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Clustering aspects in nuclear structure functions
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For understanding an anomalous nuclear effect experimentally observed for the beryllium-9 nucleus at the
Thomas Jefferson National Accelerator Facility, clustering aspects are studied in structure functions of deep
inelastic lepton-nucleus scattering by using momentum distributions calculated in antisymmetrized (or fermionic)
molecular dynamics (AMD) and also in a simple shell model for comparison. According to AMD, the 9Be nucleus
consists of two α-like clusters with a surrounding neutron. The clustering produces high-momentum components
in nuclear wave functions, which affects nuclear modifications of the structure functions. We investigated whether
clustering features could appear in the structure function F2 of 9Be along with studies for other light nuclei. We
found that nuclear modifications of F2 are similar in both AMD and shell models within our simple convolution
description although there are slight differences in 9Be. It indicates that the anomalous 9Be result should be
explained by a different mechanism from the nuclear binding and Fermi motion. If nuclear-modification slopes
d(F A

2 /F D
2 )/dx are shown by the maximum local densities, the 9Be anomaly can be explained by the AMD

picture, namely by the clustering structure, whereas it certainly cannot be described in the simple shell model.
This fact suggests that the large nuclear modification in 9Be should be explained by large densities in the clusters.
For example, internal nucleon structure could be modified in the high-density clusters. The clustering aspect of
nuclear structure functions is an unexplored topic which is interesting for future investigations.
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I. INTRODUCTION

Nuclear modifications of structure functions F2 were
found by the European Muon Collaboration (EMC) [1],
so the phenomenon is often called the EMC effect. Such
modifications are now measured from relatively small x

(∼10−3) to large x (∼0.8), where x is the Bjorken scaling
variable. By using the data on nuclear structure functions,
optimum parton distribution functions (PDFs) are proposed
for nuclei [2,3]. Physics mechanisms are different depending
on the x region for producing the nuclear modifications. At
small x, suppression of F2 occurs and it is known as nuclear
shadowing. It is due to multiple scattering of a qq̄ pair coming
from the virtual photon. At medium and large x, modifications
are understood by conventional models, mainly with nuclear
binding and Fermi motion of nucleons. However, it may not
be possible to explain the full experimental modifications by
such mechanisms, which indicates that the internal structure
of the nucleon could also be modified in a nuclear medium.
For explanations of these physics mechanisms, the reader may
look at Ref. [4].

In the future, many details of nuclear modifications will
be investigated in lepton-nucleus deep inelastic scattering and
hadron-hadron reactions. For example, a nuclear modification
difference between up and down valence quark distributions
(uv and dv) is investigated by measuring cross sections
of semi-inclusive π± productions [5]. It could lead to a
possible solution of the long-standing NuTeV weak-mixing
angle (sin θW ) anomaly [6] from a viewpoint of the nuclear
modification difference between uv and dv [7]. In addition, the
nuclear shell structure of the EMC effect, the so-called local
EMC effect [8], is investigated by measuring semi-inclusive

reactions [9]. There is also an issue of the nuclear-modification
difference between the structure functions of charged-lepton
and neutrino reactions [10,11]. It needs to be solved for a
precise determination of nucleonic and nuclear PDFs. Such
nuclear effects are investigated by neutrino reactions of
the MINERνA project [12]. There are also measurements
at hadron facilities at the Relativistic Heavy Ion Collider,
Fermilab (E906 experiment) [13], the Large Hadron Col-
lider, and possibly at the Japan Proton Accelerator Research
Complex [14].

Measurements on the EMC effect at the Thomas Jefferson
National Accelerator Facility (JLab) obtained an anomalous
result for the beryllium-9 nucleus in comparison with mea-
surements for other light nuclei [15]. It is anomalous in the
sense that the magnitude of the nuclear-modification slope
| d(FA

2 /FD
2 )/dx | is much larger in 9Be than the ones expected

from its average nuclear density. From the experimental 9Be
radius, namely the average nuclear density, modifications of
F2 at medium x are expected to be much smaller than the ones
of 12C, whereas measured values are similar in magnitude.

It is known in nuclear structure studies that the 9Be nucleus
has a typical clusterlike structure rather than a shell-like one
[16,17]. It is like a cluster of two α (4He nucleus) particles
with surrounding neutron clouds according to the studies
of antisymmetrized molecular dynamics (AMD). This fact
indicates that there exist higher-density regions than the ones
expected from the average density by the shell model or the one
estimated by the experimental charge radius. The high-density
regions could contribute to larger nuclear modifications of the
structure function F2. It could be a reason for the anomalous
modification for 9Be. Such a cluster structure could produce
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high-momentum components in the momentum distribution of
the nucleon, which is eventually reflected in modifications of
quark momentum distributions, namely the structure functions
of nuclei.

These considerations motivated us to investigate cluster
aspects in the structure functions FA

2 for light nuclei, especially
9Be. At this stage, there is no theoretical work on the
nuclear-clustering aspect in high-energy nuclear processes,
for example, in structure functions, although there are some
studies on multiquark clusters such as a six-quark state studied
in the 1980s. Our current studies are totally different from these
works on multiquark effects. In this article, we investigate
possible nuclear clustering effects on the structure functions
FA

2 within a convolution model for describing FA
2 by using the

AMD and shell-model wave functions.
In. Sec. II, our theoretical formalism is provided for

describing nuclear structure functions FA
2 . First, the convo-

lution model is introduced. Then the AMD description and a
simple shell model are explained for calculating nuclear wave
functions. In Sec. III, calculated nuclear densities are shown
for 4He and 9Be to illustrate the clustering structure in the 9Be
nucleus. Then momentum distributions are shown for these
nuclei. The ratios FA

2 /FD
2 are calculated in both AMD and

shell models, and they are compared with experimental data.
Finally, the nuclear modification slopes d(FA

2 /FD
2 )/dx are

discussed. Our results are summarized in Sec. IV.

II. FORMALISM

We explain a basic formalism for calculating the nuclear
structure functions FA

2 in the convolution approach together
with antisymmetrized molecular dynamics and a simple
shell model for calculating nuclear wave functions. These
models are somewhat obvious within each community of
structure-function and nuclear-cluster physicists. However, the
following introductory explanations are intended to help these
different communities understand each other.

A. Nuclear structure functions in a convolution approach

The cross section of deep inelastic charged-lepton-nucleon
(or nucleus) scattering is expressed by a lepton tensor Lµν

multiplied by a hadron tensor Wµν : dσ ∼ LµνWµν [4,18–20].
The hadron tensor is defined by

Wµν(p, q) = 1

4π

∫
d4ξ eiq·ξ 〈p|[Jµ(ξ ), Jν(0)]|p〉, (1)

where q is the virtual photon four-momentum, p is the
momentum of the nucleon (or nucleus), and Jµ is the hadronic
electromagnetic current. The hadron tensor Wµν is expressed
by the imaginary part of the forward virtual Compton ampli-
tude Tµν as Wµν = Im(Tµν)/(2π ) by the optical theorem.

The convolution model has been discussed in various
articles within binding models for calculating nuclear structure
functions, so the detailed formalism can be found, for example,
in Refs. [4,19]. The model indicates that a nuclear structure
function is given by an integral of the nucleonic one convoluted
with a momentum distribution of a nucleon in a nucleus as

FIG. 1. Convolution approach for nuclear structure functions.
The γ ∗, q, N , and A indicate the virtual γ , quark, nucleon, and
nucleus, respectively. A quark momentum distribution is described
by the integral of a corresponding quark distribution convoluted with
a nucleon momentum distribution.

illustrated in Fig. 1. It is written in the hadron-tensor form as

WA
µν(pA, q) =

∫
d4pNS(pN )WN

µν(pN, q), (2)

where pN and pA are momenta for the nucleon and nucleus,
respectively, and S(pN ) is the spectral function which is the
energy-momentum distribution of nucleons in the nucleus. The
structure functions are generally expressed in terms of two
variables, Q2 and x, defined by

Q2 = −q2, x = Q2

2MNν
, (3)

where MN is the nucleon mass, ν is the energy transfer ν =
q0 in the rest frame of a target nucleus, and q2 is given by
q2 = (q0)2 − �q 2. In the convolution picture of Eq. (2), the
process is described by two steps as illustrated in Fig. 1. First,
a nucleon is distributed in a nucleus according to the spectral
function S(pN ) with the nucleon momentum pN , and then
a quark is distributed with the momentum fraction x in the
nucleon. The overall quark momentum distribution is given by
the convolution integral of these two distributions.

The hadron tensor WA
µν is expressed in terms of two

structure functions, WA
1 and WA

2 , as

WA
µν(pA, q) = −WA

1 (pA, q)g̃µν + WA
2 (pA, q)

p̃Aµ p̃Aν

p2
A

, (4)

where g̃µν and p̃µ are defined by g̃µν = gµν − qµqν/q
2 and

p̃µ = pµ − (p · q) qµ/q2 to satisfy the current conservation.
The structure function FA

2 is related to WA
2 by FA

2 =
WA

2 pA · q/MA, and its projection operator is given by [21,22]

P̂
µν

2 = −MA pA · q

2 p̃ 2
A

(
gµν − 3 p̃

µ

A p̃ ν
A

p̃ 2
A

)
, (5)

which satisfies P̂
µν

2 WA
µν = FA

2 . The mass of the nucleus is
denoted by MA. Applying the projection operator on both
sides of Eq. (2), we obtain [4,21,23]

FA
2 (x,Q2) =

∫ A

x

dyf (y)FN
2 (x/y,Q2), (6)

where FA
2 and FN

2 are structure functions for the nucleus and
nucleon, and y is the momentum fraction

y = MApN · q

MNpA · q
� Ap+

N

p+
A

, (7)
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where p+ is a light-cone momentum [p+ ≡ (p0 + p3)/
√

2].
It should be noted that the upper bound of the variables x and
y is A for nuclei. The function f (y) indicates a light-cone
momentum distribution for the nucleon, and it is given by

f (y) ≡ 1

A

∑
i

∫
d3pNyδ

(
y − pNq

MNν

)
ni |φi( �pN )|2, (8)

where ni is the number of the nucleon in the quantum state i,
and the summation is taken over the occupied states. Here the
spectral function is given by

S(pN ) = 1

A

∑
i

ni |φi( �pN )|2δ(p0
N − MA +

√
M 2

A−i + �p 2
N

)
,

(9)

where MA−i is the mass of the residual one-hole state
and φi( �pN ) is the wave function of the nucleon. Here
( �p 2

N /Q2)-type higher-twist effects [21] are not included in
the convolution equation. The function f (y) is normalized
to satisfy the baryon-number conservation

∫ A

0 dyf (y) = 1 by
taking

∫
dp4

NyS(pN ) = 1 [23,24].
The wave functions of the nucleon are calculated non-

relativistically, and then they are used for the relativistic
description in obtaining light-cone distributions by Eq. (8).
It could lead to an issue of normalizing the nonrelativistic
wave function because there is no solid relativistic framework
to use the nonrelativistic functions. Here the wave functions
are normalized to satisfy the condition

∫
dyf (y) = 1, where

there is an extra factor of p0
N/MN in front of |φ( �pN )|2. As

noticed in the third article of Ref. [25], this factor does not
appear if a mass factor (MN/p0

N ) is included in the convolution
formalism. However, such an overall normalization difference
does not affect our results in Sec. III.

The separation energy εi is defined by

εi = (MA−i + MN ) − MA. (10)

It is the energy required to remove a nucleon from state i. In our
actual calculation, we average over all the nucleons to estimate
the average separation energy (εi → 〈ε〉). If a nonrelativistic
approximation is applied for the expression

√
M 2

A−i + �p 2
N , p0

N

and 〈ε〉 are related by considering the δ function for the energy
conservation as

p0
N = MN − 〈ε〉 − �p 2

N

2MA−1
, (11)

where MA−i is replaced by MA−1 (the ground-state mass
of the A − 1 nucleus). It should be noted that the residual
nucleus A − i could be in an excited state and that many-body
breakup processes could be also possible in the final state.
Therefore, the separation energy is, in general, not a simple
difference between the two nuclear binding energies in the
initial and final states, because the final nucleus would not
be in the ground state. It means that theoretical separation
energies depend on how they are estimated. For example,
they vary depending on whether models include short-range
correlations [24,26] and many-body breakup processes [27].
In our work, experimental separation energies are taken from
(e, e′p) and (p, 2p) experiments.

Equation (6) indicates that the nuclear structure function FA
2

is split into two parts: the light-cone momentum distribution of
the nucleon and the nucleonic structure function FN

2 . If there is
no nuclear medium effect on the nucleonic structure function
FN

2 (x,Q2), nuclear modifications should come solely from the
nucleonic distribution part, which contains the information
on nuclear binding and Fermi motion of nucleons. These
effects are reflected in the light-cone momentum distribution
of Eq. (8), namely in the momentum distribution of the nucleon
and the energy-conserving δ function. For calculating the
distribution f (y), we need a realistic model for the wave
function φ( �pN ). In our work, we calculate it in two theoretical
models: an antisymmetrized molecular dynamics and a simple
shell model. They are introduced in Secs. II B and II C.

B. Antisymmetrized molecular dynamics

This work is intended to investigate a possible clustering
effect on the structure functions of deep inelastic scattering
(DIS). There is a theoretical method, AMD [28] or fermionic
molecular dynamics [29], which is developed for describing
clustering aspects of nuclei as well as shell-like structure on
an equal footing. Hereafter, we use the nomenclature AMD
for this theoretical method.

There are nuclei that exhibit density distributions of
separate clusters. For example, the 8Be nucleus has two
separate peaks, which correspond to two α nuclei, in its
density distribution according to a Monte Carlo calculation
for the eight-body system by using realistic NN (N : nucleon)
potentials [30]. It suggests that some nuclei tend to form α-like
clusters within their structure because the α is a tightly bound
nucleus.

A simple and yet very useful and consistent theoretical
method is provided by the AMD method. The AMD method
has a number of advantages; for example, there is no
assumption on nuclear structure, namely shell- or clusterlike
configuration, and simple and systematic studies are possible
from light to medium-size nuclei. A nuclear wave function is
given by the Slater determinant of single-particle wave packets:

|�(�r1, �r2, . . . , �rA)〉
= 1√

A!
det[ϕ1(�r1), ϕ2(�r2), . . . , ϕA(�rA)]

= 1√
A

∣∣∣∣∣∣∣∣∣∣

ϕ1(�r1) ϕ1(�r2) · · · ϕ1(�rA)

ϕ2(�r1) ϕ2(�r2) · · · ϕ2(�rA)
...

... · · · ...

ϕA(�r1) ϕA(�r2) · · · ϕA(�rA)

∣∣∣∣∣∣∣∣∣∣
. (12)

Here a nucleon is described by the single-particle wave
function

ϕi(�rj ) = φi(�rj ) χi τi, (13)

where χi and τi indicate spin and isospin states, respectively.
The function φi(�rj ) is the space part of the wave function, and
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it is assumed to be given by the Gaussian functional form

φi(�rj ) =
(

2ν

π

)3/4

exp

[
− ν

(
�rj −

�Zi√
ν

)2 ]
, (14)

where ν is a parameter to express the extent of the wave
packet. The center of the wave packet is given by �Zi/

√
ν. We

should note that �Zi is a complex variational parameter. Its real
and imaginary parts indicate nucleon position and momentum,
respectively [28]:

〈φi |�̂r|φi〉
〈φi |φi〉 = Re �Zi√

ν
,

〈φi | �̂p|φi〉
〈φi |φi〉 = 2

√
νIm �Zi. (15)

A nuclear state is an eigenstate of the parity, so the following
parity-projected wave function is used:∣∣�±(�r1, �r2, . . . , �rA)

〉 = 1√
2

[ |�(�r1, �r2, . . . , �rA)〉
± |�(−�r1,−�r2, . . . ,−�rA)〉 ]. (16)

As for the NN interactions, we use the following potentials:

two-body: V2 = (1 − m − mPσPτ )

× [
v21e

−(r/r21)2 + v22e
−(r/r22)2]

,

three-body: V3 = v3 δ3(�r1 − �r2) δ3(�r2 − �r3),

LS: VLS = vLS

[
e−(r/rLS1)2 − e−(r/rLS2)2]

×P (3O) �L · �S, (17)

where m, v21, v22, r21, r22, v3, vLS , rLS1, and rLS2 are constants.
The two-body interaction part mPσPτ indicates the Majorana
term with spin and isospin exchange operators (Pσ , Pτ ). The
three-body part is a contact interaction form, and P (3O) is the
projection operator of the triplet-odd (3O) state (spin S = 1,
angular momentum L = odd) in the two-nucleon system [31].
The Coulomb interaction is also considered in our analysis.
The constants m, v21, ... are taken from Ref. [16] except for
v3 and VLS , which are fixed to reproduce binding energies
of considered nuclei under the radius constraint: vLS =
2000 MeV, and v3 = 4000, 3300, and 2000 MeV for 4He,
9Be, and 12C, respectively. Here we should be careful to take
into account the effect of center-of-mass motion [32].

The AMD wave functions contain the parameters �Zi and
ν, which are determined by minimizing the system energy
with a frictional-cooling method. Time development of �Zi is
described by the time-dependent variational principle:

δ

∫ t2

t1

dt
〈�(Z)| i d

dt
− H |�(Z)〉

〈�(Z)| �(Z)〉 = 0. (18)

It leads to the equation of motion. Introducing two arbitrary
parameters λ and µ for practically solving the equation of
motion, we obtain

i
d

dt
Zi = (λ + iµ)

∂H

∂Z∗
i

, (19)

where µ is a friction parameter which should be a negative
number. By solving this equation, the parameters �Zi are
obtained. From the obtained parameters, the densities in

coordinate and momentum spaces are calculated by

ρ(�r) =
(

2ν

π

)3
2 ∑

i,j

exp

[
−2

(
√

ν�r−
�Z∗

i + �Zj

2

)2 ]
BijB

−1
ji ,

(20)

ρ( �p)=
(

1

2πν

)3
2 ∑

i,j

exp

[
−1

2

{ �p√
ν
−i( �Z∗

i − �Zj )

}2
]

BijB
−1
ji ,

(21)

where Bij ≡ ∫
d�rϕ†

i (�r)ϕj (�r). This momentum distribution is
used for calculating the light-cone momentum distribution in
Eq. (8). Then, using the convolution equation (6), we obtain the
nuclear structure functions, which include clustering effects
described by the AMD.

C. Simple shell model

To compare with the AMD results at this stage, we also
calculate the nuclear spectral function by using a simple
shell model, because the current wave functions and NN

interactions in AMD are simple Gaussian forms. If very
detailed studies become necessary in the future, we may
consider using more sophisticated models, for example, a
density-dependent Hartree-Fock [33] or a detailed shell model
such as NuShell (OXBASH) [34].

As a shell model, we take a simple harmonic oscillator
model. Nucleons are assumed to move in an average central
potential created by interactions of all the nucleons in a
nucleus. Then, the nucleons are treated independently of each
other. A simple and yet realistic choice of the potential is
the harmonic-oscillator type (MNω2r2/2). Its wave function
is separated into radial- and angular-dependent parts:

ψn�m(r, θ, φ) = Rn�(r)Y�m(θ, φ), (22)

where r , θ , and φ are spherical coordinates, and n, �, and m

are radial, azimuthal, and magnetic quantum numbers, respec-
tively. The function Y�m(θ, φ) is the spherical harmonics, and
the radial wave function is given by [35]

Rn�(r) =
√

2κ2�+3(n − 1)!

[�(n + � + 1/2)]3
r�e− 1

2 κ2r2
L

�+1/2
n−1 (κ2r2), (23)

where L
�+1/2
n−1 (x) is the Laguerre polynomial, and κ is defined

by κ ≡ √
MNω.

In the following analysis, the light nuclei 3He, 4He, 9Be,
and 12C are considered, so the low-energy levels, 1s1/2 and
1p3/2, are taken into account as shown in Fig. 2. The only
parameter in the model is ω, which is fixed by a nuclear radius.
The constants of the AMD model are determined to explain

FIG. 2. (Color online) Shell levels for 3He, 4He, 9Be, and 12C.
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experimental nuclear charge radii. Then, nuclear matter radii
are calculated by using obtained AMD densities. Because it is
the purpose of this work to investigate a difference between the
structure functions of the AMD and shell models, we take the
constant ω for each nucleus to obtain the same matter radius
calculated by the AMD.

D. Deuteron wave function

Experimental data are listed by the ratios FA
2 (x)/FD

2 , where
FD

2 is the structure function of the deuteron, for showing
nuclear modifications in the structure functions. Because the
deuteron is a bound two-nucleon system, a common wave
function is used in Eq. (8) for calculating the structure function
FD

2 (x,Q2) of Eq. (6) in both AMD- and shell-model analyses.
Here we take the deuteron wave function given by the Bonn
group in Ref. [36].

E. Experimental information on separation energies,
binding energies, and charge radii

In calculating the structure functions, experimental infor-
mation is needed for separation energies, binding energies, and
charge radii. The binding energies are taken from Ref. [37] and
they are listed in Table I. They are used for calculating nuclear
mass: MA = ZMp + NMn − B, where Mp and Mn are proton
and neutron masses, Z and N are atomic and neutron numbers,
and B is the binding energy.

Experimental nuclear charge rms radii are listed for the
deuteron [39], 3He [40], 4He [41], 9Be [42], and 12C [43] in
Table I. Using these charge radii and binding energies, the
constants in the AMD model are determined. The matter rms
radii are then calculated in the AMD by using Eq. (20). There
are slight differences between

√
〈r2〉c and

√
〈r2〉m in the AMD

for 9Be and 12C. This is because of the effect of Coulomb force.
The separation energies are taken from experimental mea-

surements for 4He [44], 9Be, and 12C [45], and they are listed
in Table I. A theoretical estimate of 11.4 MeV is listed just
for information because there is no available data for 3He. It
was obtained by using a spectral function calculated by the
Faddeev method with the Reid soft-core potential [38].

TABLE I. Experimental data for mean separation energies,
binding energies per nucleon, and charge root-mean-square radii.
The matter radii are calculated in the AMD model except for the
deuteron so that charge radii agree with the data.

Nucleus 〈ε〉 B/A
√

〈r2〉c

√
〈r2〉m

(MeV) (MeV) (fm) (fm)

D 2.22 1.11 2.10 2.10
3He (11.4) a 2.57 1.96 1.96
4He 20.4 7.07 1.68 1.68
9Be 24.4 6.46 2.52 2.61
12C 22.6 7.68 2.47 2.48

aIndicates a theoretical estimate of Ref. [38] because the experimental
data are not available.

It should be also noted [46] that the separation energy of
20.4 MeV for 4He [44] was obtained by using only the data
in the peak region of the energy spectrum of 4He(p, 2p)3H
and a continuum region is not included. The separation energy
should be calculated by the average energy weighted by the
spectral function:

〈ε〉 =
∫

dENd3pNENS(EN, pN ). (24)

We notice that theoretical estimates are usually larger than this
value (20.4 MeV) for 4He [26,27]. For example, 28.2 MeV is
obtained in Ref. [26], where the average kinetic energy esti-
mated by the amalgamation of two-body correlation functions
into multiple scattering process method is employed, and then
the Koltun sum rule is used for estimating the separation energy
〈ε〉: B/A = [〈ε〉 − 〈T 〉(A − 2)/(A − 1)] /2, where B/A is the
binding energy per nucleon and 〈T 〉 is the average kinetic
energy. However, it is very difficult to calculate a reliable
value of the separation energy. The experimental separation
energies 〈ε〉 were obtained in nucleon-knockout reactions by
observing peaks of single-particle excitations and they did not
include the contribution from continuum states of the residual
nucleus. Therefore, the mean separation energies would be
underestimated. In this work, we estimated the clustering effect
without the continuum, which needs to be considered in the
future for detailed comparison with data.

III. RESULTS

First, nuclear densities are shown in the AMD model.
The focused nucleus is 9Be for investigating the anomalous
EMC effect in the structure function F2, so coordinate-space
densities are shown in Fig. 3 for this 9Be nucleus as well
as 4He, as an example, for comparison. It is interesting to
find two density peaks within the 9Be nucleus, whereas the
4He density is a monotonic distribution. As mentioned in
Sec. II, it is the advantage of the AMD method that it does
not assume any specific structure, or cluster- or shell-like
configuration, on nuclei. 4He is a tightly bound nucleus
and it is well described by the usual shell-like structure,
which is judged by the monotonic density distribution in
Fig. 3. However, the situation is apparently different in 9Be.
The figure suggests that two dense regions exist in 9Be,
although such a phenomenon does not exist in the shell
model. It indicates that the 9Be nucleus consists of two α-like
clusters with surrounding neutron clouds. This clustering
could produce different nuclear medium effects from the
ones expected by the shell model. In particular, it could
influence the nucleon momentum distribution, and eventually
quark momentum distributions, within the 9Be nucleus. Fur-
thermore, dense regions could alter the internal structure of
the nucleon.

Next, coordinate-space densities are compared in both
AMD and shell models in Fig. 4 by taking averages over
the polar and azimuthal angles θ and φ. Although the 4He
densities are same in both models, they are different in 9Be.
Since the angular integrals have been calculated, the cluster
structure is no longer apparent in the AMD density of 9Be in
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FIG. 3. (Color online) Coordinate-space densities of (top) 4He
and (bottom) 9Be, calculated by the AMD. Here the densities are
shown by taking integrals over the coordinate z:

∫
dzρ(x, y, z).

Fig. 4. However, the cluster effects are reflected in the slightly
larger densities at r ∼ 2 fm and the depletion at r = 0 due to
the existence of two separate clusters.

Instead of the coordinate-space density, the momentum-
space density |φ( �pN )|2 is used for calculating the light-cone
momentum distribution using Eq. (8). Calculated momentum-
space densities are shown in Fig. 5 for the nuclei 4He and
9Be. We explained in Sec. II E that the same radii are taken in
both AMD and shell models. As a result, both momentum
distributions of 4He are almost the same. However, the
distributions are much different in 9Be. It is important to find
that the momentum distribution of the AMD is shifted toward
the high-momentum region in 9Be because of the clustering
structure. This is caused by the fact that the dense regions,
namely the two clusters, are formed within the 9Be nucleus. If
nucleons are confined in the small space regions of the clusters,
it leads to an increase of high-momentum components, which
is clearly shown in Fig. 5.

Now, using the obtained momentum distributions together
with Eqs. (6), (8), and (9), we calculate the nuclear structure
functions. The structure function of 9Be is shown together
with that of 4He as an example of non-cluster-like nuclei to
illustrate clustering effects on the structure function of 9Be. In
Figs. 6 and 7, our theoretical ratios F

4He
2 /FD

2 and F
9Be
2 /FD

2 are
compared with the available experimental data of the Stanford

0

0.05

0.1

0.15

0.2

0 1 2 3 4 5
r (fm)

9Be AMD
Shell

4He AMD
Shell

ρ(
r)

  [
 fm

-3
 ]

FIG. 4. (Color online) Coordinate-space densities are shown for
9Be (4He) in the AMD and shell models by the thick (thin) solid and
dashed (dotted) curves, respectively. The densities are integrated over
the angles θ and φ to show the curves in this figure. The clustering
structure in the AMD gives rise to a modification of the density
distribution in 9Be, whereas both densities are the same in 4He.

Linear Accelerator Center (SLAC)-E139 [47], the New Muon
Collaboration (NMC) [48], and JLab [15]. The AMD and
shell-model ratios are shown by the solid and dashed curves, re-
spectively, and they are calculated at fixed Q2 (Q2 = 5 GeV2).
Experimental data are taken at various Q2 points, and only the
data with Q2 � 1 GeV2 are shown in Figs. 6 and 7. The JLab
measurements include the data with small invariant mass W ,
where the process is not considered to be deep inelastic.
Therefore, the data with W 2 < 3 GeV2 are shown by the open
circles. In showing the ratios of nonisoscalar (Z �= N ) nuclei,
isoscalar corrections are applied in Ref. [15] by including
smearing corrections. Because we could not access the specific
smearing corrections in the JLab analysis, we simply used
the isoscalar corrections [(Fp

2 + Fn
2 )/2]/[(ZF

p

2 + NFn
2 )/A],

where F
p

2 and Fn
2 are the structure functions of the proton and

neutron, respectively, by using the PDFs of the MSTW08 [11]
in the leading order (LO) of αs . We checked that our corrections
are almost the same as the corrections in the JLab analysis in
9Be [15].

0

0.4

0.8

1.2

1.6

0 0.5 1 1.5 2 2.5
p (1/fm)

9Be AMD
Shell

4He AMD
Shell

4
π

p2
|φ

(p
)|2

[ f
m

 ]

FIG. 5. (Color online) Momentum-space densities are shown for
4He and 9Be in the AMD and shell models. The clustering structure
in 9Be gives rise to an excess of high-momentum components in the
AMD.
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H
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FIG. 6. (Color online) Theoretical structure-function ratios
F

4He
2 /F D

2 are compared with experimental data of SLAC-E139 [47],
NMC [48], and JLab [15]. The solid and dashed curves indicate AMD
and shell-model results, respectively, calculated at Q2 = 5 GeV2;
however, both curves overlap each other. The experimental data are
taken at various Q2 points.

From Figs. 6 and 7, we find that our theoretical ratios
have a tendency consistent with the data in the sense that
the ratio decreases at medium x and it increases at large
x. The decrease and increase are caused by the nuclear
binding and by the nucleon’s Fermi motion, respectively, in
our convolution picture. However, it is also clear that the
simple convolution description is not sufficient to explain
all experimental nuclear modifications because there are
differences between the theoretical curves and the data.

There are two major reasons for the differences. First,
short-range nucleon-nucleon correlations were not included
in calculating the spectral function [24,26]. They change the
theoretical ratios toward the experimental data at x = 0.6–0.8.
The purpose of our studies is to investigate whether a possible
clustering signature appears in deep inelastic lepton-nucleus
scattering. Because this is the first attempt to investigate the
cluster effects, we did not include such an effect. In the future,
we may study more details.
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/ F

2D
(x

)
9

FIG. 7. (Color online) Comparison with JLab experimental data
of F

9Be
2 /F D

2 . Notations are the same as the ones in Fig. 6. The
differences between the solid (AMD) and dashed (shell model) curves
are now clear in 9Be. Isoscalar corrections are applied as explained
in the main text.

Second, there could be a modification of the nucleon itself
inside a nuclear medium. As explained in Refs. [4,19], such
a nucleon modification was originally proposed as a Q2

rescaling model. Nucleons could overlap in a nucleus because
the average nucleon separation and nucleon diameter are
almost the same. The overlap then gives rise to a confinement
radius change for quarks, which appears as a modification of
quark momentum distribution, namely a modification of the
structure function F2. A possible internal nucleon modification
was investigated in Refs. [49,50] in comparison with the data.
Because it is not the purpose of this work to step into such
details, especially in comparison with the data, we leave it for
our possible future studies.

The anomalous data were reported for 9Be by the JLab
experiment [15] by taking a slope of the ratio FA

2 /FD
2 with

respect to the Bjorken variable x in the region 0.35 < x < 0.7.
As shown in Fig. 4 of Ref. [15], the magnitude of the 9Be slope
is too large to be expected from its average nuclear density in
comparison with the ones of other light nuclei. We calculate
corresponding theoretical slopes by taking the derivatives
d(FA

2 /FD
2 )/dx (≡ dREMC/dx) at x = 0.35. The JLab data

are plotted by the average density calculated by a Green
function Monte Carlo method [51] with the multiplication
factor (A − 1)/A for removing the struck nucleon.

Although this theoretical density estimate would be reliable,
we first show the slope of a purely experimental quantity by
defining an average density as A/[4π〈r2〉3/2

c /3], where
√

〈r2〉c
is the experimental charge rms radius in Fig. 8 instead of the
specific theoretical density. The experimental charge radii are
taken from Table I. The theoretical slopes in the AMD and shell
models are shown by open circles and crosses, respectively,
for 4He, 9Be, and 12C. Because the experimental separation
energy is not available for 3He, the theoretical slopes are not
calculated for 3He. The JLab data are shown by the solid
circles with errors. To illustrate how the 9Be slope deviates

FIG. 8. (Color online) Comparison with JLab data on the slope
|dREMC/dx|, where REMC = F A

2 /F D
2 . The open circles and crosses

are the theoretical slopes calculated by the AMD and shell models,
respectively. The JLab data are shown by the solid circles with errors.
The abscissa is the average density ρ defined by A/[4π〈r2〉3/2

c /3] with
the charge rms radius

√
〈r2〉c. The curve indicates a smooth function

| dREMC/dx| = a(ρ − ρ
D

)b to fit the JLab experimental data except
for 9Be.
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from the other nuclear ones, a curve is given in Fig. 8 by fitting
the data without the 9Be data in a simple functional form,
| dREMC/dx | = a(ρ − ρ

D
)b, where ρ = A/[4π〈r2〉3/2

c /3] and
ρ

D
is the density of the deuteron. The parameters a and b are

determined and we obtain | dREMC/dx | = 1.35(ρ − ρ
D

)0.906,
which is the curve in Fig. 8. It is obvious that the 9Be slope
is anomalous in the sense that the data significantly deviates
from the curve.

The magnitudes of the theoretical slopes are rather small in
comparison with the data, and they are about half of or less than
the experimental ones in Fig. 8. It was already obvious from
Figs. 6 and 7 that the magnitudes of the theoretical slopes
are smaller than the experimental ones. As explained, the
differences could be caused by the short-range correlations
and internal nucleon modifications. An interesting result is
that the clustering effects are not apparent in the slope by
looking at both AMD and shell-model results for 9Be, although
there are some differences in the momentum distributions
of Fig. 5 and in the structure functions of Fig. 7. In other
nuclei, both theoretical slopes are almost identical. This is
understood in the following way. In the medium-x region, the
nuclear modifications can be described mainly by the first two
moments of the nucleon momentum distribution f (y). These
moments are expressed by the average separation and kinetic
energies, 〈ε〉 and 〈T 〉 [25], which are similar in both models.
It leads to the small differences between the AMD and shell
models in the slope dREMC/dx.

The small difference between the AMD and shell-model
slopes in 9Be suggests that we look for another reason to
explain the anomalous JLab data. As we noticed in Fig. 3,
the high-density regions are created locally in 9Be according
to the AMD model. The higher densities could contribute to
extra nuclear modifications in the structure function FA

2 by an
additional mechanism which is not considered in our simple
convolution picture. To find such a possibility, we plot the same
slope by taking the maximum local density as the abscissa.
The maximum density ρmax, of course, depends on theoretical
models to describe the nuclei. The maximum positions are
located at r = 0 for 4He in both AMD and shell models and
also for 9Be in the shell model. However, they are at different
points (r �= 0) for 9Be in the AMD due to the cluster structure
and for 12C in both models due to a p-wave contribution to the
density.

The slopes are shown in Fig. 9 by taking the maximum
local density ρmax as the abscissa. The maximum densities are
almost the same in 3He and 4He, so they are plotted at the same
position of ρmax. However, they differ in 9Be and 12C. Although
the difference between ρmax (AMD) and ρmax (shell) in 12C is
not as large as the one in 9Be, it seems that some clustering
effects also exist in 12C. The JLab data of 9Be and 12C and the
theoretical slopes are plotted at two different density points
of the AMD and shell models. The curve indicates a fit to
the JLab data with the 12C data at the shell-model density
point by excluding the 9Be data. It is given by |dREMC/dx| =
0.821(ρmax − ρmaxD

)0.646, where ρmaxD
is the maximum density

for the deuteron.
In the usual convolution calculation, the spectral function is

given by the averaged nuclear density distribution, and thus the

FIG. 9. (Color online) Comparison with JLab data on
|dREMC/dx|. The abscissa is the maximum local density theoretically
calculated in the AMD and shell models. Two models produce
different densities in 9Be and 12C, so the JLab and theoretical slopes
are plotted at different density points. The curve indicates a smooth
function to fit the JLab experimental data except for 9Be with the 12C
data at the shell-model density.

inhomogeneity of the nuclear density is washed out. In such a
calculation, the average nuclear density of 9Be is lower than
that of 12C or 4He as shown in Fig. 8, which is the origin of the
“anomalous” EMC ratio of 9Be observed at JLab. However,
the maximum local density of 9Be is, as shown in Fig. 9,
higher than that of 4He and 12C, and the EMC ratio of 9Be
can be treated “normally.” Here, the “normal” means that the
result of 9Be is consistent with the smooth curve determined
by the EMC results of other nuclei, and thus 9Be does not have
anomalous dependence on the nuclear density anymore. In this
sense, the anomalous 9Be result is “explained” as a normal one
by the maximum local density; however, it does not mean that
the physics mechanism is clarified.

What we emphasize here is that the EMC ratio or the nuclear
structure function itself could consist of the mean conventional
part and the remaining part depending on the maximum local
density. The remaining part is surely associated with the
inhomogeneity of the nuclear density, before we take the
average of the nuclear wave function, given by the nuclear
cluster structure. It could be nuclear-medium modification
of the nucleonic structure function. It is well known that
the cluster structure is well developed in Be and that the
light mass region with A < 20 is very suitable to study
the cluster structure. Therefore, it is reasonable that, although
the cluster-structure effect in the EMC ratio has not been seen
in the medium and large nuclei so far, we can now observe
it in the beryllium isotope region. Such a cluster structure
will be investigated in the light-mass region by future JLab
experiments [52].

It is interesting to find that the “anomalous” JLab data for
9Be can be explained if plotted by the maximum local density
at the cluster positions because the 9Be (AMD) data are very
close to the curve in Fig. 9. However, the 9Be data remains
anonymous if it is plotted by the shell-model density because
the 9Be (shell) data significantly deviates from the curve. Such
a tendency also exists in 12C but it is not as serious as the 9Be
case. If the average nuclear density of 9Be is used in showing
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the slope data, the clustering effects are not clearly reflected.
Here, it is important to point out that the 9Be data agrees
with the other nuclear data if they are plotted as a function
of the maximum density. This fact implies that the physics
mechanism associated with the high densities, for example
due to the clusters in 9Be, could be the origin for explaining
the nuclear-modification slopes of the FA

2 structure functions.
One of the possible mechanisms is the modification of internal
nucleon structure caused by nuclear medium effects at the
high-density regions.

IV. SUMMARY

Nuclear modifications of structure function F2 were investi-
gated for finding a possible signature of clustering structure in
nuclei. The convolution model was used for describing nuclear
structure functions, where momentum distributions of the nu-
cleon were calculated in the AMD and shell models. According
to the AMD model, the 9Be nucleus has a clear clustering
structure of two α-like clusters with a surrounding neutron.
Because of the cluster formation in 9Be, high-momentum
components increase in the nuclear wave function of the AMD
in comparison with the distribution of the shell-model one.
Although there are some differences between the structure
functions of 9Be in the AMD and shell models, the differences
are rather small in our simple convolution picture. Therefore,
an anomalous EMC effect found for 9Be at JLab should come
from other effects such as the internal nucleon modification
due to the high-density regions created by the clustering.

The following points are the major results in this work:

(i) For the first time, the nuclear structure functions FA
2 are

calculated in a model with clustering structure in nuclei.
Then they are compared with the structure functions of the
shell model to clarify the clustering effects.

(ii) The clustering configuration in the 9Be nucleus produces
high-momentum components in the nuclear wave function.
It leads to a modification of the light-cone momentum
distribution for nucleons in the 9Be nucleus.

(iii) Because of the high-momentum components due to the
cluster formation, the nuclear structure functions FA

2 are
modified; however, the modifications are not very large
within the simple convolution description.

(iv) The anomalously large nuclear effect for the slope
|d(FA

2 /FD
2 )/dx| of the 9Be nucleus observed at JLab can

be explained if the slope is plotted by the maximum local
density calculated in the theoretical model (AMD) with
clustering structure.

(v) Since the nuclear-modification slopes are explained by the
maximum densities of nuclei, the physics mechanism of
the anomalous nuclear effect could be associated with the
high densities in the clusters of 9Be. This fact implies that
internal nucleon modifications due to the high densities
could be the origin of the 9Be anomaly, although careful
estimations should be made of the effects of short-range
nucleon-nucleon correlations.

This work is the first attempt to connect the DIS structure
functions to the clustering structure in nuclei. This kind of
research field is an unexplored area, and further theoretical
studies are needed to clarify clustering effects in the structure
functions.
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