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Nuclear pairing reduction due to rotation and blocking
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Nuclear pairing gaps of normally deformed and superdeformed nuclei are investigated using the particle-
number-conserving (PNC) formalism for the cranked shell model, in which the blocking effects are treated
exactly. Both rotational frequency ω dependence and seniority (number of unpaired particles) ν dependence of
the pairing gap �̃ are investigated. For the ground-state bands of even-even nuclei, PNC calculations show that,
in general, �̃ decreases with increasing ω, but the ω dependence is much weaker than that calculated by the
number-projected Hartree-Fock-Bogolyubov approach. For the multiquasiparticle bands (seniority ν > 2), the
pairing gaps stay almost ω independent. As a function of the seniority ν, the bandhead pairing gaps �̃(ν, ω = 0)
decrease slowly with increasing ν. Even for the highest seniority ν bands identified so far, �̃(ν, ω = 0) remains
greater than 70% of �̃(ν = 0, ω = 0).
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I. INTRODUCTION

Since the seminal article by Bohr, Mottelson, and Pines
[1], significant effects of nuclear pairing were established
in fundamental nuclear properties [2]. Soon afterward, the
Bardeen-Cooper-Schrieffer (BCS) theory for metallic super-
conductivity and quasiparticle (qp) formalism were trans-
planted into the nuclear structure literature to treat the
nuclear pairing correlation [3–5]. Now the BCS or the more
elaborate Hartree-Fock-Bogolyubov (HFB) approximations
are the standard methods in nuclear physics. However, along
with their great successes, both BCS and HFB approximations
for nuclear pairing raise some concerns [6,7]. One of them
is the nonconservation of the particle number. Because the
number of nucleons in a nucleus is not very large (n ∼ 102),
and the number of valence nucleons (n ∼ 10) dominating
the nuclear low-lying excited states is very limited, the
relative particle-number fluctuation, δn/n, is not negligible.
Indeed, it was found that in all self-consistent solutions to the
cranked HFB equation a pairing collapsing occurs for angular
momentum I greater than a critical value Ic [8].

Much work has been done to restore this broken symmetry.
The Lipkin-Nogami (LN) method [9–11] was established in
early 1960s. After using this approximate particle-number-
projection method, the pairing phase transition disappears
[12,13]. However, earlier studies showed that the LN method
broke down in the weak-pairing limit [14,15]. At the same
time, various particle-number-projection approaches of pair-
ing interaction in BCS or HFB formalism were developed
[16–19]. In these approaches, the ideal treatment is variation
after projection, but when spin goes higher, this method
becomes very complicated and computationally expensive.
All these methods tried to solve the problem of the particle-
number nonconservation. However, when it was achieved, no
pairing phase transition was found [16,17]. This proves that
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the occurrence of nuclear pairing collapsing originates from
particle-number nonconservation. Other than the variational
approach, some methods that directly solve the corresponding
Schrödinger equation have been developed [6,20]. In these
methods, the particle number is strictly conserved. The
particle-number-conserving method used in Ref. [20], in which
the single-particle states stem from the Hartree-Fock mean
field, is a little different from the method used in our work, in
which the single-particle states stem from the Nilsson model.

Another problem related to the violation of particle-number
conservation is the occurrence of spurious states in the BCS
(HFB) qp formalism. As pointed out by Richardson [21], an
important class of low-lying excitations in nuclei cannot be
described in the standard BCS- or HFB-like theories. The
remedy in terms of the particle-number projection consider-
ably complicates the algorithm, yet fails to properly describe
the higher energy spectrum of the pairing Hamiltonian [7].

The issue of most concern is the proper treatment of the
Pauli blocking effect on pairing, which is responsible for the
odd-even differences in nuclear properties (binding energies,
moments of inertia, etc.). As emphasized by Rowe [22],
although the blocking effects are straightforward, it is very
difficult to treat them consistently in the qp formalism because
they introduce different qp bases for different blocked orbitals.
Indeed, it was shown that the properties of a rotational band
are very sensitive to the Coriolis response of the blocked
single-particle orbitals [23].

In this paper, in order to investigate the pairing reduction
due to rotation and blocking, we use the particle-number-
conserving (PNC) formalism for treating the cranked shell
model (CSM) with pairing interaction, in which the particle
number is conserved and the blocking effects are treated
exactly. The details of the PNC formalism for calculating
the moment of inertia (MOI) have already been given by
Zeng et al. [24]. Only the PNC formalism for calculating
the nuclear pairing gap is given in Sec. II. Section III gives
the PNC calculations for nuclear pairing gaps of various types
of pair-broken rotational bands in normally deformed (ND)
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and superdeformed (SD) nuclei [seniority (number of unpaired
particles) ν � 2 for even-even nuclei, ν > 1 for odd-A nuclei],
as well as the rotational frequency ω dependence and seniority
ν dependence of pairing gaps. A brief summary is given in
Sec. IV.

II. PNC FORMALISM FOR NUCLEAR PAIRING GAP

The CSM Hamiltonian of an axially deformed nucleus in
the rotating frame is

HCSM = H0 + HP = HNil − ωJx + HP, (1)

where HNil is the Nilsson Hamiltonian, −ωJx is the Coriolis
interaction with cranking frequency ω about the x axis, HP =
HP(0) + HP(2) is the pairing interaction,

HP(0) = −G0

∑
ξη

a+
ξ a+

ξ̄
aη̄aη = −G0

∑
ξη

s+
ξ sη, (2)

HP(2) = −G2

∑
ξη

q2(ξ )q2(η)a+
ξ a+

ξ̄
aη̄aη

= −G2

∑
ξη

q2(ξ )q2(η)s+
ξ sη, (3)

where ξ̄ (η̄) labels the time-reversed state of a Nilsson state
ξ (η), q2(ξ ) = √

16π/5〈ξ |r2Y20|ξ 〉 is the diagonal element of
the stretched quadrupole operator, G0 and G2 are the effective
strengths of monopole and quadrupole pairing interactions,
respectively, and s+

ξ = a+
ξ a+

ξ̄
(sη = aη̄aη) is the pair creation

(annihilation) operator.
In the PNC calculation, HCSM is diagonalized in a suf-

ficiently large cranked many-particle configuration (CMPC)
space [24] and |�〉 is expressed as

|�〉 =
∑

i

Ci |i〉 (Ci real), (4)

where |i〉 is an eigenstate of H0 with configuration energy E
(0)
i ,

characterized by the particle number N , parity π , signature
r (=e−iπα), and seniority ν (number of unpaired particles).
For the seniority ν = 0 ground-state band (Kπ = 0+) of an
even-even nucleus (qp vacuum in the BCS formalism), each
|i〉 in Eq. (4) is of the product form

s+
ξ s+

η · · · |0〉, ξ �= η �= · · · . (5)

For the seniority ν = 1 band (∼1-qp band in the BCS
formalism) in an odd-even nucleus, |i〉 is of the form

a+
λ s+

ξ s+
η · · · |0〉, ξ �= η �= · · · ( �= λ), (6)

where λ is the blocked single-particle state, ξ �= η �= · · · ( �= λ)
(Pauli blocking effect) and the angular momentum projection
along nuclear symmetry z axis K = �λ. For the seniority ν =
2 band (∼2-qp band in the BCS formalism) in an even-even
nucleus, |i〉 is of the form

a+
λ a+

σ s+
ξ s+

η · · · |0〉, ξ �= η �= · · · ( �= λ �= σ ), (7)

where λ �= σ are two blocked single-particle states (K = �λ +
�σ ). The PNC forms of the ν > 2 (multiquasiparticle) bands
are similar. Strictly speaking, due to the Coriolis interaction,

−ωJx , ν, and K are not exactly conserved for ω �= 0. Walker
and Dracoulis [25] pointed out that some forms of K-mixing
must exist to enable the K-forbidden transition observed in
many low-lying rotational bands of axially symmetric nuclei.
However, in the low-ω region, ν and K may be served as
useful quantum numbers characterizing a low-lying excited
rotational band.

The kinematic and dynamic MOIs for the state |�〉 are as
follows [24,26]:

J (1) = 1

ω
〈�|Jx |�〉, J (2) = d

dω
〈�|Jx |�〉, (8)

where

〈�|Jx |�〉 =
∑

i

C2
i 〈i|Jx |i〉 + 2

∑
i<j

CiCj 〈i|Jx |j 〉 (9)

is the angular momentum alignment of the state |�〉.
In the PNC formalism, the nuclear pairing gap may be

reasonably defined as [16,17,27]

�̃ = G0

[
− 1

G0
〈�|HP|�〉

]1/2

, (10)

where |�〉 is a PNC eigenstate [Eq. (4)] of HCSM with
eigenvalue E. In the BCS formalism for HCSM with the
monopole pairing interaction only, HP = −G0S

+S, where
S+ = ∑

ξ s+
ξ , S = ∑

η sη, and for the qp vacuum band |0〉,
|0〉 = 
ξ (Uξ + Vξ s

+
ξ )|0〉, U 2

ξ + V 2
ξ = 1, (11)

�̃ is reduced to the usual definition of nuclear pairing gap �,

� = G0〈〈0|S+|0〉〉 = G0

∑
ξ

UξVξ . (12)

Calculations show that for the low-lying excited eigenstates
of HCSM, the number of important CMPCs (with weight �1%,
say) is very limited (usually <20 for the ND rare-earth nuclei);
thus it is not difficult to get sufficiently accurate solutions to the
low-lying excited eigenstates of HCSM by diagonalizing HCSM

in a sufficiently large CMPC space [23,24]. To ensure the
PNC calculations for nuclear low-lying excited states are both
workable and accurate [7,28], it is essential to adopt a CMPC
truncation (Fock-space truncation) in the PNC calculation
in place of the usual single-particle level (SPL) truncation
in shell-model calculations. This is understandable from the
perturbation expansion of HCSM (1), as it refers to a many-
particle system with pairing interactions. In general, the lower
the configuration energy of the many-particle configuration
(MPC), the larger the weight of the corresponding MPC in
low-lying excited eigenstates of HCSM will be. The stability
of the final results with respect to the basis cutoff has been
illustrated in detail by Molique and Dudek [7], as well as by
Liu et al. [29].

In the following PNC calculations, HCSM is diagonalized
in the CMPC space with dimension 1500 for both protons
and neutrons. The corresponding effective proton and neutron
pairing strength are adopted to reproduce the experimental
odd-even differences in nuclear binding energies. Proper Nils-
son level schemes are adopted to reproduce the experimental
bandhead energies and MOIs of the low-lying excited seniority
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ν = 1 (1-qp) bands. Thus, the pairing gaps �̃ of various
low-lying excited bands can be convincingly extracted by the
PNC calculations without any free parameter.

III. CALCULATIONS AND DISCUSSIONS

In this section the PNC calculations for nuclear pairing gaps
of some typical bands in ND and SD nuclei are presented. The
rotational frequency ω dependence and seniority ν dependence
of the pairing gaps are discussed in detail.

A. Ground-state bands of 168Yb and 168Hf

The angular momentum dependence of pairing gaps �̃n

(neutrons) and �̃p (protons) for the ground-state band (gsb)
of 168Yb and 168Hf have been calculated in the number-
projected HFB (NHFB) approach in Ref. [17]. The pairing
gap reductions in the observed angular momentum range
I = 0 → 44h̄ (≈ω = 0.61 MeV/h̄) for 168Yb(gsb) and I =
0 → 34h̄ (≈ω = 0.52 MeV/h̄) for 168Hf(gsb) calculated by
NHFB are [16,17]

�̃n(I = 44h̄)

�̃n(I = 0)
≈ 48%,

�̃p(I = 44h̄)

�̃p(I = 0)
≈ 63% for 168Yb(gsb), (13)

�̃n(I = 34h̄)

�̃n(I = 0)
≈ 38% for 168Hf(gsb).

For comparison, in this section the ω dependence of
pairing gaps of 168Yb(gsb) and 168Hf(gsb) are calculated using
the PNC formalism. To validate the PNC calculations of
�̃p (proton) and �̃n (neutron) Fig. 1(b), the kinematic
MOIs J (1) are also calculated under the PNC formalism and
compared with the experiments [30,31] [see Fig. 1(a)]. The
experimental MOIs J (1) are very well reproduced by the PNC
calculations (except in the band-crossing region). Thus, we
believe the PNC calculations of pairing gaps (ω dependence,
ν dependence, etc.) are trustworthy. In the observed rotational
frequency range, the pairing gap reductions calculated in the
PNC formalism are

�̃n(ω = 0.61 MeV/h̄)

�̃n(ω = 0)
≈ 70%,

�̃p(ω = 0.61 MeV/h̄)

�̃p(ω = 0)
≈ 80% for 168Yb,

(14)
�̃n(ω = 0.52 MeV/h̄)

�̃n(ω = 0)
≈ 70%,

�̃p(ω = 0.52 MeV/h̄)

�̃p(ω = 0)
≈ 83% for 168Hf,

which remains more than 70% of the bandhead value through-
out the experimental ω range. As expected, in both the
NHFB and the PNC formalisms no pairing phase transition
from superfluidity to normal motion (�̃ → 0) is found with
increasing ω. However, the ω dependence of �̃ in the PNC
calculations is weaker than that calculated by the NHFB

FIG. 1. The MOIs and pairing gaps �̃ for the ground-state bands
of 168Yb and 168Hf. (a) The experimental MOIs [30,31] are denoted
by the solid circle •, and the calculated MOIs by the PNC method are
denoted by solid lines. The Nilsson parameters (κ, µ) and deformation
(ε2, ε4) are taken from [32,33]. The monopole and quadrupole
pairing strengths for protons and neutrons are adopted to reproduce
the odd-even differences in nuclear binding energies, Gn = 0.30,
G2n = 0.010, Gp = 0.29 for 168Yb; Gn = 0.39, Gp = 0.35 for 168Hf.
(b) The PNC calculated pairing gaps for protons (neutrons) are
denoted by solid (dashed) lines.

approach. In addition, it is noted that due to the neutron
subshell effect at N = 98, in both PNC and NHFB calculations
for 168Yb, the pairing gap reduction of the neutron is larger
than that of the proton. It was noted by Hamamoto [34] that
an inherent issue of the CSM is the violation of rotational
symmetry, and the reliability of calculations in the CSM,
particularly in the band-crossing region, is questionable.
Afterward, angular momentum projection techniques were
developed [35]. It is interesting to note that the ω dependence
of the pairing gaps for the gsb of 168Yb calculated by the
angular momentum projection technique [36] are similar to
that of the PNC calculations.

B. Multiquasiparticle bands of the heavier
rare-earth nuclei (A ∼ 178)

The seniority ν dependence of nuclear pairing gaps has
been investigated by Dracoulis et al., using the LN method
[37]. They showed that the bandhead pairing gap �(ν, ω = 0)
decreases approximately by

�(ν, ω = 0) = (0.75)ν/2�(ν = 0, ω = 0). (15)

In this section we will investigate the ν dependence of the
�̃ using the PNC formalism. To get pairing gaps for these
multiquasiparticle bands, a proper Nilsson level scheme for
the deformed heavier rare-earth nuclei (A ∼ 178) is necessary.
However, the level scheme (Lund systematics) [32,33] is
unable to properly reproduce the experimental bandhead ener-
gies of the low-lying excited 1-qp bands of 177Ta, particularly
the gsb, π7/2+[404]. So the Nilsson parameters (κ, µ) in [32]
are slightly adjusted (see the caption of Fig. 2). Figure 2 shows
the experimental [38] and calculated MOIs of four 1-qp bands
in 177Ta.
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FIG. 2. MOIs of four low-lying seniority ν = 1 bands in 177Ta.
The experimental MOIs [38] are denoted by • (α = 1/2) and
◦ (α = −1/2), respectively. The calculated MOIs by the PNC method
are denoted by solid lines (α = 1/2) and dotted lines (α = −1/2),
respectively. The Nilsson parameters (κ, µ) in [32] are slightly
adjusted to reproduce the bandhead energies of the 1-qp bands. For
protons, κ4 = 0.060 (N = 4), κ5 = 0.061 (N = 5), µ4 = 0.55, and
µ5 = 0.69. For neutrons, κ5 = 0.066, κ6 = 0.058, µ5 = 0.49, and
µ6 = 0.40. The deformation parameters (ε2, ε4) = (0.24, 0.04) are
from [33], i.e., an average of the neighboring even-even Hf and W
isotopes. The effective pairing interaction strengths for both protons
and neutrons, Gn = 0.26 MeV, Gp = 0.26 MeV, are determined by
the experimental odd-even differences in nuclear binding energies.

In Fig. 3, we show the PNC calculations of the proton
pairing gaps for νp = 1, 3 bands in 177Ta and the gsb and
multiquasiparticle bands with νp = 2 and 4 proton config-
urations in 178W [37–39]. The ω dependence of �̃p for
178W(gsb) is similar to that of 168Yb(gsb) and 168Hf(gsb) [see
Fig. 1(b)]. The ω dependence of �̃p’s of the four low-lying
excited 1-quasiproton bands of 177Ta is similar to 178W(gsb),
so only the �̃p for the gsb (π7/2+[404]) of 177Ta is shown
in Fig. 3. The ω dependence of the νp = 2 configuration
π28− (7/2+[404] ⊗ 9/2−[514]) in 178W is weaker. For the
low-lying excited multiquasiparticle (seniority νp > 2) bands,
the �̃p’s stay nearly ω independent. In fact, for realistic
nuclei, the blocking effects on pairing are significant only
for a few orbitals nearest the Fermi surface. For low-lying
excited multiquasiparticle bands, a few orbitals nearest the
Fermi surface are almost blocked, and for orbitals far from
the Fermi surface the ω dependence of the blocking effects on
pairing are quite small.

As a function of seniority ν, in general, the pairing gap
�̃(ν) gradually decreases with increasing ν. The pairing gap
reductions at the bandhead (ω = 0) calculated by the PNC
method are

�̃p(ν = 1)

�̃p(ν = 0)
≈ 91%,

�̃p(ν = 2)

�̃p(ν = 0)
≈ 86%,

(16)
�̃p(ν = 3)

�̃p(ν = 0)
≈ 80%,

�̃p(ν = 4)

�̃p(ν = 0)
≈ 78%,

FIG. 3. The proton pairing gaps �̃p for the νp = 1, 3 bands
in 177Ta (dotted lines) and νp = 0, 2, 4 configurations in 178W
(solid lines).177Ta: νp = 1 band (gsb), π7/2+[404]; νp = 3, Kπ =
17/2+ band at 1523 keV [38], π 317/2+(7/2+[404] ⊗ 9/2−[514] ⊗
1/2−[541]). 178W: gsb, νp = 0, Kπ = 0+; νp = 2 configuration
π 28−(7/2+[404] ⊗ 9/2−[514]) in Kπ = 15+ (π 28− ⊗ ν27−) band at
3653 keV; νp = 4 configuration π 411−(7/2+[404] ⊗ 5/2+[402] ⊗
9/2−[514] ⊗ 1/2−[541]) in Kπ = 18+ (π 411− ⊗ ν27−) band at
4878 keV [37,39].

which are weaker than those given in Eq. (15) [37]. Even for
the highest seniority ν bands identified so far, the pairing gap
�̃(ν, ω = 0) is always larger than 70% of �̃(ν = 0, ω = 0).

C. Ground-state bands of 238U and 253No

The PNC calculations for the ground-state bands of
the actinide nuclei 238U and 253No are shown in Fig. 4. The
experimental data of the MOIs are taken from [40,41]. The
PNC calculations for the pairing gap reduction show

�̃n(ω = 0.30 MeV/h̄)

�̃n(ω = 0)
≈ 85%,

�̃p(ω = 0.30 MeV/h̄)

�̃p(ω = 0)
≈ 84% for 238U(gsb),

(17)
�̃n(ω = 0.30 MeV/h̄)

�̃n(ω = 0)
≈ 84%,

�̃p(ω = 0.30 MeV/h̄)

�̃p(ω = 0)
≈ 76% for 253No(gsb),

i.e., �̃p’s and �̃n’s decrease very slowly with increasing ω,
quite similar to the rare-earth nuclei.

D. Pairing gaps of SD bands

Chasman [43] pointed out that BCS treatment of nuclear
pairing is not appropriate for SD states because the single-
particle level density near the Fermi surface is low and the
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FIG. 4. The MOIs and pairing gaps of the gsb of 238U and 253No.
(a) The experimental MOIs [40,41] are denoted by • (α = 0, 1/2)
and ◦ (α = −1/2). The calculated MOIs by the PNC method are
denoted by solid lines (α = 0, 1/2) and dotted lines (α = −1/2).
The Nilsson parameters (κ, µ) are taken from [32] for both 238U
and 253No. Deformations (ε2, ε4) = (0.21,−0.04) of 238U are taken
from [33]. For 253No, the quadrupole deformation parameters for the
neighbor even-even nuclei are deduced as β2 = 0.28 ± 0.02 from
the experiment [42]. Here we choose ε2 = 0.26 and ε4 = 0.01 in
our calculation for 253No. To reproduce the experimental odd-even
difference in binding energies and the ω dependence of MOIs, it
seems that a small amount of quadrupole pairing interaction is
necessary, i.e., Gn = 0.29 MeV, G2n = 0.015 MeV, Gp = 0.32 MeV,
G2p = 0.040 MeV for 238U; Gn = 0.22 MeV, G2n = 0.010 MeV,
Gp = 0.26 MeV, G2p = 0.010 MeV for 253No. (b) The PNC
calculated pairing gaps �̃p’s (�̃n’s) for the ground-state bands of
238U and 253No are denoted by solid (dashed) lines.

BCS method is not correct in this limit. In most cases, the
linkage between the SD bands and low-lying excited states
have not yet been established, and thus the actual spins of some
SD bands are not determined, but the dynamic MOIs J (2) can
be extracted from the observed differences in subsequent γ

transition energies:

J (2)(I ) = 4h̄2/[Eγ (I + 2 → I ) − Eγ (I → I − 2)]. (18)

Obviously, the accuracy of J (2) is lower than J (1)(I ) =
(2I + 1)h̄2/Eγ (I + 1 → I − 1). However, the actual spins of
some SD bands have been established experimentally (e.g., see
Ref. [44]), and thus the J (1)’s can be accurately extracted. The
ω dependence of experimental MOIs for a series of SD bands
[45–47] was reproduced very well by the PNC calculations
for the CSM with both monopole and quadrupole pairing
interactions [29,48,49]. Figure 5 ahows the PNC calculations
of the pairing gaps �̃ for the νn = 1 SD bands 193Hg(1)
(ν5/2−[512], α = −1/2), 193Hg(2b) (ν9/2+[624], α = 1/2),
the ν = 0 SD band 194Hg(1), and the νn = 2 SD band 194Hg(2)
(ν27−, 5/2−[512] ⊗ 9/2+[624], α = 0). The Nilsson level
schemes are taken from [50]. PNC calculations show the
following:

(i) For SD bands in Hg isotopes, �̃p(proton)	
�̃n(neutron), which is caused by the large gap at
Z = 80 in the proton Nilsson level scheme of SD Hg
isotopes.

FIG. 5. The pairing gaps of the SD bands in Hg isotopes
calculated by the PNC formalism. The Nilsson level schemes are
taken from [50]. 193Hg(1): 1-quasineutron SD band, ν5/2−[512], α =
−1/2; 193Hg(2b): 1-quasineutron SD band, ν9/2+[624], α = 1/2.
194Hg(1): quasivacuum SD band (α = 0); 194Hg(2): 2-quasineutron
SD band ν27−(5/2−[512] ⊗ 9/2+[624]), α = 0.

(ii) For SD bands, no pairing collapsing is found with
increasing ω either. For 194Hg(1) (ν = 0, SD band),
the pairing gap reduction with increasing ω is

�̃n(ω = 0.50 MeV/h̄)

�̃n(ω = 0)
≈ 83%,

(19)
�̃p(ω = 0.50 MeV/h̄)

�̃p(ω = 0)
≈ 80%.

For both the νn = 1, SD bands 193Hg(1) and 193Hg(2b)

�̃n(ω = 0.50 MeV/h̄)

�̃n(ω = 0)
≈ 86%. (20)

For the νn = 2, SD band 194Hg(2)

�̃n(ω = 0.50 MeV/h̄)

�̃n(ω = 0)
≈ 90%. (21)

IV. SUMMARY

The ω and ν dependencies of the nuclear pairing gaps of
multiquasiparticle bands in well-deformed and SD nuclei are
calculated under the PNC formalism, in which the blocking
effects on pairing are exactly taken into account. PNC calcu-
lations show that the ω dependence of pairing gaps �̃ for the
ν = 0 (qp-vacuum) bands is weaker than that predicted in the
particle-number-projected HFB formalism. For the low-lying
excited ν > 2 (∼multiquasiparticle) bands, �̃p’s and �̃n’s
stay almost ω independent. As a function of seniority ν,
the bandhead pairing gaps �̃(ω = 0, ν) decrease slowly with

034323-5



X. WU, Z. H. ZHANG, J. Y. ZENG, AND Y. A. LEI PHYSICAL REVIEW C 83, 034323 (2011)

increasing ν. Even for the highest seniority bands identified so
far, the pairing gaps �̃p(ω = 0, ν) and �̃n(ω = 0, ν) remain
larger than 70% of the bandhead value of the qp-vacuum
band.
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