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Quasielastic scattering of 6He from 12C at 82.3 MeV/nucleon
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Quasielastic scattering of 6He on a 12C target was measured at 82.3 MeV/nucleon. Special care was taken
to treat the background subtraction at very small angles. The measured differential cross-sections show a large
enhancement at small angles relative to the Rutherford cross-section, similar to those observed at lower energies
for the scattering of halo nuclei. The overall structure of the cross-section is reasonably reproduced by the optical
model calculations. The inelastic channels which populate two low-lying excited states of 12C target nucleus were
included in the framework of the coupled channel analysis. Further systematic theoretical analysis is encouraged.
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I. INTRODUCTION

Elastic scattering is known as the most fundamental and
simplest process accompanying the hadronic collision between
any pair of projectile and target [1]. The optical potential (OP)
obtained from the elastic scattering is not only important in
itself to represent the global effective interaction between
the colliding partners, but also necessary for describing the
entrance and exit channel potentials for more complicated
reaction processes, such as fusion, breakup, few-nucleon
transfer, and so on. Therefore soon after the advent of exotic
structures of unstable nuclei, such as nuclear halo or skin,
elastic scattering has become one of the most intensively
studied collision channels induced by radioactive ion beams
[2,3]. The exotic properties of an unstable nucleus are often
related to its small binding energy and large extent of the matter
density distribution [4]. When this kind of nucleus is elastically
scattered by a target, couplings to other nonelastic channels are
expected to be much stronger in comparison to the scattering
induced by a tightly bound nucleus, and the corresponding
OPs should exhibit some new characteristics [1].

Within the framework of Feshbach theory [5], OP can
be written in a form of U = V + Upol, where V is a real
potential corresponding to the ground-state scattering only, and
Upol is a complex, nonlocal and energy-dependent potential
arising from couplings to all nonelastic channels, including
excitation of particle-bound states or resonant states of the
projectile or target, direct breakup to the continuum, transfer
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of nucleons, and so on. In principle, Upol, known as the
dynamic polarization potential (DPP), is composed of a real
part (Vpol) and an imaginary part (Wpol). But deeply bound
nuclei couplings to nonelastic channels are weak, and Upol

could simply be represented by an imaginary term with a form
similar to that of the real potential V , with the latter being
calculated by some microscopic folding methods or obtained
phenomenologically by fitting to experimental data [1]. For
loosely bound nuclei, especially halo nuclei, couplings to
breakup and transfer channels may be strong, and explicit
treatments of both the Vpol and the Wpol are necessary. At
first it was realized that the scattering of loosely bound nuclei
from the hydrogen target could be described by using an OP
with a reduction of the depth of its real part and eventually
an enhancement of its imaginary part, relative to the potential
for a deeply bound nucleus [1,6–8]. This renormalization is a
reminiscence of the DPP effect. For scattering from a complex
target (a carbon target, for instance), this renormalization
method is not good enough, and an appropriate Vpol should
be applied that modifies the shape of the real potential at the
surface region [7,9,10]. Sometimes similar modification is also
needed for the imaginary potential [10]. Of course, it would
be better to treat the couplings explicitly through coupled
channel methods, such as the coupled reaction channel model,
which deals with specific inelastic excitations or transfer
processes [11–13], and the continuum discretized coupling
channel (CDCC) model, which incorporates the effect of
breakup to continuum [14–16]. But inclusion of every new
channel requires a number of inputs such as spectroscopic
factors and OP parameters, etc., which may not be available in
the literature. Also the assumption of few-body structure and
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FIG. 1. (Color online) Schematic view of the experimental setup at RIKEN-RIPS.

the related treatment necessary for the CDCC calculation is
applicable only for some selected systems. As a result the
phenomenological DPP is still useful in many cases [15].
Efforts have also been made to deduce the DPP theoretically
from the CDCC S matrix or within the semiclassical approach
[17] in order to understand its behavior for various systems at
different energies. Despite much progress made over the last
two decades, strong coupling effects for loosely bound exotic
nucleus remain central problems for current and future nuclear
physics with unstable nucleus beams.

On the experimental side, some elastic scattering differ-
ential cross-sections for weakly bound light exotic nuclei,
such as 6He, 8He, 11Li, and 10−12,14Be, have been measured
and well tabulated in Ref. [2]. These measurements were
concentrated at energies below 50 MeV/nucleon, except for
a couple early works for 11Li, 12,14Be, and 8He at about
60 MeV/nucleon and using simple 0◦ particle telescopes
[18–21]. We note that these early measurements suffered
from some experimental uncertainties for very small angle
measurements, especially when extremely exotic nuclei like
11Li, 14Be, and 8He were concerned. As a matter of fact, the
secondary radioactive beam has an inevitably large beam spot
and angular spread, which affect the small angle measurement.
Also the tracking detectors installed just in front of the target
would create some background scattering in addition to the
scattering from the physical target. This situation is very differ-
ent from measurements with stable nucleus beams and must be
treated very carefully. The key point is to subtract correctly the
overwhelmingly large target-out background at small angles.

6He is the lightest halo nucleus with a small binding energy
(0.97 MeV) and no particle-bound excited state. It should
be a good test case to study coupling effects, especially the
coupling to continuum states. A systematic investigation of
6He elastic scattering at about 38 MeV/nucleon on proton
and carbon targets has been carried out at GANIL [6,9], and
very interesting information related to DPP was extracted.
Many other experiments for 6He scattering were performed

at lower energies [2], whereas data at higher energies are
scarce. We report here the quasielastic scattering of 6He at
82.3 MeV/nucleon on a 12C target. Detailed description of the
experiment is given in Sec. II, including a special treatment of
small angle data. Optical model (OM) analysis was performed
and is described in Sec. III.

II. EXPERIMENT

The experiment was carried out at the RIKEN projectile
fragment separator (RIPS) radioactive ion beam line [22]. The
main goal of the experiment was to study the knockout reaction
mechanism [23], but quasielastic scattering data were acquired
automatically and are presented in this article. A schematic
view of the experimental setup is given in Fig. 1. The secondary
beam of 6He at 82.3 MeV/nucleon was produced from a
115 MeV/u 13C primary beam impinged on a 9Be target with a
thickness of 12 mm. The beam intensity at the physical target
position amounts to 3 × 105 pps with a purity of 85% for 6He.
The contaminations, mainly 3H and 8Li, can be eliminated
through offline data analysis by applying cuts on the time of
flight(TOF) between the plastic scintillation counters at focus
points F2 (F2 plastic) and F3 (F3 plastic), and the energy
loss (�E) in a F2 plastic scintillator. A CH2 foil with a
thickness of 83 mg/cm2 and a carbon film with a thickness of
133.9 mg/cm2 were mounted as the physical targets. Since the
beam spot on the target is relatively large, two beam-tracking
drift chambers, BDC1 and BDC2 [24], were placed at 572.5
and 193.5 mm upstream from the target in order to determine
the incident angle event by event. The position resolution
of the BDCs is smaller than 0.5 mm, corresponding to an
incident angle resolution of less than 0.1◦. During the offline
data analysis a cut on the projected beam spot at the target
position was applied.

A deflection magnet was employed downstream of the
target in order to keep the forward neutron wall away from
being exposed to the direct beam. The combined multitrack
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FIG. 2. Charged particle identification for outgoing fragments at
around 0◦, determined by the magnet system. x and θ are horizontal
positions and relative deflection angles measured by the FDC.

drift chamber (MDC) [25–27] and fragment drift chamber
(FDC) [24], which were installed at the entrance and exit sides
of the magnet, respectively, provided tracking information for
scattered 6He and breakup fragments within 4.0◦(laboratory
system) relative to the the beam axis. A hodoscope wall
composed of seven plastic scintillation bars (HODO) was
placed at the exit of the FDC in order to measure the TOF
and energy loss of the fragments. Each bar has a size of
450 mm (height) × 100 mm (width) × 5 mm (thickness) and
is coupled to two photomultiplier tubes at both ends. Bars 1
and 2 of HODO were directly hit by the main 6He beam and
were eliminated from the event trigger.

In order to detect the fragments at larger angles, a particle
telescope D2, covering an angular range from 5◦ to 19◦
(laboratory system) for setup 1 and from 7◦ to 21◦ for setup 2,
was installed at a distance of 337 mm from the target. D2 is
composed of one double-sided silicon strip detector (DSSSD)
1 mm in thickness and 64 × 64 mm2 in area, one large surface
silicon detector (SSD) 1.5 mm in thickness, and one thick
layer of CsI(Tl) crystal with four sectors. The strip width of
the DSSSD is 2 mm at both sides. Two other telescopes, D11
and D12, installed at the other side of the beam axis, were
especially designed to detect the recoiled protons, which are
useful for selecting the knockout reaction mechanism [23] but
are of no concern for the current elastic scattering data analysis.

For fragments deflected by the magnet, the particle iden-
tification may be obtained by using the measured horizontal
position in the FDC (x) and the track deflection angle relative
to the FDC central axis (θ ), as shown in Fig. 2.

For very small angle scattering it is important to correctly
define the zero-degree line (z axis) for the whole detection
system since the yield at a small angle changes rapidly, and
a small angular deviation could lead to a remarkable error
for the scattering cross-section value [28]. When preparing
the experimental setup, we align the whole detection system
mechanically, which may bring about an uncertainty of
millimeters. Therefore, for offline data analysis we correct
this alignment by using the actual beam with an empty target
(target out). In this way, the z axis is fixed by the beam itself,
independent of the manual operation. This approach allows
us to limit the absolute uncertainty of the z axis to be less
than 0.1◦ [28]. Scattering angles can then be calculated event

FIG. 3. Angular distributions of the scattered 6He particles from
carbon target and empty target, respectively, which are normalized to
the same number of incident particles. The inset in the right upper
corner is a linear display for very small angles.

by event from incident tracks determined by the BDCs and
outgoing tracks determined by the target hit positions and
the MDC positions. Figure 3 shows the experimental angular
distribution of the scattered 6He particles for carbon and
empty targets, respectively, normalized to the same number
of incident particles. It is interesting to see directly that the
effect of the target is to remove some of beam particles (flux)
from a very small angular region to a little larger angular
region, and the crossover of the relative number of particles
appears at about 0.3◦, as shown in the inset picture of the
figure. Considering the position resolution of MDC (less than
0.5 mm) and the distance between the target and the MDC
(553 mm), the angular resolution is deduced to be less than
0.2◦ (FWHM), including contributions from the uncertainties
of the incident direction and the multiple Coulomb scattering
of the projectile in the target. The angular bin is then selected as
0.5◦ for each data point in the laboratory system, considering
the angular resolution and the event statistics. At very small
angles, counting rates induced by the direct beam with the
empty target are very large, and the spectrum tail can extend
to a few degrees, as shown in Fig. 3. But reliable scattering
data still can be obtained for scattering angles larger than
0.5◦, where the difference between target-in and target-out
data is at least three times larger than the fluctuations of the
spectrum (square root of the counting number for each bin),
and therefore the subtraction of the latter from the former
is reliable [28]. It should be noted that enough counting
time for empty target runs is mandatory in order to get a
statistically stable background spectrum, which in turn ensures
a good subtraction. As indicated in Sec. I, we consider the
careful treatment of the 0◦ axis alignment and the background
subtraction at small angles very important for a scattering
experiment with the secondary unstable nucleus beam.

The detection solid angle for each data point was deduced
from a Monte Carlo simulation calculation, which took into
account the angular distribution of the incident beam and
the actual geometry of the detector setup. The comparison
between the MDC position spectrum shape with and without
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FIG. 4. Differential cross-sections as the ratio to Rutherford
cross-sections for 6He quasielastic scattering from the carbon target at
82.3 MeV/nucleon. The points are experimental data measured by the
magnet system (solid circles) and by the D2 telescope (triangles). The
solid and dotted lines are from the OM calculations with parameter
sets A and B in Table I, respectively.

the coincidence with the HODO scintillation counters allows
us to verify that it is the frame of D2 telescope and the edge of
the first triggered HODO scintillator bar (bar 3) that limit the
acceptance. In the simulation the detection system acceptance
was defined accordingly.

For each angular bin the number of scattered 6He from the
pure carbon target is obtained by subtracting the target-out
contribution from the target-in count, normalized to the
same number of incident particles. Finally differential
cross-sections as the ratio to Rutherford cross-sections are
presented in Fig. 4 as the seven solid circles up to 5.62◦ in the
center-of-mass (c.m.) system.

To extend the experimental data to larger angles, events
detected by the D2 telescope for a carbon target and empty
target were also analyzed. As an example, Fig. 5 depicts
the particle identification performance of the D2 telescope,
obtained by plotting the energy loss in the SSD versus the
stopping energy in one of the CsI(Tl) crystals. The 6He
component is clearly separated in the figure. The scattering
angle for each event is now determined by the position on the
DSSSD, together with the incident track information provided
by the BDCs. The angular resolution is less than 0.5◦ in the
laboratory system, deduced from the position resolution of
the detector and the related distance to the target. Considering
the data statistic, the angular bin is selected to be 1◦ in the
laboratory system.

Figure 6 presents a typical total energy spectrum of 6He
detected by the D2 telescope with the empty target background
subtracted. In principle, the total energy is a sum of the deposit
energy in the CsI(Tl) crystal and the energy loss in the thin
silicon detector layers (1 mm thick DSSSD and 1.5 mm
thick SSD). The energy loss in 2.5 mm silicon is almost
a constant for 6He with energy of a few tens of MeV per
nucleon and takes only a very small portion of the total energy
(about 2.6 MeV/u compared to about 80 MeV/u). In addition

FIG. 5. Particle identification spectrum obtained from the D2
telescope, illustrated by the energy loss in the SSD versus the stopping
energy in one of the CsI(Tl) crystals.

the straggling of the energy loss is negligibly small (about
0.076 MeV/u) in comparison to the energy spread caused by
the energy resolution of the CsI(Tl) crystal (about 5% FWHM)
and has no influence on the energy spectrum shape. Therefore
we simply add an estimated constant energy loss into the
measured deposit energy in the CsI(Tl) crystal and build the
spectrum as shown in Fig. 6. In the spectrum a high-energy
peak corresponding to the quasielastically scattered 6He stands
out clearly. The peak counting can be obtained from the
integral of the Gaussian function, which fits fairly well the
high-energy side of the experimental spectrum [28]. Due to
the limited energy resolution (about 5% FWHM), the peak
counting should incorporate the contribution from the inelastic
scattering, which excites 12C target, although the 6He projectile
has no bound excited state. In the figure two considered
states (see also Sec. III B) at excitation energies of 4.44 and
9.65 MeV, respectively, are indicated by the arrows. These
states will be treated in the following theoretical calculations.
The single-proton separation threshold of 12C is also shown

FIG. 6. 6He energy spectrum detected by the D2 telescope. A
Gaussian peak function (dashed curve) is used to fit the high-energy
side of the spectrum. The numbers (4.44 and 9.65) denote the
excitation energies (in MeV) of the considered states in the 12C target.
The vertical dashed line indicates the one-proton separation threshold
for 12C.
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by the vertical dashed line. It seems that the low-energy
“tail” of the spectrum comes mostly from the target breakup
process, but it affects the quasielastic peak slightly when the
high-energy side fitting procedure was applied.

Again, the solid angle corresponding to each angular bin is
deduced from Monte Carlo simulation. In total seven experi-
mental data points for setup 2 (solid triangles in Fig. 4) and
seven data points for setup 1 (empty triangles) were obtained,
extending the experimental differential cross-sections up to
21.7◦ in the c.m. system. The excellent agreement of the
independent data points for the two setups in the overlap
angular region demonstrates the good treatment of the peak
fitting and solid angle simulation. The error bars in Fig. 4
are statistical only, resulting from the number of incident
and scattered 6He and the background subtraction. In addition
some 12% systematic error is estimated to result mainly from
the uncertainties of target thickness, selection of elastic peak,
and simulation of the solid angle.

The measured differential cross-sections in Fig. 4 exhibit
a large enhancement relative to the Rutherford cross-section
at small angles, which is comparable to what was observed at
other incident energies for halo nuclei [9,18,21].

III. THEORETICAL ANALYSIS

A. OM analysis with semimicroscopic potentials

The experimental data were analyzed in the framework of
the OM by using the code FRESCO [29]. The OP is expressed
in the form

U (r) = Nr × VF (r) + iW (r) + VC(r). (1)

The real potential VF (r) is calculated by the microscopic
double-folding method [30]. As in Ref. [9], we adopt the
CDM3Y6 nucleon-nucleon (NN) interaction, a halo-type
matter distribution (f c6) for 6He, and a two-parameter Fermi
function distribution for 12C. Nr is the renormalization factor
of the real potential. W (r) is the imaginary potential of a
standard Wood-Saxon (WS) form with three parameters
W , Rw, and aw for the depth, radius, and diffuseness,
respectively. The reduced radius rw is related to Rw as rw =
Rw/(A1/3

p + A
1/3
t ), where Ap and At are mass numbers of the

projectile and the target, respectively. VC(r) is the Coulomb
potential corresponding to a uniformly distributed charge
sphere with a radius Rc = rc(A1/3

p + A
1/3
t ) for rc = 1.2 fm.

In total four parameters, Nr , W , Rw (or rw), and aw, could be
adjusted in order to fit experimental data.

At first, we fix Nr = 1.0 and search for the three parameters
W , rw, and aw. Since the reasonable fitting could be achieved

TABLE I. Optimized OP parameters for 6He + 12C system at an
incident energy of 82.3 MeV/nucleon.

Nr W rw aw σr

Set MeV fm fm mb

A 1.0 62.77 0.97 0.50 853
B 0.9 59.61 0.97 0.48 828

only with rw value close to 1, we simply keep it at 0.97 fm, the
same as that in Ref. [9]. The optimal values for W and aw are
then obtained as listed in Table I (set A), and the corresponding
angular distribution is drawn as the solid curve in Fig. 4. The
amplitudes at larger angles and the oscillatory structure at
small angles of the experimental differential cross-sections
are reasonably reproduced by the calculation. However, the
amplitude of the peak at about 3◦ and the minimum at around
9◦ are not described in a quantitative way. It was indicated
that for the scattering of a light loosely bound nucleus the real
folding potential should be reduced by a small fraction [31,32].
For instance, Nr = 0.9 was adopted for 6He + 12C scattering at
38.3 MeV/nucleon [9]. We tried this renormalization
procedure but could not find obvious improvement. An
example for Nr = 0.9 is shown in Fig. 4 by the dotted
line, with the corresponding optimized imaginary potential
parameters listed in Table I (set B). More attempts were made
to improve the description of experimental data by adjusting
Nr , W , Rw(rw), and aw at the same time, but no qualitative im-
provement could be achieved. The total reaction cross-sections
corresponding to the above OP are also presented in the table,
which are consistent with those obtained at other energies [9].

B. Effects of inelastic channels

As pointed above, the experimental data presented in
Fig. 4 include contributions from inelastic excitations of the
carbon target, due to the limited energy resolution. These
contributions could be accounted for by coupled channel
calculations. Excitations of the first 2+ (4.44 MeV) and 3−
(9.64 MeV) states of 12C were taken into consideration in
the calculations since they are known to have the largest
inelastic scattering cross-sections for the 12C target at various
energies [20,21,33,34]. The first 0+(7.65 MeV) excited state
also lies within the experimental energy resolution. However,
as a monopole excitation, it is not expected to be strongly
populated in an inelastic scattering process and is normally
ignored [20,21,33,34]. We use the rotational model of 12C with

FIG. 7. OM calculations of the differential cross-sections for
6He + 12C scattering at 82.3 MeV/nucleon, including the contribu-
tions from the inelastic channels as described in the text.
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deformation lengths δ2 = 1.08 fm for transition to the 2+ state
and δ3 = 0.67 fm for transition to the 3− state, respectively.
These parameters were taken from Ref. [35]. We did not
make much effort to optimize the deformation parameters
since the contribution of the inelastic channels affects only the
differential cross-sections at large angles where the structure is
less pronounced and changes of the amplitudes could easily be
compensated by the adjustment of the OP parameters. Fits to
experimental data including contributions from these inelastic
channels were performed, and the result is presented in Fig. 7.
The OP parameters of set A do not need to be changed for
the optimum fit, but the total reaction cross-section is reduced
from 853 to 843 mb. It can be seen that the effect of the 2+ state
is negligible for CM angles smaller than 10◦, and its relative
contribution increases to about 30% above 15◦. Contributions
from the 3− state are much smaller and can be neglected for
the whole angular range covered by the current measurement.

Again, the amplitude of the oscillation at small angles
cannot be reproduced quantitatively by OM calculations that
include the inelastic channels. This kind of discrepancy
was also found for scattering of other loosely bound nuclei
[7,18,19,21], especially at higher incident energies. It is
suggested that, especially for the scattering of the halo nucleus,
coupling to a breakup channel should be taken into account
through the inclusion of phenomenological DPP or the explicit
coupled channel treatment in the framework of CDCC [15,16].
We leave this to future work since the incorporation of target
excitation channels is still difficult for the current CDCC code.

IV. SUMMARY

Quasielastic scattering of 6He on a 12C target was mea-
sured at 82.3 MeV/nucleon. The upstream and downstream

drift chambers allowed us to determine the scattering angle
accurately. At very small angles the background subtraction
was performed with a special effort. The measured differential
cross-sections show a large enhancement at small angles
relative to the Rutherford cross-section, similar to those
observed at lower energies for the scattering of halo nuclei.

The overall structure of the cross-section is reasonably
reproduced by a semimicroscopical OM calculation applying
a set of OP parameters consistent with those obtained at lower
energies. Furthermore the inelastic channels corresponding
to two low-lying excited states of 12C target nucleus were
included in the framework of coupled channel analysis. Further
systematic theoretical analysis with the phenomenological
DPP potentials or with the CDCC method, by taking into
account all existing experimental data at around the present
energy [18–21], is certainly encouraged.
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