,
starting from the CD Bonn potential and solving nonlinear
equation (40) at the required spectator nucleon momenta q, the
relativistic, on-shell equivalent interaction with boost effects
incorporated exactly. That interaction served as a dynamical
input to calculate, using the relativistic Lippmann-Schwinger
equation (39), the relativistic off-shell t-matrix t that appears
in Faddeev equations.

Since in Ref. [12] it was found that effects of Wigner spin
rotations are practically negligible in the studied energy range,
we neglected them in the present study. When performing
relativistic calculations with the three-nucleon force included,
one requires matrix elements of the TM99 three-nucleon force
in a relativistic momentum space basis, where the relative
momentum of two nucleons in their center-of-momentum
(c.m.) system, k, replaces standard Jacobi momentum p. That
momentum k, together with spectator nucleon momentum q,
equal in magnitude and opposite to the total momentum of
the free pair in three-nucleon center-of-momentum system,
unambiguously define the configuration of three nucleons.
Since it is the region of small and not large momenta which
is most important when solving Faddeev equations, it seems
reasonable to assume that the momenta k and p do not differ
substantially. Therefore, in order to avoid calculations of the
TM99 three-nucleon force matrix elements in a relativistic
basis |k, q, α〉, we assumed that the matrix elements in a
relativistic and nonrelativistic bases are equal:

〈k, q, α|V (1)
4 |k′, q ′, α′〉 = 〈p = k, q, α|V (1)

4 |p′ = k′, q ′, α′〉.
(52)

That assumption allowed us to use the existing matrix elements
of the TM99 three-nucleon force.

To check quality of the approximation (52), we compared
the matrix element of the TM99 3NF in the relativistic
basis, 〈k, q, α|V (1)

4 |k′, q ′, α′〉, calculated according to (B4)
and using automatized partial-wave expansion of Ref. [30]
[which corresponds to neglect of Wigner spin rotations in
(B5)], with the corresponding matrix element in the standard,
nonrelativistic basis, 〈p, q, α|V (1)

4 |p′, q ′, α′〉, at a number of
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FIG. 1. (Color online) The matrix element of the TM99 3NF
in relativistic [〈k, q, α|V (1)

4 |k′, q ′, α〉, blue dashed line] and nonrel-
ativistic basis [〈p, q, α|V (1)

4 |p′, q ′, α〉, red solid line] for the total
angular momentum and parity of the 3N system J π = 1

2

+
and channel

α = |(00)0(0 1
2 ) 1

2 (1 1
2 ) 1

2 >. The momenta p = k = 0.132 fm−1 and
q = 0.132 fm−1.

the spectator momentum values. In Figs. 1 and 2 we exemplify
the typical behavior showing at a number of q ′ values and at
a fixed p = k, taking two different values of q, the k′(= p′)
dependence of these matrix elements for a particular channel,
α = α′ = |(00)0(0 1

2 ) 1
2 (1 1

2 ) 1
2 〉. As expected, clear differences

between these matrix elements occur only at very large values
of the spectator momentum q, where magnitudes of these
matrix elements are small. This justifies application of the
approximation (52) in the present study.

The approximation (52) can be investigated also di-
rectly for the three-dimensional matrix elements, comparing
〈k, q|V (1)

4 |k′, q′〉 and 〈p, q|V (1)
4 |p′, q′〉. The connection be-

tween these matrix elements is given by (B4) in Appendix B.
They depend on momentum vectors and spin-isospin quantum
numbers in the initial and final state. In Fig. 3 we show a
particularly simple case, where t = t ′ = 0, all four momenta
are parallel to the unit vector ( 1√

3
, 1√

3
, 1√

3
) and all spin

magnetic quantum numbers are equal to 1
2 . We display

〈k, q|V (1)
4 |k, q〉 and 〈p, q|V (1)

4 |p, q〉 for several q values as
a function of k. We see how the difference develops gradually
with increasing q, resembling the picture seen for partial-wave
decomposed matrix elements.

Transition amplitudes for elastic neutron-deuteron scat-
tering and breakup based on that set of four solutions of
three-nucleon Faddeev equations are used to predict numerous
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FIG. 2. (Color online) The same as in Fig. 1 but for the momenta
p = k = 5.25 fm−1 and q = 8.24 fm−1.

observables for both reactions. By comparing these observ-
ables, conclusions on how strongly three-nucleon force effects
depend on relativity were drawn. In the following we show
and discuss results for the cross section and numerous spin
observables, separately for elastic scattering and breakup
reactions.

A. Elastic scattering

At higher energies of the incoming nucleon, three-nucleon
forces play a significant role in determining the angular
distribution of the elastic neutron-deuteron scattering. The
clear evidence of three-body force effects start to develop at
Elab

n ≈ 65 MeV for scattering angles close to a minimum of
the cross section, which at 65 MeV occurs at θc.m. ≈ 105◦
[6,8]. With increasing energy of the three-nucleon system, not
only the magnitude of predicted three-nucleon force effect
increases but it also influences the cross section in a wider
range of angles, which at 250 MeV covers 90◦ � θc.m. �
180◦ [6,8]. The standard 2π -exchange three-nucleon forces,
such as TM99 [33] or Urbana IX [34], are able to account
for existing discrepancies between theoretical cross sections
obtained with realistic nucleon-nucleon potentials and data
only up to Elab

n ≈ 135 MeV. Data at larger energies in a
region of angles ranging from the cross-section minimum up to
180◦ are drastically underestimated even when 2π -exchange
three-nucleon forces are included in the calculations. This is
exemplified in Fig. 4, where solid (red) lines are nonrelativistic
predictions based on the CD Bonn potential alone and dotted
(blue) lines are results obtained when the CD Bonn potential
was combined with the TM99 three-nucleon force.

0

1×10
-5

2×10
-5

-2×10
-5

-1×10
-5

0

<
 k

 q
 | 

V
4(1

)   |
 k

 q
 >

 [
fm

5 ] -8×10
-5

-6×10
-5

-4×10
-5

-2×10
-5

0

-1×10
-5

-5×10
-6

0

0 2 4 6 8

k [fm
-1

] 

-4×10
-6

-2×10
-6

0

0 2 4 6 8 10

k [fm
-1

] 

-2×10
-6

-1×10
-6

0

q=0.001 fm
-1

q=2.8 fm
-1

q=5.8 fm
-1

q=8.2 fm
-1

q=11.3 fm
-1

q=14.8 fm
-1

FIG. 3. (Color online) The matrix element of the TM99 3NF
in relativistic [〈k, q|V (1)

4 |k, q〉, blue dashed line] and nonrelativistic
basis [〈p, q|V (1)

4 |p, q〉, red solid line]. They are shown as a function
of k at a number of q values assuming that all momenta are parallel
to the unit vector ( 1√

3
, 1√

3
, 1√

3
), all spin magnetic quantum numbers

in the initial and final state are equal 1
2 , and isospins t = t ′ = 0.

Since effects of relativity for predictions based on two-
nucleon forces only are restricted to very backward angles
θc.m. � 160◦ [11] [see also Fig. 4 where the dashed (blue) lines
are relativistic predictions based on the CD Bonn potential], the
drastic discrepancy between data and theory seen at 250 MeV
would indicate that at such large energies shorter-ranged three-
nucleon force components, not taken into account in these
calculations, start to play a significant role. The possibility
that including such three-nucleon force contributions would
indeed help to improve the description of the cross-section
data is further supported by an interesting pattern revealed
when the TM99 three-nucleon force is included into relativistic
calculations. Namely, when a consistent treatment of relativity
and a three-nucleon force as described in the present study is
made, then the resulting changes of the cross section are not a
simple incoherent sum of effects due to relativity, seen when
two-nucleon forces alone are acting, and three-nucleon force
effects found in nonrelativistic calculations. The relativity
modulates effects exerted by the TM99 three-nucleon force
on the cross section found in nonrelativistic calculations
and the magnitude of this modulation depends from the
scattering angle. While at backward angles the nonrelativistic
cross section with a three-nucleon force included is further
enhanced by relativity, in a region of center-of-momentum
angles near the cross-section minimum, the magnitude of
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FIG. 4. (Color online) The elastic nd scattering angular distri-
butions at the incoming neutron laboratory energy E = 135 and
250 MeV. The solid (red) and dotted (blue) lines are results of the
nonrelativistic Faddeev calculations with the CD Bonn potential alone
and combined with TM99 three-nucleon force, respectively. The
relativistic predictions based on CD Bonn potential without Wigner
spin rotations are shown by the dashed (blue) lines. The dashed-dotted
(brown) lines show results of relativistic calculations with the TM99
three-nucleon force included. The pd data (×) at 135 MeV are from
Ref. [7] and at 250 MeV from Ref. [37]. At 250 MeV also nd data
of Ref. [36] are shown by circles. The inserts and figures in the
right-hand column display details of the cross sections in specific
angular ranges.

three-nucleon force effects seen in nonrelativistic calculations
is strongly reduced by relativity [dashed-dotted (brown) lines
in Fig. 4].

Also elastic scattering polarization observables reveal such
incoherent and angle-dependent modulation of three-nucleon
force effects by relativity. The details, however, depend on the
particular spin observable under study and every conceivable
scenario can be found.

For elastic scattering spin observables, effects of relativity,
when only two nucleon forces are acting, were found to be
small [11]. It is exemplified by nearly overlapping solid (red)
and dashed (blue) lines in Figs. 5–15. Adding three-nucleon
force in nonrelativistic calculations leads to substantial effects
for some polarization observables, especially at higher ener-
gies [7,8]. The resulting picture, however, is quite complex.
Some of those three-nucleon force effects are supported by
the data. For some observables they deteriorate the data
description.

For tensor analyzing powers Axx , Ayy , and Axz, relativistic
effects are non-negligible even at 70 MeV (see Fig. 5) and
clearly increase with increasing energy as seen in Figs. 6, 7,
and 9. When three-nucleon force is added in the relativistic
calculations the resulting effect depends on the observable and
the energy.

For Axz large three-nucleon force effects remain. At 70
and 135 MeV they are practically identical in magnitude
to three-nucleon force effects found in nonrelativistic cal-
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FIG. 5. (Color online) The vector (deuteron) Ay(d) and tensor
analyzing powers Axx , Ayy , and Axz in elastic nd scattering at the
incoming neutron laboratory energy E = 70 MeV. For description of
lines, see Fig. 4. The pd data (open circles) are from Ref. [7].

culations, and nonrelativistic and relativistic predictions for
Axz at these energies are practically overlapping [see dotted
(blue) and dashed-dotted (brown) lines in Figs. 5, 6, and
9]. At 200 MeV, however, adding the three-nucleon force in
relativistic calculations leads to angle-dependent modulations
of the magnitude of three-nucleon force effects, similar to that
found for the cross section (see Fig. 9).

For Axx a drastically different scenario occurs. Large
effects of the TM99 three-nucleon force are seen for that
observable in nonrelativistic calculations at 70 and 135 MeV
in a wide range of angles, and they practically vanish when
relativity is included. As a result, the dashed-dotted (brown)
line practically overlaps with pure two-nucleon relativistic and
nonrelativistic predictions (see Figs. 5 and 6).
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FIG. 6. (Color online) The vector (deuteron) Ay(d) and tensor
analyzing powers Axx , Ayy , and Axz in elastic nd scattering at the
incoming neutron laboratory energy E = 135 MeV. For description
of lines, see Fig. 4. The pd data (open circles) are from Ref. [7].
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FIG. 7. (Color online) The tensor analyzing powers Axx-Ayy and
Azz in elastic nd scattering at the incoming neutron laboratory energy
E = 135 and 200 MeV. For description of lines, see Fig. 4. The pd
data (open circles) are from Ref. [40].

For Ayy (Figs. 5 and 6) the large effects of the three-nucleon
force seen in nonrelativistic calculations are simply reduced
by relativity. For the tensor analyzing power Azz, for which
data exist only at 135 and 200 MeV, the influence of relativity
induces both modulation and reduction of nonrelativistic three-
nucleon force effects (Fig. 7).

The TM99 three-nucleon force acts differently on the
nucleon, Ay(N ), and deuteron, Ay(d), vector analyzing pow-
ers. While three-nucleon force effects for Ay(N ) are rather
small even at 250 MeV (Fig. 8 and 15), for Ay(d) they are
significant (Figs. 5, 6, and 8). For Ay(N ) and Ay(d), but
more clearly displayed due to larger effects for the deuteron
vector analyzing power, both reduction and modulation of
nonrelativistic three-nucleon force effects by relativity was
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FIG. 8. (Color online) The vector analyzing powers Ay(N ) and
Ay(d) in elastic nd scattering at the incoming neutron laboratory
energy E = 135 and 200 MeV. For description of lines, see Fig. 4.
The pd data (open circles) are from Ref. [40].
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FIG. 9. (Color online) The spin correlation coefficients Cx,z and
Cz,z and tensor analyzing power Axz in elastic nd scattering at the
incoming neutron laboratory energy E = 135 and 200 MeV. For
description of lines, see Fig. 4. The pd data (open circles) are from
Ref. [40].

found. That reduction and modulation depend on angle and
energy.

A similar picture was found for numerous spin correlation
coefficients, as exemplified by different theoretical predictions
shown in Figs. 9–13. Again all scenarios are available: total
reduction by relativity of large three-nucleon force effects
seen in nonrelativistic calculations (e.g., Cx,x at 135 and
200 MeV for 120◦ � θc.m. � 150◦ in Fig. 10, Cy,y at 135
and 200 MeV at 120◦ � θc.m. � 150◦ in Fig. 11), practically
the same three-nucleon force effects in nonrelativistic and
relativistic calculations (Cz,z at 135 MeV in Fig. 9, Cxz,y at
135 and 200 MeV in Fig. 12), angle-dependent modulation of
nonrelativistic three-nucleon force effects by relativity (Cx,z at
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FIG. 10. (Color online) The spin correlation coefficients Cx,x and
Cz,x in elastic nd scattering at the incoming neutron laboratory energy
E = 135 and 200 MeV. For description of lines, see Fig. 4. The pd
data (open circles) are from Ref. [40].
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FIG. 11. (Color online) The spin correlation coefficients Czz,y and
Cy,y in elastic nd scattering at the incoming neutron laboratory energy
E = 135 and 200 MeV. For description of lines, see Fig. 4. The pd
data (open circles) are from Ref. [40].

135 MeV in Fig. 9, Cz,x at 135 and 200 MeV in Fig. 10, Cxy,x

and Cyz,x at 135 and 200 MeV in Fig. 13).
The polarization transfer coefficients are not exceptions;

also for them a similar complex influence of relativity on
nonrelativistic three-nucleon force effects have been found
as shown in Figs. 14 and 15.

The comparison of nonrelativistic predictions based on
2π -exchange three-nucleon forces revealed for spin observ-
ables a complex angle- and energy-dependent pattern of
discrepancies between data and theory [7,8,35–37]. The
nontrivial interplay between the 2π -exchange three-nucleon
forces and relativity suggests that the inclusion of further
three-nucleon force mechanisms, such as forces of shorter
range, is needed to improve the description of elastic scattering
polarization data.
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FIG. 12. (Color online) The spin correlation coefficients Cxx,y-
Cyy,y and Cxz,y in elastic nd scattering at the incoming neutron
laboratory energy E = 135 and 200 MeV. For description of lines,
see Fig. 4. The pd data (open circles) are from Ref. [40].
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FIG. 13. (Color online) The spin correlation coefficients Cxy,x

and Cyz,x in elastic nd scattering at the incoming neutron laboratory
energy E = 135 and 200 MeV. For description of lines, see Fig. 4.
The pd data (open circles) are from Ref. [40].

B. Breakup

The theoretical study of the exclusive breakup reaction
performed at different incoming nucleon energies revealed
regions of breakup phase space where large three-nucleon
force effects have been found [38]. The effects, similarly
to elastic scattering, generally increase with energy. With
increasing energy also the effects of relativity increase [15,16],
revealing for the exclusive breakup cross section a charac-
teristic pattern when viewed as a function of the angles of
detected nucleons. The largest effects were found when two
of the three outgoing nucleons are detected coplanarly on
both sides of the beam. Keeping one of the detectors at a
constant position and changing the polar angle of the second,
regions of phase space were found in which the nonrelativistic
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FIG. 14. (Color online) The deuteron-to-neutron polarization
transfer coefficients Ky′

y , Ky′
xx , Ky′

yy , and Ky′
xz in elastic nd scattering

at the incoming neutron laboratory energy E = 135 MeV. For
description of lines, see Fig. 4. The pd data (open circles) are from
Ref. [35].
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breakup cross section was increased or decreased by relativity
[16]. In these specific configurations effects of three-nucleon
forces on the breakup cross section, both in norelativistic as
well as in relativistic calculations, are practically negligible
(see Fig. 16).

Due to the richness of the breakup phase space, geometrical
configurations also can be found where both three-nucleon
force and relativistic effects are significant. Exclusive cross
sections in some of these configurations are shown as a
function of the laboratory energy of one of the outgoing and
detected nucleons in Fig. 17 for neutron-deuteron breakup at
200 MeV. It is seen that including relativity reduces slightly
the magnitude of three-nucleon force effects observed in
nonrelativistic calculations.

Relativity changes also the magnitude of three-nucleon
force effects seen in nonrelativistic calculations for breakup
polarization observables. We exemplify that in Fig. 18 at
three configurations of exclusive deuteron-proton (dp) breakup
at Elab

d = 270 MeV, for which data have been taken [17].
Again, the influence of relativity on the magnitude of
three-nucleon force effects change with configuration, as
shown in Fig. 18 along the S-curve arc length. Especially
interesting is the case of the polarization-transfer coefficient
from the deuteron to the nucleon, K

y ′
yy , for which inclusion

of TM99 three-nucleon force changes completely the S
dependence found in the case when only two nucleon forces
were acting. The effect of three-nucleon force is further
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FIG. 16. (Color online) The fivefold cross section
d5σ/d�1 d�2 dElab

1 for the breakup reaction d(n,np)n at Elab
n = 200

MeV and fixed angles of outgoing nucleons 1 and 2 as indicated in
the figures. For description of lines, see Fig. 4. The d(p,pn)p data
(×) are from Ref. [41].

modified slightly by relativity, resulting in a better reproduc-
tion of data.

VI. SUMMARY AND OUTLOOK

We extended our relativistic formulation of three-nucleon
Faddeev equations to include also three-nucleon force. The
relativistic features are the relativistic form of the free
propagator, the change of the nucleon-nucleon potential caused
by the boost of the two nucleon subsystem, and the modifi-
cation of the permutation operators. In the present study we
neglected Wigner spin rotations induced by these boosts since
investigations based on two-nucleon forces only have shown
that their effects are negligible. For the momentum-space
basis we used the relative momentum of two free nucleons
in their c.m. system, together with their total momentum
in the three-nucleon c.m. system, which in this frame is
the negative momentum of the spectator nucleon. Such a
choice of momenta is adequate for relativistic kinematics
and allows to generalize the nonrelativistic approach used to
solve the nonrelativistic three-nucleon Faddeev equation to the
relativistic case in a more or less straightforward manner. That
relative momentum in the two-nucleon subsystem is a gener-
alization of the standard nonrelativistic Jacobi momentum p.
We numerically solved these equations for neutron-deuteron
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FIG. 17. (Color online) The fivefold cross section
d5σ/d�1 d�2 dElab

1 for the breakup reaction d(n,np)n at
Elab

n = 200 MeV and fixed angles of outgoing nucleons 1 and
2 as indicated in the figures. For description of lines, see Fig. 4.

scattering, including relativistic features and/or three-nucleon
force at the neutron laboratory energies Elab

n = 70, 135, 200,
and 250 MeV. As a dynamical input we took the nonrelativistic
nucleon-nucleon potential CD Bonn and generated in the
two-nucleon center-of-momentum system an exactly on-shell
equivalent relativistic interaction. As a three-nucleon force we
took the 2π -exchange TM99 force.

By comparing our relativistic calculations without and with
inclusion of the three-nucleon force, we studied the influence
of relativity on three-nucleon force effects. In studies with two-
nucleon forces only it was found that significant relativistic
effects for the elastic scattering cross section appear at higher
energies, and they are restricted only to the very backward
angles where relativity increases the nonrelativistic cross
section. At other angles the effects are small. Also for spin
observables, analyzing powers, spin correlation coefficients,
and spin transfer coefficients, no significant changes due to
relativity have been found when only two-nucleon forces were
acting. The similar picture was found for breakup, however,
in that case significantly larger effects for the cross section in
specific regions of the breakup phase space have been found.

The results obtained in the present study document that
this picture changes dramatically when, in addition to the two-
nucleon force, in a relativistic treatment a three-nucleon force
is also acting. For the elastic scattering, large changes of the
cross section at higher energies, caused by the three-nucleon
force in a large region of angles ranging from approximately
the minimum of the cross section up to very backward angles,
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FIG. 18. (Color online) The polarization transfer coefficient Ky′
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and deuteron analyzing powers Ad
y and Axx in the breakup reaction

n(d,nn)p at incoming deuteron laboratory energy Elab
d = 270 MeV,

shown as a function of the S-curve arc length. For description of
lines, see Fig. 4. The 270 MeV dp data (circles) are from Ref. [17].

are further significantly modulated by relativity. Also such
modulation in a large (similar to that for the cross section)
range of angles have been found for numerous polarization
observables. In that case every conceivable scenario of
modulations was observed: from wiping out large three-
nucleon force effects found in nonrelativistic calculations
to their modulations with energy and angle, with strong
amplification or reduction of their magnitude. Also for the
exclusive breakup cross section and polarization breakup
observables, in some geometries the relativity influences
effects induced by three-nucleon forces. Thus also for that
reaction the relativistic treatment when three-nucleon forces
are acting is required for proper interpretation of data.

The comparison of our nonrelativistic theory with existing
elastic scattering cross-section and polarization data exhibits
clear discrepancies at the higher energies. The discrepancies
between the theory based on pairwise forces only and data are
largest in the region starting from the cross-section minimum
at approximately θc.m. ≈ 130◦ up to θc.m. ≈ 180◦. At energies
up to ≈135 MeV these discrepancies can be removed when
current three-nucleon forces, mostly of 2π -exchange character
[31,34], are included in the nuclear Hamiltonian. At the
higher energies, however, a significant part of the discrepancy
remains and increases further with increasing energy. An
especially complex picture exists for spin observables. Here,
adding a 2π -exchange three-nucleon force into nonrelativistic
calculations leads to effects which depend on the observable.
They can be large or negligible, changing their magnitude
with energy and angle. Similar to the elastic scattering cross
section, even after inclusion of three-nucleon force, some of
the discrepancies remain and increase with increasing energy.
This indicates that additional three-nucleon forces should be
added to the 2π -exchange type forces. Natural candidates in
the traditional meson-exchange picture are exchanges such
as π -ρ and ρ-ρ. This has to be expected since in χPT [39],

044001-14



THREE-NUCLEON FORCE IN RELATIVISTIC THREE- . . . PHYSICAL REVIEW C 83, 044001 (2011)

in the order in which the nonvanishing three-nucleon force’s
appear for the first time, there are three topologies of forces, the
2π exchange, a one-pion exchange between one nucleon and
a two-nucleon contact interaction, and a pure three-nucleon
contact interaction. They are of the same order and have to be
kept together. Therefore it appears very worthwhile to pursue
a strategy to add more three-nucleon forces in the traditional
meson exchange picture. Results presented here show that
relativistic effects based on relativistic kinematics and boost
effects of the nucleon-nucleon force play an important role
in building up the magnitude of three-nucleon force effects.
This gives hope that, taking the proper three-nucleon force into
relativistic Faddeev calculations, one will be able to improve
the description of higher-energy data for cross-section and
polarization observables.
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APPENDIX A: DIRECT RECALCULATION OF THE PARTIAL-WAVE PROJECTED THREE-NUCLEON FORCE MATRIX
ELEMENTS FROM ( p, q)-TO-(k, q)-BASED BASIS

We start from the matrix element of a three-nucleon force 〈p, q, α|V (1)
4 (1 + P )|p′, q ′, α′〉 in a partial-wave basis used

in nonrelativistic calculations with standard Jacobi momenta (p, q) [26] and would attempt to get the matrix element
〈k, q, α|V (1)

4 (1 + P )|k′, q ′, α′〉 with p and p′ replaced by the relative momenta of nucleons 2 and 3, k and k′, in their two-nucleon
center of momentum system [11,12].

Using the completeness of partial-wave states, one has

〈
k, q, α|V (1)

4 (1 + P )|k′, q ′, α′〉 =
∑

α̃

∫
dp̃ p̃2

∫
dq̃ q̃2

∑
α̃′

∫
dp̃′ p̃′2

∫
dq̃ ′ q̃ ′2〈k, q, α|p̃, q̃, α̃

〉
× 〈

p̃, q̃, α̃|V (1)
4 (1 + P )|p̃′, q̃ ′, α̃′〉〈p̃′, q̃ ′, α̃′|k′, q ′, α′〉. (A1)

The partial-wave state used in relativistic calculations |P, k, q, α〉 corresponding to the total three-nucleon center of momentum,
P = 0, is givenby [11]

|P, k, q, α〉 = ∣∣P, k, q(l, s)j
(
λ 1

2

)
I (jI )JM;

(
t 1

2

)
T

〉 = ∑
µ1µ2µ3

∑
µ′

2µ
′
3

∑
µsµlµλµI

∫
dq̂

∫
dk̂Ylµl

(k̂)N (q2, q3)

×
(

1

2

1

2
, s|µ2, µ3, µs

)
(l, s, j |µl, µs, µ)D1/2

µ′
2µ2

[Rwc(Bc(−q), k2(q2, q3))]D1/2
µ′

3µ3
[Rwc(Bc(−q), k3(q2, q3))]

×Yλµλ
(q̂)

(
λ,

1

2
, I |µλ,µ1, µI

)
(j, I, J |µ,µI ,M)

∣∣∣∣q + 1

3
P, µ1

〉 ∣∣∣∣q2(k,−q) + 1

3
P, µ′

2

〉

×
∣∣∣∣q3(−k,−q) + 1

3
P, µ′

3

〉 ∣∣∣∣
(

t,
1

2

)
T

〉
(A2)

where

N2(q2, q3) ≡
∣∣∣∣ ∂(q2q3)

∂(PNNk)

∣∣∣∣ = M̄0

ωM̄0
(PNN )

ωq2

ωk

ωq3

ωk

(A3)

is the Jacobian for the Lorentz transformation from (q2, q3) to (PNN, k) = (−q, k), ωk = √
m2 + k2, M̄0 = 2ωk = ωq2 + ωq3 ,

and ωM̄0
(PNN ) =

√
M̄2

0 + P 2
NN . The momentum k2(q2, q3) = k and k3(q2, q3) = −k2(q2, q3).

The nonrelativistic partial-wave state |P′, p̃, q̃, α̃〉 with standard Jacobi momenta is given by

|P′, p̃, q̃, α̃〉 =
∑

ν̃1,ν̃2,ν̃3

∑
ν̃s ,ν̃l ,ν̃λ,ν̃I

∫
d ˆ̃p

∫
d ˆ̃qYl̃ν̃l

( ˆ̃p)Yλ̃ν̃λ
( ˆ̃q)

(
1

2
,

1

2
, s̃|ν̃2, ν̃3, ν̃s

)
(l̃, s̃, j̃ |ν̃l , ν̃s , ν̃)

(
λ̃,

1

2
, Ĩ |ν̃λ, ν̃1, ν̃I

)

×(j̃ , Ĩ , J̃ |ν̃, ν̃I , M̃)

∣∣∣∣q̃ + 1

3
P′, ν̃1

〉 ∣∣∣∣q̃nr
2 + 1

3
P′, ν̃2

〉 ∣∣∣∣q̃nr
3 + 1

3
P′, ν̃3

〉 ∣∣∣∣
(

t̃
1

2

)
T̃

〉
, (A4)
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where in the three-nucleon center-of-momentum system the nonrelativistic momenta q̃nr
2 and q̃nr

3 of the nucleons 2 and 3 are
given by standard Jacobi momenta p̃ and q̃ as

q̃nr
2 = p̃ − q̃

2
, q̃nr

3 = −p̃ − q̃
2
. (A5)

That leads to the scalar product 〈P, k, q, α|P′, p̃, q̃, α̃〉,

〈P, k, q, α|P′, p̃, q̃, α̃〉 =
∑

µ1µ2µ3

∑
µ′

2µ
′
3

∑
µsµlµλµI

∫
dq̂

∫
dk̂Y ∗

lµl
(k̂)N (q2, q3)

(
1

2
,

1

2
, s|µ2, µ3, µs

)
(l, s, j |µl, µs, µ)

×D
1/2∗
µ′

2µ2
[Rwc(Bc(−q), k2(q2, q3))]D1/2∗

µ′
3µ3

[Rwc(Bc(−q), k3(q2, q3))]Y ∗
λµλ

(q̂)

(
λ,

1

2
, I |µλ,µ1, µI

)

× (j, I, J |µ,µI ,M)
∑

ν̃s ν̃l ν̃λν̃I

∫
d ˆ̃p

∫
d ˆ̃qYl̃ν̃l

( ˆ̃p)Yλ̃,ν̃λ
( ˆ̃q)

(
1

2
,

1

2
, s̃|µ′

2, µ
′
3, ν̃s

)
(l̃, s̃, j̃ |ν̃l , ν̃s , ν̃)

×
(

λ̃,
1

2
, Ĩ |ν̃λ, µ1, ν̃I

)
(j̃ , Ĩ , J̃ |ν̃, ν̃I , M̃)δ

(
q − q̃ + 1

3
(P − P′)

)
δ

(
q2(k,−q) − q̃nr

2 + 1

3
(P − P′)

)

× δ

(
q3(−k,−q) − q̃nr

3 + 1

3
(P − P′)

) 〈(
t
1

2

)
T

∣∣∣∣
(

t̃
1

2

)
T̃

〉
. (A6)

That matrix element should be proportional to δJ J̃ δMM̃ and independent from M . Thus

〈P, k, q, α|P′, p̃, q̃, α̃〉 = 1

2J + 1

∑
M

∑
µ1,µ2,µ3

∑
µ′

2µ
′
3

∑
µs,µl ,µλ,µI

∫
dq̂

∫
dk̂Y ∗

lµl
(k̂)N (q2, q3)

(
1

2
,

1

2
, s|µ2, µ3, µs

)

× (l, s, j |µl, µs, µ)D1/2∗
µ′

2µ2
[Rwc(Bc(−q), k2(q2, q3))]D1/2∗

µ′
3µ3

[Rwc(Bc(−q), k3(q2, q3))]

×Y ∗
λµλ

(q̂)

(
λ,

1

2
, I |µλ,µ1, µI

)
(j, I, J |µ,µI ,M)

∑
ν̃s ν̃l ν̃λν̃I

∫
d ˆ̃p

∫
d ˆ̃qYl̃ν̃l

( ˆ̃p)Yλ̃ν̃λ
( ˆ̃q)

×
(

1

2
,

1

2
, s̃|µ′

2, µ
′
3, ν̃s

)
(l̃, s̃, j̃ |ν̃l , ν̃s , ν̃)

(
λ̃,

1

2
, Ĩ |ν̃λ, µ1, ν̃I

)
(j̃ , Ĩ , J |ν̃, ν̃I ,M)

×δ

(
q − q̃ + 1

3
(P − P′)

)
δ

(
q2(k,−q) − q̃nr

2 + 1

3
(P − P′)

)

×δ

(
q3(−k,−q) − q̃nr

3 + 1

3
(P − P′)

) 〈(
t
1

2
T

) ∣∣∣∣
(

t̃
1

2

)
T̃

〉
. (A7)

The momenta of nucleons 2 and 3 in the three-nucleon center-of-momentum system are given through their two-nucleon
center-of-momentum relative momentum k and the momentum of the spectator nucleon 1, q, by

q2(k,−q) = k − q
2

+ k · q
2ωk(2ωk + M̄0)

q (A8)

and

q3(−k,−q) = −k − q
2

− k · q
2ωk(2ωk + M̄0)

q. (A9)

That allows to write the three δ functions in the form

δ
(
q − q̃ + 1

3 (P − P′)
)
δ
(
q2(k,−q) − q̃nr

2 + 1
3 (P − P′)

)
δ
(
q3(−k,−q) − q̃nr

3 + 1
3 (P − P′)

) = δ
(
q − q̃ + 1

3 (P − P′)
)

×δ

(
−p̃ + k + k · q

2ωk(2ωk + M̄0)
q + 1

3
(P − P′)

)
δ

(
p̃ − k − k · q

2ωk(2ωk + M̄0)
q + 1

3
(P − P′)

)

= δ(q − q̃)δ(p̃ − k − k · q
2ωk(2ωk + M̄0)

q)δ(P − P′). (A10)

In the following we assume the three-nucleon center-of-momentum system (P = P′ = 0) and drop the δ(P − P′) in all expressions.
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Performing the integration over d ˆ̃q one gets

〈k, q, α|p̃, q̃, α̃〉 = 1

2J + 1

∑
M

∑
µ1µ2µ3

∑
µ′

2µ
′
3

∑
µsµlµλµI

δ(q − q̃)

qq̃

∫
dq̂

∫
dk̂

∫
d ˆ̃pY ∗

lµl
(k̂)N (q2, q3)

(
1

2
,

1

2
, s|µ2, µ3, µs

)

× (l, s, j |µl, µs, µ)D1/2∗
µ′

2µ2
[Rwc(Bc(−q), k2(q2, q3))]D1/2∗

µ′
3µ3

[Rwc(Bc(−q), k3(q2, q3))]

×Y ∗
λµλ

(q̂)

(
λ,

1

2
, I |µλ,µ1, µI

)
(j, I, J |µ,µI ,M)

∑
ν̃s ,ν̃l ,ν̃λ,ν̃I

Yl̃ν̃l
( ˆ̃p)Yλ̃ν̃λ

(q̂)

×
(

1

2
,

1

2
, s̃|µ′

2, µ
′
3, ν̃s

)
(l̃, s̃, j̃ |ν̃l , ν̃s , ν̃)

(
λ̃,

1

2
, Ĩ |ν̃λ, µ1, ν̃I

)
(j̃ , Ĩ , J |ν̃, ν̃I ,M)

×δ(p̃ − k − k · q
2ωk(2ωk + M̄0)

q)

〈(
t
1

2

)
T

∣∣∣∣
(

t̃
1

2

)
T̃

〉
. (A11)

That matrix element is a scalar which depends on the angles between the vectors q, k, and p̃. These angles are fixed by the δ

function δ(p̃ − k − k·q
2ωk(2ωk+M̄0) q). Namely, while p̃ = k + k·q

2ωk(2ωk+M̄0) q, it follows that

k · p̃ = k · k + (k · q)2

2ωk(2ωk + M̄0)
, q · p̃ = q · k + (q · q)(k · q)

2ωk(2ωk + M̄0)
, p̃ · p̃ = p̃ · k + (p̃ · q)(k · q)

2ωk(2ωk + M̄0)
. (A12)

Therefore one can take q̂ pointing in the z direction, which for given k, q, and p̃ values, defines all angles between the appearing
vectors. That allows to perform the integration over dq̂, resulting in

〈k, q, α|p̃, q̃, α̃〉 = 8π2

2J + 1

+1∫
−1

dx
δ(q − q̃)

qq̃

δ
(
p̃ − ∣∣k + k·q

2ωk(2ωk+M̄0) q
∣∣)

p̃2

∑
M

∑
µ1µ2µ3

∑
µ′

2µ
′
3

∑
µsµlµλµI

Y ∗
lµl

(k̂)

×N (q2, q3)

(
1

2
,

1

2
, s|µ2, µ3, µs

)
(l, s, j |µl, µs, µ)

×D
1/2∗
µ′

2µ2
[Rwc(Bc(−q), k2(q2, q3))]D1/2∗

µ′
3µ3

[Rwc(Bc(−q), k3(q2, q3))]

×Y ∗
λµλ

(q̂)

(
λ,

1

2
, I |µλ,µ1, µI

)
(j, I, J |µ,µI ,M)

∑
ν̃s ν̃l ν̃λν̃I

Yl̃ν̃l
( ˆ̃p)Yλ̃ν̃λ

(q̂)

×
(

1

2
,

1

2
, s̃|µ′

2, µ
′
3, ν̃s

)
(l̃, s̃, j̃ |ν̃l , ν̃s , ν̃)

(
λ̃,

1

2
, Ĩ |ν̃λ, µ1, ν̃I

)

× (j̃ , Ĩ , J |ν̃, ν̃I ,M)

〈(
t,

1

2

)
T

∣∣∣∣
(

t̃ ,
1

2

)
T̃

〉
, (A13)

with x ≡ q̂ · k̂. We have chosen the coordinate system with q parallel to the z axis, which leads to the components of q, k, p̃,

q = (0, 0, q), k = (
k
√

1 − x2, 0, kx
)
, p̃ =

[
k
√

1 − x2, 0, kx

(
1 + q2

2ωk(2ωk + M̄0)

)]
. (A14)

The isospin factor is 〈(
t,

1

2

)
T

∣∣∣∣
(

t̃ ,
1

2

)
T̃

〉
= δt t̃ δT T̃ δMT MT̃

δνt νt̃
. (A15)

Taking that all together gives

〈k, q, α|p̃, q̃, α̃〉 = δt t̃ δT T̃

2π
√

(2λ + 1)(2λ̃ + 1)

2J + 1

+1∫
−1

dx
δ(q − q̃)

qq̃

δ
(
p̃ − ∣∣k + k·q

2ωk(2ωk+M̄0) q
∣∣)

p̃2

×
∑
M

∑
µ1µ2µ3

∑
µ′

2µ
′
3

Y ∗
l,M−µ1−µ2−µ3

(k̂)N (q2, q3)

×D
1/2∗
µ′

2µ2
[Rwc(Bc(−q), k2(q2, q3))]D1/2∗

µ′
3µ3

[Rwc(Bc(−q),−k3(q2, q3))]

×
(

1

2
,

1

2
, s|µ2, µ3, µ2 + µ3

)
(lsj |M − µl − µ2 − µ3, µ2 + µ3,M − µ1)
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×
(

λ,
1

2
, I |0, µ1, µ1

)
(j, I, J |M − µ1, µ1,M)Yl̃,M−µ1−µ′

2−µ′
3
( ˆ̃p)

×
(

1

2
,

1

2
, s̃|µ′

2, µ
′
3, µ

′
2 + µ′

3

)
(l̃, s̃, j̃ |M − µ1 − µ′

2 − µ′
3, µ

′
2 + µ′

3,M − µ1)

×
(

λ̃,
1

2
, Ĩ |0, µ1µ1

)
(j̃ , Ĩ , J |M − µ1, µ1,M). (A16)

The resulting expression for the matrix element 〈k, q, α|V (1)
4 (1 + P )|k,′ q ′, α′〉 is given by

〈k, q, α|V (1)
4 (1 + P )|k′, q ′, α′〉 =

∑
α̃

δt t̃ δT T̃

2π
√

(2λ + 1)(2λ̃ + 1)

2J + 1

∫ +1

−1
dx

×
∑
M

∑
µ1µ2µ3

∑
µ̄2µ̄3

Y ∗
l,M−µ1−µ2−µ3

(k̂)N (q2, q3)

×D
1/2∗
µ̄2µ2

[Rwc(Bc(−q), k2(q2, q3))]D1/2∗
µ̄3µ3

[Rwc(Bc(−q), k3(q2, q3))]

×
(

1

2
,

1

2
, s|µ2, µ3, µ2 + µ3

)
(l, s, j |M − µl − µ2 − µ3, µ2 + µ3,M − µ1)

×
(

λ,
1

2
, I |0, µ1, µ1

)
(j, I, J |M − µ1, µ1,M)Yl̃,M−µ1−µ̄2−µ̄3

( ˆ̃p)

×
(

1

2
,

1

2
, s̃|µ̄2, µ̄3, µ̄2 + µ̄3

)
(l̃, s̃, j̃ |M − µ1 − µ̄2 − µ̄3, µ̄2 + µ̄3,M − µ1)

×
(

λ̃,
1

2
, Ĩ |0, µ1, µ1

)
(j̃ , Ĩ , J |M − µ1, µ1,M)

∑
α̃′

δt ′ t̃ ′δT ′T̃ ′
2π

√
(2λ′ + 1)(2λ̃′ + 1)

2J + 1

×
∫ +1

−1
dx ′ ∑

M

∑
µ′

1µ
′
2µ

′
3

∑
µ̄′

2µ̄
′
3

Yl′,M−µ′
1−µ′

2−µ′
3
(k̂′)N (q′

2, q′
3)

×D
1/2
µ̄′

2µ
′
2
[Rwc(Bc(−q ′), k′

2(q′
2, q′

3))]D1/2
µ̄′

3µ
′
3
[Rwc(Bc(−q ′), k′

3(q′
2, q′

3))]

×
(

1

2
,

1

2
, s ′|µ′

2, µ
′
3, µ

′
2 + µ′

3

)
(l′, s ′, j ′|M − µ′

l − µ′
2 − µ′

3, µ
′
2 + µ′

3,M − µ′
1)

×
(

λ′,
1

2
, I ′|0, µ′

1, µ
′
1

)
(j ′, I ′, J |M − µ′

1, µ
′
1,M)Yl̃′,M−µ′

1−µ̄′
2−µ̄′

3
( ˆ̃p

′
)

×
(

1

2
,

1

2
, s̃ ′|µ̄′

2, µ̄
′
3, µ̄

′
2 + µ̄′

3

)
(l̃′, s̃ ′, j̃ ′|M − µ′

1 − µ̄′
2 − µ̄′

3, µ̄
′
2 + µ̄′

3,M − µ′
1)

×
(

λ̃′,
1

2
, Ĩ ′|0, µ′

1, µ
′
1

)
(j̃ ′, Ĩ ′, J |M − µ′

1, µ
′
1,M)

×
〈∣∣∣∣k + k · q

2ωk(2ωk + M̄0)
q

∣∣∣∣ , q, α|V (1)
4 (1 + P )|

∣∣∣∣k′ + k′ · q′

2ωk′(2ωk′ + M̄0)
q′

∣∣∣∣ , q ′, α̃′
〉
.

(A17)

APPENDIX B: TRANSFORMATION OF A THREE-DIMENSIONAL THREE-NUCLEON FORCE MATRIX ELEMENT FROM
(p, q) TO (k, q) MOMENTA

We would like to express directly the matrix element 〈k, q|V (1)
4 |k′, q′〉 by that matrix element given in terms of single-nucleon

momenta 〈q1, q2, q3|V (1)
4 |q′

1, q′
2, q′

3〉. For momenta q2 and q3 of nucleons 2 and 3 in the three-nucleon center-of-momentum
system, their relative momentum k(q2, q3) in the two-nucleon center-of-momentum subsystem of nucleons 2 and 3 is

k(q2, q3) = 1

2

[
q2 − q3 − (q2 + q3)

E2 − E3

E2 + E3 +
√

(E2 + E3)2 − (q2 + q3)2

]
, (B1)
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with Ei =
√

m2 + q2
i .

Using the completeness of |q1q2q3〉 states, one gets

〈k, q|V (1)
4 |k′, q′〉 =

∫
dq1dq2dq3δ(q1 + q2 + q3)〈k, q|q1, q2, q3〉〈q1, q2, q3|V (1)

4

×
∫

dq′
1dq′

2dq′
3|q′

1q′
2q′

3〉〈q′
1, q′

2, q′
3|k′, q′〉δ(q′

1 + q′
2 + q′

3)

=
∫

dq1dq2dq3δ(q1 + q2 + q3)δ(q − q1)δ(k − k(q2, q3))

×
∫

dq′
1dq′

2dq′
3δ(q′

1 + q′
2 + q′

3)δ(q′ − q′
1)δ(k′ − k′(q′

2, q′
3))

× 1

N (q2, q3)

1

N (q′
2, q′

3)
〈q1q2q3|V (1)

4 |q′
1q′

2q′
3〉

=
∫

dq2dq3δ(q + q2 + q3)δ(k − k(q2, q3))
∫

dq′
2dq′

3δ(q′ + q′
2 + q′

3)δ(k′ − k′(q′
2, q′

3))

× 1

N (q2, q3)

1

N (q′
2, q′

3)
〈q, q2, q3|V (1)

4 |q′, q′
2, q′

3〉

=
∫

dk(q2, q3)d(q2 + q3)δ(q + q2 + q3)δ(k − k(q2, q3))

×
∫

dk′(q′
2, q′

3)d(q′
2 + q′

3)δ(q′ + q′
2 + q′

3)δ(k′ − k′(q′
2, q′

3))

×N (q2, q3)N (q′
2, q′

3)〈q, q2, q3|V (1)
4 |q′, q′

2, q′
3〉. (B2)

For given vectors k(q2, q3) = k0 and q2 + q3 = −q0, the vectors q2 and q3 are given by q2 = −q0 − q0
3 and q3 = q0

3, with q0
3

being the solution of the equation

k0 − k
( − q0 − q0

3, q0
3

) = 0, (B3)

and similarly for the primed quantities.
Thus one gets

〈kq|V (1)
4 |k′q′〉 = N

( − q − q0
3, q0

3

)
N

( − q′ − q0
3
′
, q0

3
′) 〈

q,−q − q0
3, q0

3

∣∣V (1)
4

∣∣q′,−q′ − q0
3
′
, q0

3
′〉

= N
( − q − q0

3, q0
3

)
N

( − q′ − q0
3
′
, q0

3
′) 〈

p = −1

2
q − q0

3, q

∣∣∣∣V (1)
4

∣∣∣∣p′ = −1

2
q′ − q0

3
′
, q′

〉
. (B4)

Starting from (44) and following the same steps as in (B2), one gets for the partial-wave projected matrix elements

〈k, q, α|V (1)
4 |k′, q ′, α′〉 =

∫
dk̂dq̂1

∑
µ̄2µ̄3

∑
µ2µ3µs

∑
µlµλµI

(
1

2
, µ2,

1

2
, µ3|s, µs

)
(l, µl, s, µs, |j, µj )

×
(

λ,µλ,
1

2
, µ1|I, µI

)
(j, µj , I, µI |J,µ) Y ∗

λµλ
(q̂1)Y ∗

lµl
(k̂)

×D
1
2 ∗
µ̄2µ2

[Rwc(Bc(−q1), k2(q2, q3))]D
1
2 ∗
µ̄3µ3

[Rwc(Bc(−q1), k3(q2, q3))]

×
∫

dk̂′dq̂′
1

∑
µ̄′

2µ̄
′
3

∑
µ′

2µ
′
3µ

′
s

∑
µ′

lµ
′
λµ

′
I

(
1

2
, µ′

2,
1

2
, µ′

3|s ′, µ′
s

)
(l′, µ′

l , s
′, µ′

s , |j ′, µ′
j )

×
(

λ′, µ′
λ,

1

2
, µ′

1|I ′, µ′
I

)
(j ′, µ′

j , I
′, µ′

I |J,µ)Yλ′µ′
λ
(q̂′

1)Yl′µ′
l
(k̂′)D

1
2

µ̄′
2µ

′
2
[Rwc(Bc(−q ′

1), k′
2(q′

2, q′
3))]

×D
1
2

µ̄′
3µ

′
3
[Rwc(Bc(−q ′

1), k3(q′
2, q′

3))]N (q2, q3)N (q′
2, q′

3)〈q, q2, q3|V (1)
4 |q′, q′

2, q′
3〉, (B5)

where q1 ≡ qq̂1, k2(q2, q3) ≡ kk̂, k3(q2, q3) = −k2(q2, q3), and q2 together with q3 result from (B3) and similarly for primed
quantities. These partial-wave matrix elements can be obtained using the automatized partial-wave expansion of Ref. [30].
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[26] W. Glöckle, The Quantum Mechanical Few-Body Problem

(Springer, Berlin, 1983).
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