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Sensitivity of the transverse flow to the symmetry energy
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We study the sensitivity of transverse flow to symmetry energy in the Fermi energy region as well as at high
energies. We find that transverse flow is sensitive to symmetry energy and its density dependence in the Fermi
energy region. We also show that the transverse flow can address the symmetry energy at densities about twice the
saturation density; however, it shows insensitivity to the symmetry energy at densities ρ/ρ0 > 2. The mechanism
for the sensitivity of transverse flow to symmetry energy and its density dependence is also discussed.
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I. INTRODUCTION

Heavy-ion collisions (HIC) are the only method presently
available in the laboratory to produce large volume of excited
nuclear matter. The production of such state is essential not
only to investigate the gross characteristics of nuclear matter
but also to explore the explosion mechanism of supernovas and
the cooling rate of neutron stars. After about three decades of
extensive efforts in both nuclear experiments and theoretical
calculations, the equation of state (EOS) of isospin symmetric
matter is well understood through experiments of collective
flow [1] and subthreshold kaon production [2,3]. Nowadays,
the nuclear EOS of asymmetric nuclear matter has attracted a
lot of attention. The EOS of asymmetric nuclear matter can be
described approximately by

E(ρ, δ) = E0(ρ, δ = 0) + Esym(ρ)δ2, (1)

where δ = ρn−ρp

ρn+ρp
is isospin asymmetry, E0(ρ, δ) is the energy of

pure symmetric nuclear matter, and Esym(ρ) is the symmetry
energy, where Esym(ρ0) = 32 MeV is the symmetry energy
at normal nuclear matter density. The symmetry energy is
E(ρ, 1) − E0(ρ, 0), i.e., the difference of the energy per
nucleon between pure neutron matter and symmetric nuclear
matter. The symmetry energy is important not only to the
nuclear physics community as it sheds light on the structure
of radioactive nuclei and reaction dynamics induced by rare
isotopes, but also to astrophysicists since it acts as a probe for
understanding the evolution of massive stars and supernova
explosions [4]. The existing and upcoming radioactive ion
beam (RIB) facilities lead a way in understanding nuclear
symmetry energy. Experimentally, symmetry energy is not
a directly measurable quantity and has to be extracted from
observables which are related to symmetry energy. Therefore,
a crucial task is to find such observables which can shed
light on symmetry energy. A large number of studies on
the symmetry energy of nuclear matter have been done
during the past decade [5–11]. These studies reveal that
in heavy-ion collisions induced by neutron-rich nuclei, the
effect of nuclear symmetry energy can be studied via the

*rkpuri@pu.ac.in

preequilibrium n/p ratio [5–7], isospin fractionation [8,9],
n-p differential transverse flow [10,11], and so on. These
observables have their relative importance depending on
the region of density one wants to explore. For example,
below saturation density (0.3ρ0 � ρ � ρ0), observables such
as fragment yield, the isoscaling parameter, isospin diffusion,
and the double n-p ratio have been used to extract symmetry
energy. On the other extreme, the π+/π− ratio, the relative
and differential collective flow between triton/He3, and the
n-p differential collective flow act as probes of symmetry
energy at high densities. In the low density region, Shetty
et al. [12] extracted the symmetry energy by comparing the
isoscaling parameters from 40Ar, 40Ca+58Fe, 58Ni and 58Fe,
58Ni+58Fe, 58Ni reactions with dynamical antisymmetrized
molecular dynamics (AMD) calculations [13] and found it to
be of the form Esym = 31.6( ρ

ρ0
)γ , with γ = 0.69. Famiano

et al. [14] studied the symmetry energy by comparing the ex-
perimental double neutron to proton ratio in 112Sn+112Sn and
124Sn+124Sn reactions with isospin-dependent Boltzmann-
Uehling-Uhlenbeck (IBUU) calculations [15] and obtained
the form Esym = 32( ρ

ρ0
)γ , γ = 0.5. Recently Tsang et al.

[7] compared the isospin diffusion and n-p double ratio
for 124Sn+112Sn reaction with isospin-dependent quantum
molecular dynamics (IQMD) calculations [16] and obtained
a similar form of symmetry energy with γ = 0.4–1.05. The
situation is worse at higher densities. The results are model
dependent and also contradictory. The FOPI collaboration
at GSI studied the π+/π− ratio in 40Ca+40Ca, 96Ru+96Ru,
96Zr+96Zr, and 197Au+197Au reactions [17]. A comparison of
this data [18] with IBUU calculations showed a softer form
of the density dependence of symmetry energy, which is in
contrast to those obtained from the low density studies where
stiffer form of symmetry energy reproduced the data well.
The π+/π− ratio was also compared with improved quantum
molecular dynamics (ImQMD) calculations by Feng et al. [19]
and favored a stiffer form of symmetry energy and was in
contradiction with IBUU calculations. At densities higher than
saturation density, collective flow has also been proposed as a
novel means to probe the high density behavior of symmetry
energy [10]. In this paper, we aim to see the sensitivity of
collective transverse in-plane flow to symmetry energy and
also to see the effect of different density dependencies of
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FIG. 1. (Color online) The density dependence of symmetry
energy for various forms of symmetry energy: F1 (γ = 1.0) (solid),
F2 (γ = 0.4) (dashed), and F3 (γ = 2.0) (dotted).

symmetry energy on the same. The various forms of symmetry
energy used in present study are Esym ∝ F1(u), Esym ∝ F2(u),
and Esym ∝ F3(u), where u = ρ

ρ0
, F1(u) ∝ u, F2(u) ∝ u0.4,

F3(u) ∝ u2, and F4 represents calculations without symmetry
energy. The different density dependencies of symmetry
energy are shown in Fig. 1. The various lines are explained
in the caption of the figure. Section II describes the model in
brief. Section III explains the results and gives our discussion,
and Sec. IV summarizes the results.

II. THE MODEL

The present study is carried out within the framework of
the isospin-dependent quantum molecular dynamics (IQMD)
model [20]. The IQMD model treats different charge states
of nucleons, deltas, and pions explicitly, as inherited from the
Vlasov-Uehling-Uhlenbeck (VUU) model. The IQMD model
has been used successfully for the analysis of a large number
of observables from low to relativistic energies. The isospin
degree of freedom enters into the calculations via symmetry
potential, cross sections, and Coulomb interaction.

In this model, baryons are represented by Gaussian-shaped
density distributions:

fi(�r, �p, t) = 1

π2h̄2 exp

(
−[�r − �ri(t)]

2 1

2L

)

× exp

(
−[ �p − �pi(t)]

2 2L

h̄2

)
. (2)

Nucleons are initialized in a sphere with radius R = 1.12A1/3

fm, in accordance with liquid-drop model. Each nucleon
occupies a volume of h3, so that phase space is uniformly filled.
The initial momenta are randomly chosen between 0 and Fermi
momentum ( �pF ). The nucleons of the target and projectile
interact by two- and three-body Skyrme forces, the Yukawa
potential,and Coulomb interactions. In addition to the use of
explicit charge states of all baryons and mesons, a symmetry
potential between protons and neutrons corresponding to
the Bethe-Weizsäcker mass formula has been included. The

hadrons propagate using Hamilton equations of motion:

d �ri

dt
= d〈H 〉

d �pi

,
d �pi

dt
= −d〈H 〉

d �ri

(3)

with

〈H 〉 = 〈T 〉 + 〈V 〉
=

∑
i

p2
i

2mi

+
∑

i

∑
j>i

∫
fi(�r, �p, t)V ij (�r ′, �r)

× fj (�r ′, �p ′, t) d�r d�r ′ d �p d �p ′. (4)

The baryon potential V ij in the above relation reads as

V ij (�r ′ − �r) = V
ij

Skyrme + V
ij

Yukawa + V
ij

Coul + V ij
sym

=
[
t1δ(�r ′ − �r) + t2δ(�r ′ − �r)ργ−1

( �r ′ + �r
2

)]

+ t3
exp(|(�r ′ − �r)|/µ)

(|(�r ′ − �r)|/µ)
+ ZiZje

2

|(�r ′ − �r)|
+ t4

1

�0
T3iT3j δ(�ri

′ − �rj ). (5)

Here Zi and Zj denote the charges of ith and jth baryon, and T3i

and T3j are their respective T3 components (i.e., 1/2 for protons
and −1/2 for neutrons). The parameters µ and t1, . . . , t4 are
adjusted to the real part of the nucleonic optical potential.
For the density dependence of the nucleon optical potential,
standard Skyrme type parametrization is employed.

III. RESULTS AND DISCUSSION

We simulate several thousands events for the neutron-rich
system of 48Ca+48Ca and 60Ca+60Ca at energies of 100, 400,
and 800 MeV/nucleon at an impact parameter of b/bmax =
0.2–0.4. We use a soft equation of state and an isospin-
and energy-dependent cross section reduced by 20%; i.e.,
σ = 0.8σ free

nn . The details about the elastic and inelastic cross
sections for proton-proton and proton-neutron collisions can
be found in [20,21]. The cross section for neutron-neutron
collisions is assumed to be equal to the proton-proton cross
section.

Since 60Ca has a very high asymmetry, to ensure the stability
of the nuclei in the present study, we display in Fig. 2 the
time evolution of the root mean square radius of a single
nucleus of 40Ca (solid line), 48Ca (dashed), and 60Ca (dotted)
in the coordinate [Fig. 2(a)] and momentum space [Fig. 2(b)].
The results are displayed for nuclei intialized with symmetry
energy F1(u). We find that the stability is of the same order for
all three nuclei.

There are several methods used in the literature to define
the nuclear transverse in-plane flow. In most of the studies,
one uses (px/A) plots where one plots (px/A) as a function
of Ycm/Ybeam. Using a linear fit to the slope, one can define
the so-called reduced flow (F). Alternatively, one can also use
a more integrated quantity “directed transverse in-plane flow”
〈pdir

x 〉 which is defined as [20]

〈pdir
x 〉 = 1

A

∑
i

sign{Y (i)}px(i), (6)
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FIG. 2. (Color online) Time evolution of root mean square radius
of single 40Ca, 48Ca, and 60Ca nuclei in coordinate (top panel) and
momentum space (bottom panel) obtained with IQMD for EOS used
in the present study for symmetry energy F1(u).

where Y (i) and px(i) are the rapidity distribution and trans-
verse momentum of the ith particle. In this definition, all
rapidity bins are taken into account. It therefore presents an
easier way of measuring the in-plane flow than complicated
functions such as (px/A) plots.

In Fig. 3 we display 〈px

A
〉 as a function of Ycm/Ybeam

at final time (left panels) and the time evolution of 〈pdir
x 〉

(right panels) calculated at 100 (top panel), 400 (middle), and
800 MeV/nucleon (bottom) for different density dependencies
of symmetry energy. Solid, dash dotted, and dotted lines
represent the symmetry energy proportional to ρ, ρ0.4, and
ρ2, whereas the dashed line represents calculations without
symmetry energy. Comparing the left and right panels in
Fig. 3, we find that both the methods show similar behavior
to symmetry energy. For example, at incident energy of
100 MeV/nucleon for Esym ∝ ρ0.4, 〈pdir

x 〉 = 0. Similarly, the
slope of 〈px

A
〉 at midrapidity is zero. We also find that the

transverse momentum is sensitive to symmetry energy and to
its density dependencies F1(u), F2(u), and F3(u) in the low
energy region (100 MeV/nucleon). At energies above Fermi
energy, both the methods show insensitivity to the different
symmetry energies. This is because the repulsive n-n scattering
dominates the mean field at high energies.

To understand the sensitivity of transverse momentum to
the symmetry energy as well as its density dependence in the
Fermi energy region, we calculate the transverse flow as well
as rapidity distribution of particles having ρ

ρ0
< 1 (denoted as

bin 1) and particles having ρ

ρ0
� 1 (bin 2) separately at all the

time steps. Since both the methods show similar behavior to
symmetry energy, for simplicity the following discussion will
be in terms of 〈pdir

x 〉.

FIG. 3. (Color online) Left panels: 〈 px

A
〉 as a function of Ycm/Ybeam

for different energies of 100, 400, and 800 MeV/nucleon for different
forms of symmetry energy. Right panels: The time evolution of 〈pdir

x 〉
at 100, 400, and 800 MeV/nucleon for different forms of symmetry
energy at b/bmax = 0.2–0.4. Lines are explained in the text.

In Fig. 4 we display the rapidity distributions at
100 MeV/nucleon of all the particles (dotted line), particles
corresponding to bin 1 (solid), and to bin 2 (dashed) at 0, 10, 20,
30, 40, and 60 fm/c. We have calculated rapidity distributions
for different forms of symmetry energy used in this paper. We
find that they are insensitive to the symmetry energy [22,23]. In
Fig. 4, we display the rapidity distribution calculated without
symmetry energy. During the initial stages we see the two
Gaussians at projectile and target rapidities for all three bins.
The peaks of the Gaussians will be more prominent at higher
energies. The interest for our discussion is in bin 1 and bin 2.
During the start of the reaction (0 fm/c) a higher number of
particles lie in bin 1; i.e., a higher number of particles have
ρ

ρ0
< 1. As the nuclei begin to overlap, the density increases in

the overlap zone. Now, the number of particles increases in bin
2 (at 10 fm/c). From 10 to 20 fm/c, the number of particles
continue increasing in bin 2 at midrapidity; i.e., particles from
large rapidity continue shifting to bin 2 in the midrapidity
region. This is expected since at incident energies in the Fermi
energy region dynamics is governed by the attractive mean
field. The dominance of the attractive mean field will prompt
the deflection of particles into negative angles, i.e., toward
the participant zone. After 20–30 fm/c, the expansion phase
of the reaction begins and the number of particles continues
increasing in bin 1, and by 60 fm/c most of the particles lie in
bin 1.

In Fig. 5 we display the time evolution of 〈pdir
x 〉 for different

symmetry energies used in this paper at 100 MeV/nucleon
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FIG. 4. (Color online) The time evolution of rapidity distribution
for the calculations with no symmetry energy for various bins at
b/bmax = 0.2–0.4. Lines are explained in the text.

for particles lying in the different bins. Lines have the
same meaning as in Fig. 4. Panels (a), (b), and (c) are
for Esym ∝ ρ, ρ0.4, and ρ2, respectively. Panel (d) is for
calculations without symmetry energy. The total 〈pdir

x 〉 is
negative during the initial stages and continues decreasing till
30 fm/c which indicates dominance of attractive interaction.
In panels (a) and (b), it becomes positive whereas in panels (c)
and (d) it remains negative during the course of the reaction.
If we look at 〈pdir

x 〉 of particles lying in bin 1 for F1(u)
[Fig. 5(a)] and F2(u) [Fig. 5(b)] in the time interval 0 to about

FIG. 5. (Color online) The time evolution of 〈pdir
x 〉 for different

forms of symmetry energy for different bins at b/bmax = 0.2–0.4.
Lines have the same meaning as in Fig. 4.

20–25 fm/c, we see that it remains positive. It increases with
time up to 15 fm/c and reaches a peak value. This is because
in the spectator region (where high rapidity particles lie)
the repulsive symmetry energy will accelerate the particles
away from the overlap zone in the transverse direction. After
15 fm/c, 〈pdir

x 〉 (of particles in bin 1) begins to decrease. This is
because these particles will now be attracted toward the central
dense zone. As shown in Fig. 4, from 10 to 20 fm/c particles
in bin 2 continue increasing in the midrapidity region. In
the case of F1(u) and F2(u), particles which enter the central
dense zone (bin 2) already have a high positive value of 〈pdir

x 〉
(i.e., going away from the dense zone). So, the attractive mean
field has to decelerate the particles first, make them stop, and
then accelerate the particles back toward the overlap zone. At
about 20–25 fm/c particles from bin 1 have zero 〈pdir

x 〉 [see
shaded area in Figs. 5(a) and 5(b)]. Up to 30 fm/c, particles feel
the attractive mean field potential after which the high density
phase is over; i.e., in the case of F1(u) and F2(u) between 0 and
30 fm/c particles from bin 1 are accelerated toward the overlap
zone only for a short time interval of about 5 fm/c, whereas
for the case of F3(u) [Fig. 5(c)] and F4 [Fig. 5(d)] between
0 and 30 fm/c, particles from bin 1 are accelerated toward
the overlap zone for a longer time interval of about 20 fm/c
between 10–30 fm/c. Moreover, the 〈pdir

x 〉 of particles lying in
bin 1 [for F3(u) and F4] follows a similar trend. This is because
for ρ/ρ0 < 1 the strength of symmetry energy F3(u) will be
small and so there will be less effect of symmetry energy on the
particles, which is evident from Fig. 5(c), where one sees that
the 〈pdir

x 〉 remains about zero during the initial stages between
zero to about 10 fm/c.

FIG. 6. (Color online) (a) The time evolution of 〈pdir
x 〉 at

100 MeV/nucleon for different forms of symmetry energy for
48Ca+48Ca. (b) The time evolution of 〈ρmax/ρ0〉 and (c) 〈ρavg/ρ0〉
for F1(u) and F4. Lines have same meaning as in Fig. 3.
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The 〈pdir
x 〉 due to particles in bin 2 (dashed line) decreases in

a very similar manner for all four different symmetry energies
between 0 and 10 fm/c. Between 10 and 25 fm/c, 〈pdir

x 〉
for F3(u) and F4 decreases more sharply as compared to the
case of F1(u) and F2(u). This is because in this time interval
particles from bin 1 enter into bin 2. As discussed earlier,
〈pdir

x 〉 of particles entering bin 2 from bin 1 in the case of
F1(u) and F2(u) will be less negative due to the stronger effect
of symmetry energy as compared to the case of F3(u) and F4.

Since the reaction 60Ca+60Ca is an extreme case with
large isospin asymmetry, to check whether the above pre-
dicted effects survive in reactions which are experimentally
accessible, we simulate the reaction of 48Ca+48Ca for all
the different forms of symmetry energy used in the present
study. The reaction 48Ca+48Ca has been used in many previous
studies [24]. The results are shown in Fig. 6(a). We find that
even for this reaction the transverse flow shows sensitivity to
symmetry energy and its density dependence. In Figs. 6(b)
and 6(c), we display the time evolution of maximum density
〈ρmax/ρ0〉 and average density 〈ρavg/ρ0〉, respectively, at
100 MeV/nucleon. We find that the density reached is about
2.0 times the saturation density. Moreover, the maximal density
is reached in the time interval 0–30 fm/c, and the effect of
symmetry energy on 〈pdir

x 〉 of particles during this interval

decides the fate of the final value of 〈pdir
x 〉. Thus transverse

flow can address the symmetry energy at densities about
2.0 times the saturation density.

IV. SUMMARY

We have checked the sensitivity of transverse flow to
symmetry energy in the Fermi energy region as well as at
high energies. We have found that transverse flow is sensitive
to symmetry energy as well as to its density dependence in the
Fermi energy region. We have also shown that the transverse
flow can address the symmetry energy at densities about
twice the saturation density; however, it shows insensitivity
to symmetry energy at densities ρ/ρ0 > 2. We have also
discussed the mechanism for the sensitivity of transverse flow
to symmetry energy and to its density dependence.
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