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Asymptotic normalization coefficients from ab initio calculations
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We present calculations of asymptotic normalization coefficients (ANCs) for one-nucleon removals from
nuclear states of mass numbers 3 � A � 9. Our ANCs were computed from variational Monte Carlo solutions to
the many-body Schrödinger equation with the combined Argonne v18 two-nucleon and Urbana IX three-nucleon
potentials. Instead of computing explicit overlap integrals, we applied a Green function method that is insensitive
to the difficulties of constructing and Monte Carlo sampling the long-range tails of the variational wave functions.
This method also allows computation of the ANC at the physical separation energy, even when it differs from
the separation energy for the Hamiltonian. We compare our results, which for most nuclei are the first ab initio
calculations of ANCs, with existing experimental and theoretical results and discuss further possible applications
of the technique.
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Substantial experimental and theoretical effort over the
past decade and a half has been expended on the extrac-
tion of asymptotic normalization coefficients (ANCs) from
experiments involving light nuclei [1–9]. Most of this work
has been motivated by the connection between ANCs and
astrophysical cross sections, but ANCs also offer opportunities
for significant new tests of ab initio nuclear calculations. In
this Rapid Communication, we present predicted ANCs for
several states of light nuclei up to A = 9, using the variational
Monte Carlo (VMC) method and a realistic Hamiltonian.

Recent years have seen rapid advances in the ab initio
theory of light nuclei [10–12]. Newly available computing
power has been brought to bear on the problem of computing
properties of light (A � 12) nuclei from a new generation
of accurate nucleon-nucleon and three-nucleon potentials.
Many nuclear properties have been computed from modern
nuclear interactions, including charge radii, electroweak tran-
sition amplitudes, cross sections for scattering and radiative
capture, and spectroscopic factors. Some ANCs have been
computed [13–17], but there has been no systematic ab initio
investigation of ANCs.

An ANC characterizes the asymptotic form of a nuclear
overlap function, which is the projection of a nuclear wave
function onto a product of subclusters. We consider only cases
of one-nucleon removal, so the subclusters within a nucleus
of mass A are the removed or “last” nucleon itself and a
residual nucleus of mass A − 1. (Although we refer to the “last
nucleon,” our wave functions are explicitly antisymmetric.)
The overlap channel is further specified by orbital angular
momentum l and its vector sum j with the spin of the last
nucleon. The overlap function is then

R
JA−1JA

lj (r)≡
∫

A
[
�

JA−1
A−1 [χYl(r̂)]j

]†
JA

δ(r − rcc)

r2
�

JA

A dR, (1)

where �
JA

A is the wave function of the mass-A nucleus with
angular momentum JA, �JA−1

A−1 is a specific state of the residual
nucleus with angular momentum JA−1, χ is the spin-isospin
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vector of the last nucleon, and rcc is its separation from
the center of mass of the other A − 1 nucleons. Square
brackets denote angular momentum coupling, Yl are spherical
harmonics, and A antisymmetrizes the product �

JA−1
A−1 χYl with

respect to particle exchange. The integral extends over all
particle coordinates R = (r1, r2, . . . , rA).

The form of the overlap as r → ∞ is well known, because it
satisfies a one-body Schrödinger equation including at most a
Coulomb interaction. This form contains a Whittaker function
W−η m:

R
JA−1JA

lj (r → ∞) = C
JA−1JA

lj W−η m(2kr)/r, (2)

with η = αZA−1ZN

√
µc2/2B, α is the fine-structure constant,

ZA−1 and ZN , respectively, are the charges of the residual
nucleus and the last nucleon, µ is their reduced mass, B is
the separation energy of the last nucleon, k = √

2 µB/h̄, and
m = l + 1/2. (If the last nucleon is a neutron, then ZN = 0 and
W−η m(2kr) = √

2kr/πKm(kr), a modified spherical Bessel
function of the third kind.) In the following, we omit the labels
JA and JA−1 for compactness of notation.

The only quantity in Eq. (2) that is not determined fully
by the quantum numbers and the corresponding separation
energy is the constant Clj . It characterizes the overall scale of
the long-range A-body wave function in the lj channel, and it
is the ANC of that channel.

It can be shown that although the spectroscopic factor Slj ≡∫
R2

lj (r)r2dr may depend strongly on the short-range potential
and the choice of wave-function representation, the ANC as
both a theoretically computed and an experimentally inferred
quantity is less dependent on such details [18,19]. Given
reactions (e.g., well below the Coulomb barrier) that probe
only the asymptotic part of Rlj , ANCs can be extracted from
data with fewer assumptions than spectroscopic factors can.

Computing an ANC by direct integration of Eq. (1) is
problematic for most many-body methods. First, ab initio
calculations may not yield the correct asymptotic form of
Eq. (2). For example, methods using a harmonic-oscillator
basis have basis functions with an asymptotic form e−(r/b)2

,
so that convergence to a long-range asymptotic form similar
to e−kr is slow. In variational methods, it is often difficult to
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FIG. 1. (Color online) Points with Monte Carlo statistical errors
show the 8Li → n 7Li overlap, computed from Eq. (1), of our VMC
wave functions in p1/2 (red squares) and p3/2 (blue circles) channels.
Curves with error bands show the asymptotic forms in Eq. (2), scaled
by ANCs from Eq. (5). Dashed (red) curves are asymptotics for p1/2

and solid (blue) ones are asymptotics for p3/2. They are labeled “BH ”
and “Bexpt” according to the assumed neutron separation energies.

construct a consistent set of correlations that has good long-
range asymptotics while retaining short-range properties that
are important for the variational energy. Second, the assumed
Hamiltonian may not reproduce the experimental separation
energy Bexpt even when wave functions are computed exactly.
Third, Monte Carlo methods suffer from the difficulty of
finding a sampling scheme that samples the tails of Eq. (1)
thoroughly while minimizing sample variance. All three
difficulties are illustrated in Fig. 1.

There is another approach to computing ANCs that avoids
all three of these difficulties, and versions of it have been
derived in several contexts [20–23]. In this approach, explicit
computation of the overlap function is replaced by an integral
over the wave-function interior. The Schrödinger equation

(H − E)�A = 0 (3)

that yields wave function �A with energy E may be rewritten
as

�A = − [Trel + VC + B]−1 (Urel − VC) �A

− [Trel + VC + B]−1 (Hint − Eint) �A. (4)

We have broken up the Hamiltonian H into the relative kinetic
energy Trel between the residual nucleus and last nucleon, a
sum of terms Hint involving only nucleons within the residual
nucleus, and a sum of terms Urel involving the last nucleon.
The point-Coulomb potential between the residual nucleus and
last nucleon is VC = ZA−1ZNαh̄c/rcc. Similarly, E = Eint −
B, with Eint being the purely internal energy of the residual
nucleus.

If we rewrite the Green function [Trel + VC + B]−1

in terms of special functions, project onto the product
[�JA−1

A−1 [χYl(r̂)]j ]JA
as in Eq. (1), take advantage of the identity

that (Hint − Eint)�A−1 = 0, and take the r → ∞ limit, we find

that

Clj = 2µ

kh̄2w
A

∫
M−η m(2krcc)

rcc
�

†
A−1χ

†Y †
l (r̂cc)

× (Urel − VC)�A dR. (5)

The integral extends over all particle coordinates, M−η m is
the Whittaker function that is irregular at infinity, w is its
Wronskian with the regular Whittaker function W−η m, and the
angular momentum algebra is omitted for simplicity.

The utility of Eq. (5) arises from the form of Urel. If vij

and Vijk are, respectively, terms of the two- and three-body
potentials involving nucleons labeled i, j , and k, and we
always label the last nucleon A, then

Urel =
∑
i<A

viA +
∑

i<j<A

VijA. (6)

At a large separation rcc of the last nucleon, only the Coulomb
terms of viA are nonzero. The monopole term of their sum
is equal to VC , so the factor Urel − VC in Eq. (5) is short
ranged. In our calculations, it limits significant contributions to
rcc < 7 fm. Equation (5) thus reduces a problematic calculation
involving the outer regions of �A to a manageable calculation
involving its interior.

We implemented Eq. (5) within the VMC method described
in Ref. [24]. The Hamiltonian comprised the Argonne v18 two-
nucleon [25] and Urbana IX three-nucleon interactions [26].
For this interaction (AV18 + UIX), we constructed variational
wave functions �A and �A−1 that minimize the energy expec-
tation values while constraining them to give approximately
correct charge radii, as determined experimentally (where
known) or by exact Green’s function Monte Carlo (GFMC)
calculations. The ANC integral was performed by Monte Carlo
integration, using the same sampling scheme (with weight
proportional to |�A|2) as our energy calculations.

The distribution in rcc of the ANC integrand is shown in
Fig. 2 for the specific case of 8Li → n 7Li. (Where there is
no further label, the ground state of a nucleus is implied). It
may be seen that the ANC integral is contained entirely within
about 7 fm. The distribution of Monte Carlo samples, shown
as a dotted curve, is broadly similar to the distribution of the
ANC integrand, so the integral is computed with relatively
small statistical errors.

The computed Clj depend sensitively on the separation
energies B. Equation (5) contains B implicitly through k =√

2µB/h̄ and η ∝ 1/
√

B, and it is rigorously true when
B = Eint − E for the given potential. However, there are often
significant differences between this B and the experimental
separation energy Bexpt. We computed several ANCs in
light nuclei, first using the GFMC BH for the AV18 + UIX
Hamiltonian and then using Bexpt.

The use of Bexpt in Eq. (5) may be understood by considering
small changes to the potential. When B � |E|, they can
produce small changes in the wave function interior, but large
fractional changes in B. The short-range part of the variational
wave function derived from AV18 + UIX is, therefore, similar
to the solution that would be obtained from a slightly
different potential tuned (e.g., with small extra terms) so that
BH = Bexpt. Inserting a k ∝ √

Bexpt into Eq. (5) matches a
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FIG. 2. (Color online) The integrand of Eq. (5) (×2µ/kh̄w) is
shown for the p1/2 (red squares) and p3/2 (blue circles) neutrons
in 8Li → n 7Li. It is binned by the n-7Li separation rcc with bars
showing Monte Carlo errors. The solid curves are cumulative integ-
rals of Eq. (5), starting from the origin; at large rcc, they are the ANCs
(divided by 2 for visibility on this scale). The dotted curve with no
scale shows the distribution of Monte Carlo samples.

wave-function interior approximating the true wave function
onto the asymptotic form corresponding to Bexpt. Instructive
illustrations of this general principle, applied to much simpler
wave functions, may be found in Ref. [27].

The use of Eq. (5) to compute asymptotic overlaps is
demonstrated in Fig. 1, where 8Li → n7Li overlaps computed
directly from Eq. (1) are plotted next to CljW−η m/r from
Eq. (5). It can be seen that the W−η m corresponding to
BH = 1.3 MeV [28] are rather different from those for Bexpt =
2.03 MeV, though both energies are small fractions of the 41.3
MeV total binding energy for 8Li.

For both B values, the asymptotic Rlj match the short-
range overlaps at ∼4 fm, where the ANC integral starts
to converge. Use of BH yields C2

p 1/2 = 0.029(2) fm−1 and

C2
p 3/2 = 0.237(9) fm−1, compared with the respective values

0.048(6) fm−1 and 0.384(38) fm−1 from a transfer-reaction
study [5]. The match between the computed and “mea-
sured” results is poor. Using Bexpt yields 0.048(3) fm−1 and
0.382(14) fm−1, in very good agreement with experiment.
This pattern of agreement with experiment for Bexpt but
disagreement for BH repeats in all cases of substantial
difference between BH and Bexpt. In the following, we consider
only ANCs computed from Bexpt, and we assign uncertainties
based entirely on Monte Carlo statistics rather than (difficult)
assessments of the variational wave functions. Limited testing
with variant wave functions suggests that the total uncertainty
is not much larger than the statistical uncertainties.

Our results are shown in Table I and compared with
experimentally derived numbers (where available) in Fig. 3.
The lowest three sections of Table I repeat information from
the second section, but in “channel spin” coupling of the form
[[JA−1

1
2 ]s l]JA

instead of [JA−1[l 1
2 ]j ]JA

. We examined most
channels up to A = 9 with either the A-body or the residual
nucleus in its ground state and with both stable against particle
decay. We now comment briefly on the comparison of our re-

to

2.13

(full range)

FIG. 3. (Color online) Predicted ANCs from Eq. (5), divided
by experimentally derived values from the references given at the
right. (Those not appearing elsewhere are Refs. [29–31].) For each
ANC, small error bars indicate the Monte Carlo error of Table I, and
larger error bars indicate its quadrature sum with the experimental
error. Results for the same computed ANC divided by different
“experimental” numbers are joined with dashed lines. Parentheses
indicate particularly uncertain experimental constraints.

sults with past work. Extensive discussions of past experimen-
tal and theoretical estimates may be found in Refs. [27,32].

The s-wave ANCs for A � 4 nuclei have typically been
inferred from cross sections using techniques based on the
analyticity of the scattering amplitude [32,33], mostly thirty
or more years ago. Although our ANCs agree with many of
those results, Fig. 3 demonstrates the considerable systematic
uncertainties of those methods discussed in Refs. [32,34].

ANCs of 3H and 3He have been computed previously from
modern realistic interactions using Eq. (5) [15] and were the
focus of much activity following the development of Faddeev
methods [34–36]. Particular emphasis was placed on the ratio
Cd 3/2/Cs 1/2, most precisely inferred from tensor analyzing
powers [36]; those results are in reasonable agreement with
ours.

The Pisa group has computed ANCs for A � 4 [15,16] with
AV18 + UIX. Their A = 3 Cs 1/2 are within 0.5% of ours, but
their Cd 3/2/Cs 1/2 are 10% smaller. Their 4He ANCs are also
about 6% smaller than ours. The reason for this difference is
unclear; it could reflect shortcomings of the variational wave
functions, which miss the true AV18 + UIX binding energy by
850 keV in 4He. Ongoing work to compute overlaps using
essentially exact wave functions from the GFMC method
seems to support our values of the A = 4 ANCs [37]. (Nuclei
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TABLE I. ANCs computed from Eq. (5) for given A-body nuclei, (A − 1)-body residual nuclei, and angular momentum channels lj or
2s+1l. Units are fm−1/2, and f -wave ANCs have been multiplied by 103. Error estimates reflect Monte Carlo statistics only, and columns left
empty are zero by exact symmetries. Asterisks denote first excited states.

A A − 1 s1/2 d3/2 Cd 3/2/Cs 1/2

3H 2H 2.127(8) −0.0979(9) −0.0460(5)
3He 2H 2.144(8) −0.0927(10) −0.0432(5)
4He 3H −6.55(2)
4He 3He 6.42(2)

A A − 1 p1/2 p3/2 f5/2 × 103 f7/2 × 103

7Li 6He 3.68(5)
7Li∗ 6He 3.49(5)
7Li 6Li 1.652(12) 1.890(13) −78(20)
7Li∗ 6Li −0.543(16) −2.54(4)
7Be 6Li −1.87(3) −2.15(3) 63(9)
7Be∗ 6Li 0.559(16) 2.59(5)
8Li 7Li 0.218(6) −0.618(11) 5.2(5) 2.5(15)
8Li∗ 7Li −0.090(3) 0.281(5) −0.6(2)
8B 7Be 0.246(9) −0.691(17) 1.1(2) −1.1(5)
9C 8B −0.309(7) 1.125(12) 1.9(5) −0.5(18)
9Li 8Li 0.308(7) −1.140(13) −4.1(10) 5(3)
9Li 8Li∗ −0.122(3) 0.695(7) −1.1(6)
9Li 8He −5.99(8)
9Be 8Li 5.03(6) 9.50(11) 35(34) 257(112)
9Be 8Li∗ 6.56(5) −6.21(7) 364(40)

A A − 1 2p 4p 2f × 103 4f × 103

7Li 6Li 2.510(18) 0.029(18) −78(20)
7Li∗ 6Li −2.57(5) −0.33(3)
7Be 6Li −2.85(4) −0.04(4) −63(9)
7Be∗ 6Li 2.63(5) 0.34(3)
9Li 8Li∗ −0.599(7) −0.373(7) 1.1(6)
9Be 8Li∗ −0.25(9) −9.03(8) −364(40)

A A − 1 4p 6p 4f × 103 6f × 103

9C 8B 0.868(14) 0.779(12) 0.1(19) −2(1)
9Li 8Li −0.882(15) −0.785(12) 3.3(34) 5.2(19)
9Be 8Li 10.75(12) −0.25(10) 256(117) 42(65)

A A − 1 3p 5p 3f × 103 5f × 103

8Li 7Li −0.283(12) −0.591(12) −0.3(16) −5.8(10)
8Li∗ 7Li 0.220(6) 0.197(5) 0.6(2)
8B 7Be −0.315(19) −0.662(19) −0.6(5) −1.4(4)

with A = 3, 4 have substantially identical ANCs for BH and
Bexpt because the AV18 + UIX interaction was tuned to have
BH 	 Bexpt in these systems. Pisa ANCs converted to our
conventions may be found in Ref. [27].)

For A > 4 ANCs, experimental constraints have been
inferred almost entirely from transfer [1–5,7,9,38], knockout
[8], or breakup [6] reactions, and are of generally more recent
vintage than the A � 4 ANCs. In some cases, components
of different j contribute indistinguishably to differential cross
sections, which then constrain only the sum

∑
j C2

lj . These
cases are indicated in Fig. 3 and shown as the square root of the
sum for comparability of error bars. Our p-shell ANCs are in
broadly good agreement with those inferred from experiment,
particularly for the well-measured A = 8 ground state ANCs

as discussed above. (Our calculations for A = 8 also agree
with prior theoretical estimates of [17,39].) Reference [27]
presented many ANCs computed by applying Eq. (5) with
a simpler potential to harmonic-oscillator wave functions
derived from shell models; about half of our p-shell ANCs
disagree with those calculations by more than 25%.

The most significant differences from previous work are
in the 7Li → n 6Li ANCs. The comparison with experiment
here is difficult because of the wide range of estimates, which
extend from

√∑
C2

lj = 1.26 to 2.82 fm−1/2 just from (d, t)
at varying energy ([7], with full range shown in Fig. 3) and
include other values within that range [38,40]. The effective
ANC of Huang et al. [41], whose capture model successfully
matches 6Li(p, γ )7Be data, is 25% below ours.
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The theoretical ANCs for 7Li → n 6Li (from a simpler
model) in Ref. [27] are 20 to 40% smaller than ours. As
with 4He, ongoing GFMC work (with an improved three-body
interaction) seems to support our results [37]. We also disagree
with earlier integral-method predictions of the ratio of 7Be →
p 6Li to isospin-mirror 7Li → n 6Li ANCs [42], finding 1.15
instead of 1.05 (though we agree with their 1.12 as the ratio of
8B to 8Li ANCs). The sources of these differences are unclear.

Table I includes ANCs for both p- and f -wave channels
of p-shell nuclei. The small f -wave components arise from
the tensor terms of the Hamiltonian, analogously to the
d-wave components in s-shell nuclei [43]. We are unaware
of any previous calculations of f -wave ANCs or attempts
to measure them. A distorted-wave Born approximation
(DWBA) calculation of tensor analyzing powers in sub-
Coulomb 208,209Pb(7Li,6 Li)X (analogous to triton d/s ratio
experiments) suggests that both cross sections and analyzing
powers may be too small to allow measurement of the f/p ratio
[28]. Nonetheless, the f -wave ANCs demonstrate something
of the power of the integral method: Within the VMC approach,
computing ANCs for these small-amplitude channels from
Eq. (1) would require far more computing time to achieve the
same statistical accuracy, even if our variational wave functions
guaranteed the correct asymptotic form.

Several extensions of this technique within the context
of quantum Monte Carlo methods suggest themselves.
The overlaps need not correspond only to one-nucleon
removal, but may include cluster overlaps like 4He → dd and
7Be → α 3He. A straightforward extension of the definition
of ANCs to include unbound states allows the prediction of
energy widths from the integral method [44–46]. The ANC
integral can also be evaluated within the GFMC method, which
provides essentially exact results for a given potential. Use
of the (computationally more demanding) Illinois three-body
potentials [47] to generate the wave function and/or the ANC
kernel will provide more accurate ANCs and BH closer to
Bexpt. Finally, use of Eq. (4) away from the r → ∞ limit
should allow more accurate calculations of overlaps at all
radii [20,21,27,48].

We acknowledge useful discussions with I. Brida, S.
C. Pieper, A. M. Mukhamedzhanov, H. Esbensen, and C.
R. Brune. This work was supported by the US Depart-
ment of Energy, Office of Nuclear Physics under Contract
No. DE-AC02-06CH11357. Calculations were performed on
the Fusion computing cluster operated by the Laboratory
Computing Resource Center at Argonne.
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