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Neutrinoless double-β decay of deformed nuclei within quasiparticle random-phase approximation
with a realistic interaction
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In this paper a microscopic approach to calculation of the nuclear matrix element M0ν for neutrinoless double-β
decay with an account for nuclear deformation is presented in length and applied for 76Ge, 150Nd, and 160Gd. The
proton-neutron quasiparticle random-phase approximation with a realistic residual interaction (the Brueckner G

matrix derived from the charge-depending Bonn nucleon-nucleon potential) is used as the underlying nuclear
structure model. The effects of the short-range correlations and the quenching of the axial vector coupling
constant gA are analyzed. The results suggest that neutrinoless double-β decay of 150Nd, to be measured soon by
the SNO+ Collaboration, may provide one of the best probes of the Majorana neutrino mass. This confirms our
preliminary conclusion in Fang et al. [Phys. Rev. C 82, 051301(R) (2010)].
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I. INTRODUCTION

Neutrinoless double-β decay (0νββ decay) is a second-
order nuclear weak decay process with the emission of
two electrons only [1–3]: (A,Z) → (A,Z + 2) + 2e−. This
process is forbidden in the standard model (SM) of electroweak
interaction since it violates the conservation of the total lepton
number. The observation of 0νββ decay will immediately
prove the neutrino to be identical to its antiparticle (a Majorana
particle) as ensured by the Schechter-Valle theorem [4].
Thereby, 0νββ decay offers the only feasible way to test the
charge-conjugation property of the neutrinos. In addition, the
existence of 0νββ decay requires that the neutrino is a massive
particle.

The fact that the neutrinos have nonvanishing masses has
firmly been established by neutrino oscillation experiments
(see, e.g., Ref. [5]). However, the oscillation experiments
cannot in principle measure the absolute scale of the neutrino
masses. One of the possible ways to probe the absolute neutrino
masses at the level of tens of meV is to study 0νββ decay.
Provided the corresponding 0νββ-decay rates are accurately
measured, a reliable nuclear matrix element (NME) M0ν will
be needed to deduce the effective Majorana neutrino mass
from the experimental half-lives of the decay.

One of the best candidates for searching 0νββ decay
is 150Nd since it has the second highest endpoint, Qββ =
3.37 MeV, and the largest phase-space factor for the decay
(about 33 times larger than that for 76Ge, see, e.g., [1]). The
SNO+ experiment at the Sudbury Neutrino Observatory will
use a Nd-loaded scintillator to search for neutrinoless double-β
decay by looking for a distortion in the energy spectrum
of decays at the endpoint [6]. SNO+ will be filled with
780 tons of liquid scintillator. The planned loading of 0.1%
of the natural Nd translates into 43.6 kg of the isotope
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150Nd. It is expected to achieve the sensitivity of T 0ν
1/2 � 5 ×

1024 yr after one year of running, with the best final value of
about 3–4 times longer (without enrichment of the dissolved
Nd). With the NME M0ν = 4.74 of Ref. [7], obtained within
the proton-neutron quasiparticle random-phase approximation
(QRPA) with neglect of deformation, already the initial phase
of SNO+ will be able to probe mββ ≈ 100 meV, and will finally
be able to achieve sensitivity of mββ ≈ 50 meV corresponding
to the inverse hierarchy (IH) of the neutrino mass spectrum.

However, 150Nd is well known to be a rather strongly
deformed nucleus. This strongly hinders a reliable theo-
retical evaluation of the corresponding 0νββ-decay NME;
for instance, it does not seem feasible in the near future
to reliably treat this nucleus within the large-scale nuclear
shell model (LSSM), see, e.g., Ref. [8]. Recently, more
phenomenological approaches like the pseudo-SU(3) model
[9], the projected Hartree-Fock-Bogoliubov (PHFB) approach
[10], the interacting boson model (IBM-2) [11], and the
generator coordinate method with particle number and an-
gular momentum projection (GCM+PNAMP) [12] have been
employed to calculate M0ν for strongly deformed heavy nuclei
(a comparative analysis of different approximations involved
in some of the models can be found in Ref. [13]). The results of
these models generally reveal a substantial suppression of M0ν

for 150Nd as compared with the QRPA result of Ref. [7] where
150Nd and 150Sm were treated as spherical nuclei. However,
the calculated NME M0ν for 150Nd reveal rather significant
spread.

One of the most up-to-date microscopic ways to describe
the effect of nuclear deformation on ββ-decay NME M2ν

and M0ν is provided by the QRPA. In Refs. [14–16] a
QRPA approach for calculating M2ν in deformed nuclei has
been developed. Theoretical interpretation of the experimental
NME M2ν

exp which have been obtained for a dozen of nuclei
[17] provides a test of different theoretical methods. It was
demonstrated in Refs. [14–16] that deformation introduces a
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mechanism of suppression of the M2ν matrix element which
gets stronger when deformations of the initial and final nuclei
differ from each other. A similar dependence of the suppression
of both M2ν and M0ν matrix elements on the difference
in deformations has been found in the PHFB [10] and the
LSSM [8].

In the previous Rapid Communication [18], we reported on
the first QRPA calculation of M0ν for 150Nd with an account for
nuclear deformation. The calculation showed a suppression of
M0ν by about 40% as compared with our previous QRPA result
for 150Nd [7] that was obtained with neglect of deformation.
In this paper we give the details of the calculation of Ref. [18],
and also include different nuclei in the analysis. In addition,
the effects of the short-range correlations and the quenching of
the axial vector coupling constant gA are considered. Making
use of the newest NME, one may conclude that 0νββ decay
of 150Nd, to be searched for by the SNO+ Collaboration soon,
provides one of the best sensitivities to the Majorana neutrino
mass and may approach the IH region of the neutrino mass
spectrum.

II. FORMALISM

For the light Majorana neutrino exchange mechanism, the
inverse 0νββ-decay lifetime is given by the product of three
factors: (

T 0ν
1/2

)−1 = G0ν |M ′0ν |2 m2
ββ, (1)

where G0ν is a calculable phase-space factor, M ′0ν is the
0νββ nuclear matrix element, and mββ is the (nucleus-
independent) “effective Majorana neutrino mass” which, in
standard notation [19], reads

mββ =
∣∣∣∣∣

3∑
1=1

mi U
2
ei

∣∣∣∣∣, (2)

mi and Uei being the neutrino masses and the νe mixing matrix
elements, respectively. The NME includes both Fermi (F)
and Gamow-Teller (GT) transitions, plus a small tensor (T)
contribution [2],

M ′0ν =
(

gA

1.25

)2 (
−M0ν

F

g2
V

g2
A

+ M0ν
GT + M0ν

T

)
. (3)

In the above expression, gA is the effective axial coupling
in nuclear matter, not necessarily equal to its “bare” free-
nucleon value gA � 1.25. We note that for gA = 1.25 nuclear
matrix element M ′0ν coincides with the standard defini-
tion M0ν = −M0ν

F

g2
V

g2
A

+ M0ν
GT + M0ν

T . With the conventional

prefactor ∝ g2
A in Eq. (3), the phase space G0ν becomes

independent of gA.
The NME M0ν for strongly deformed, axially symmetric

nuclei can be most conveniently calculated within the QRPA
in the intrinsic coordinate system associated with the rotating
nucleus. This employs the adiabatic Bohr-Mottelson approxi-
mation that is well justified for 150Nd, 160Gd, and 160Dy, which
indeed reveal strong deformations. As for 150Sm, the enhanced
quadrupole moment of this nucleus is an indication for its static
deformation. Nevertheless, the experimental level schemes

of 150Sm, as well as of 76Ge and 76Se, do not reveal clear
ground-state rotational bands. A more elaborated theoretical
treatment going beyond the simple adiabatic approximation
might be needed in the future to describe the nuclear dynamics
of 150Sm, 76Ge, and 76Se. For instance, the so-called weak
coupling, or no alignment, limit [20] seems to be more suitable
for 76Ge and 76Se as having rather small deformations. In this
limit, the Coriolis force becomes so strong that the angular
momenta of the valence nucleons get completely decoupled
from the orientation of the core. Another important question
is the relevance that an exact angular momentum projection
could have. All these cases deserve a separate detailed study,
and the adiabatic approach to the description of excited states
of all the nuclei in question is adopted in the present application
of the QRPA with a realistic residual interaction.

Though it is difficult to evaluate the effects beyond the
adiabatic approximation employed here, one might anticipate
already without calculations that the smaller the deformation
is, the smaller should be the deviation of the calculated
observables from the ones obtained in the spherical limit. In
this connection it is worth noting that spherical QRPA results
can exactly be reproduced in the present calculation by letting
deformation vanish, in spite of the formal inapplicability of
the adiabatic ansatz for the wave function in this limit.

Nuclear excitations in the intrinsic system |Kπ 〉 are char-
acterized by the projection of the total angular momentum
onto the nuclear symmetry axis K (the only projection which
is conserved in strongly deformed nuclei) and the parity π .
In Ref. [16] the structure of the intermediate |0+〉 and |1+〉
states was obtained within the QRPA to calculate 2νββ-decay
NME M2ν . Here, the approach of Ref. [16] is straightforwardly
extended to calculate all possible |Kπ 〉 states needed to
construct the NME M0ν .

The intrinsic states |Kπ,m〉 are generated within the QRPA
by a phonon creation operator acting on the ground-state wave
function:

|Kπ,m〉 = Q
†
m,K |0+

g.s.〉;
(4)

Q
†
m,K =

∑
pn

Xm
pn,KA

†
pn,K − Ym

pn,KĀpn,K .

Here, A
†
pn,K = a

†
pa

†
n̄ and Āpn,K = ap̄an are the two-

quasiparticle creation and annihilation operators, respectively,
with the bar denoting the time-reversal operation. The quasi-
particle pairs pn̄ are defined by the selection rules �p − �n =
K and πpπn = π , where πτ is the single-particle (s.p.) parity
and �τ is the projection of the total s.p. angular momentum
on the nuclear symmetry axis (τ = p, n). The s.p. states |p〉
and |n〉 of protons and neutrons are calculated by solving the
Schrödinger equation with the deformed axially symmetric
Woods-Saxon potential [16]. In the cylindrical coordinates, the
deformed Woods-Saxon s.p. wave functions |τ�τ 〉 with �τ >

0 are decomposed over the deformed harmonic oscillator s.p.
wave functions (with the principal quantum numbers Nnz�)
and the spin wave functions |� = ± 1

2 〉:

|τ�τ 〉 =
∑
Nnz�

bNnz�|Nnz�τ = �τ − �〉|�〉, (5)
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where N = n⊥ + nz (n⊥ = 2nρ + |�|), nz and nρ are the
number of nodes of the basis functions in the z and ρ directions,
respectively; � = � − � and � are the projections of the
orbital and spin angular momentum onto the symmetry axis z.
For the s.p. states with the negative projection �τ = −|�τ |,
which are degenerate in energy with �τ = |�τ |, the time-
reversed version of Eq. (5) is used as a definition (see also
Ref. [16]). The states (τ, τ̄ ) comprise the whole single-particle
model space.

The deformed harmonic oscillator wave functions |Nnz�〉
can be further decomposed over the spherical harmonic
oscillator ones |nr l�〉 by calculating the corresponding spatial
overlap integrals A

nr l
Nnz�

= 〈nr l�|Nnz�〉 (nr is the radial
quantum number, l and � are the orbital angular momentum
and its projection onto z axes, respectively), see Appendix of
Ref. [16] for more details. Thereby, the wave function (5) can
be reexpressed as

|τ�τ 〉 =
∑

η

Bτ
η |η�τ 〉, (6)

where |η�τ 〉 = ∑
� C

j�τ

l�τ −� 1
2 �

|nr l� = �τ − �〉|�〉 is the

spherical harmonic oscillator wave function in the j -
coupled scheme [η = (nr lj )], and Bτ

η = ∑
� C

j�τ

l�τ −� 1
2 �

A
nr l
Nnz�τ −�bNnz�, with C

j�τ

l�τ −� 1
2 �

being the Clebsch-Gordan

coefficient.
The QRPA equations:( A(K) B(K)

−B(K) −A(K)

) (
Xm

K

Ym
K

)
= ωK,m

(
Xm

K

Ym
K

)
, (7)

with realistic residual interaction are solved to get the forward
Xm

iK , backward Ym
iK amplitudes and the excitation energies ω

mi

K

and ω
mf

K of the mth Kπ state in the intermediate nucleus. The
matrix A and B are defined by

Apn,p′n′(K)

= δpn,p′n′ (Ep+ En) + gpp(upunup′un′ + vpvnvp′vn′)Vpn̄p′n̄′

− gph(upvnup′vn′ + vpunvp′un′ )Vpn′p′n

Bpn,p′n′ (K) = −gpp(upunvp′vn′ + vpvnup′un′ )Vpn̄p′n̄′

−gph(upvnvp′vn′ + vpunup′vn′ )Vpn′p′n, (8)

where Ep + En are the two-quasiparticle excitation energies,
Vpn,p′n′ and Vpn̄,p′n̄′ are the particle-hole (ph) and particle-
particle (pp) matrix elements of the residual nucleon-nucleon
interaction V , respectively, uτ and vτ are the coefficients of
the Bogoliubov transformation.

As a residual two-body interaction, we use the nuclear
Brueckner G matrix, which is a solution of the Bethe-
Goldstone equation, derived from the charge-depending Bonn
(Bonn-CD) one boson exchange potential, as used also in
the spherical calculations of Ref. [7]. The G matrix elements
are originally calculated with respect to a spherical harmonic
oscillator s.p. basis. By using the decomposition of the
deformed s.p. wave function in Eq. (6), the two-body deformed
wave function can be represented as

|pn̄〉 =
∑

ηpηnJ

F JK
pηpnηn

|ηpηn, JK〉, (9)

where |ηpηn, JK〉 = ∑
mpmn

CJK
jpmpjnmn

|ηpmp〉|ηnmn〉, and

FJK
pηpnηn

= B
p
ηp

Bn
ηn

(−1)jn−�nCJK
jp�pjn−�n

is defined for the sake

of simplicity [(−1)jn−�n is the phase arising from the time-
reversed states |n̄〉]. The particle-particle Vpn̄,p′n̄′ and particle-
hole Vpn′,p′n interaction matrix elements in the representation
(8) for the QRPA matrices A, B [Eq. (7)] in the deformed
Woods-Saxon single-particle basis can then be given in terms
of the spherical G matrix elements as follows:

Vpn̄,p′n̄′ = −2
∑

J

∑
ηpηn

∑
ηp′ηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′ G(ηpηnηp′ηn′ , J ),

(10)

Vpn′,p′n = 2
∑

J

∑
ηpηn

∑
ηp′ηn′

F
JK ′

pn′
pηpn̄′ηn′ F

JK ′
pn′

p′ηp′ n̄ηn
G(ηpηn′ηp′ηn, J ),

(11)

where K ′
pn′ = �p + �n′ = �p′ + �n.

The matrix element M0ν is given within the QRPA in
the intrinsic system by a sum of the partial amplitudes of
transitions via all the intermediate states Kπ :

M0ν =
∑
Kπ

M0ν(Kπ ), M0ν(Kπ ) =
∑

α

s(def)
α Oα(Kπ ).

(12)

Here, we use the notation of Appendix B in Ref. [21], α stands
for the set of four single-particle indices {p, p′, n, n′}, and
Oα(Kπ ) is a two-nucleon transition amplitude via the Kπ

states in the intrinsic frame:

Oα(Kπ ) =
∑

mi,mf

〈0+
f |c†pcn|Kπmf 〉〈Kπmf |Kπmi〉

× 〈Kπmi |c†p′cn′ |0+
i 〉. (13)

The two sets of intermediate nuclear states generated from
the initial and final g.s. (labeled by mi and mf , respectively)
do not come out identical within the QRPA. A standard way
to tackle this problem is to introduce in Eq. (13) the overlap
factor of these states 〈Kπmf |Kπmi〉, whose representation
is given below, Eq. (16). Two-body matrix elements s(def)

α

of the neutrino potential in Eq. (12) in a deformed Woods-
Saxon single-particle basis are decomposed over the spherical
harmonic oscillator ones according to Eqs. (9) and (11):

s
(def)
pp′nn′ =

∑
J

∑
ηpηp′
ηnηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′ s

(sph)
ηpηp′ηnηn′ (J ), (14)

s
(sph)
pp′nn′(J ) =

∑
J

(−1)jn+jp′+J+J Ĵ
{

jp jn J

jn′ jp′ J

}

×〈p(1), p′(2);J ‖O
(1, 2)‖n(1), n′(2);J 〉,
(15)

where Ĵ ≡ √
2J + 1, and O
(1, 2) is the neutrino potential

as a function of coordinates of two particles, with 
 labeling
its Fermi (F), Gamow-Teller (GT), and tensor (T) parts.

The particle-hole transition amplitudes in Eq. (13) can be
represented in terms of the QRPA forward Xm

iK and backward
Ym

iK amplitudes along with the coefficients of the Bogoliubov
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transformation uτ and vτ [16]:

〈0+
f |c†pcn|Kπmf 〉 = vpunX

mf

pn,Kπ + upvnY
mf

pn,Kπ ,

〈Kπmi |c†pcn|0+
i 〉 = upvnX

mi

pn,Kπ + vpunY
mi

pn,Kπ .

The overlap factor in Eq. (13) can be written as

〈Kπmf |Kπmi〉 =
∑
li lf

[
X

mf

lf Kπ X
mi

liKπ − Y
mf

lf Kπ Y
mi

liKπ

]

×Rlf li 〈BCSf |BCSi〉. (16)

Representations for Rlf li and the overlap factor 〈BCSf |BCSi〉
between the initial and final BCS vacua are given in Ref. [14].

III. RESULTS AND ANALYSIS

We have computed the NME M0ν for the 0νββ decays
76Ge→76Se, 150Nd→150Sm, and 160Gd→160Dy. The single-
particle Schrödinger equation with the Hamiltonian of a
deformed Woods-Saxon mean field is solved on the basis of
an axially deformed harmonic oscillator. The parametrization
of the mean field is adopted from the spherical calculations of
Refs. [7,21,22]. We use here the single-particle deformed basis
corresponding in the spherical limit to full (4–6)h̄ω shells.
Decomposition of the deformed single-particle wave functions
is performed over the spherical harmonic oscillator states
within the seven major shells. Only quadrupole deformation
is taken into account in the calculation. The geometrical
quadrupole deformation parameter β2 of the deformed Woods-
Saxon mean field is obtained by fitting the experimental
deformation parameter β = √

π
5

Qp

Zr2
c
, where rc is the charge rms

radius and Qp is the empirical intrinsic quadrupole moment.
The latter can be derived from the laboratory quadrupole
moments measured by the Coulomb excitation reorientation
technique, or from the corresponding B(E2) values [23].
We take in this work experimental values extracted from the
B(E2) values as being more accurate. The fitted values of the
parameter β2 of the deformed Woods-Saxon mean field, which
allow us to reproduce the experimental β, are listed in Table I.

TABLE I. Values of the deformation parameter of Woods-Saxon
mean field β2 for initial (final) nuclei fitted in the calculation to
reproduce the experimental quadrupole moment (labeled as “1”). The
spherical limit is labeled as “0”. Also the fitted values of the particle-
particle strength parameter gpp are listed [for both cases without (I)
and with (II) quenching of gA]. The particle-hole strength parameter
is gph = 0.90. The BCS overlap factor 〈BCSf |BCSi〉 (16) between
the initial and final BCS vacua is given in the last column.

Initial (final) β2 gpp (I) gpp (II) 〈BCSi |BSCf 〉
nucleus

76Ge (76Se) 0.10 (0.16) “1” 0.71 0.66 0.74
0.0 (0.0) “0” 0.68 0.63 0.81

150Nd (150Sm) 0.240 (0.153) “1” 1.05 1.00 0.52
0.0 (0.0) “0” 1.01 0.99 0.85

160Gd (160Dy) 0.303 (0.292) “1” 1.00a 1.00 0.74

aAs there is no experimental value of M2ν for 160Gd, we do not
renormalize the p-p interaction and use gpp = 1.

We label these sets of parameters as “1”. The spherical limit,
i.e., β2 = 0, is considered as well (labeled as “0”), to compare
with the earlier results of Ref. [7]. The procedure adopted here
of fitting β2 is more consistent than the approximate ansatz
β2 = β used in Ref. [16].

As in Refs. [7,16,18,21,22], the nuclear Brueckner G

matrix, obtained by a solution of the Bethe-Goldstone equation
with the Bonn-CD one boson exchange nucleon-nucleon
potential, is used as a residual two-body interaction. First,
the BCS equations are solved to obtain the Bogoliubov
coefficients, gap parameter, and chemical potentials. The
number NKπ of the proton-neutron quasiparticle pairs coupled
to a given Kπ determines the dimension of the corresponding
QRPA equations. It becomes the largest for Kπ = 0+ and is
N0+ = 840 for Ge and Se, and N0+ = 912 for Nd, Sm, Gd, and
Dy. To solve the QRPA equations, one has to fix the particle-
hole gph and particle-particle gpp renormalization factors of
the residual interaction, Eqs. (8). As in Refs. [16,18], we
determine a value of gph by fitting the experimental position of
the Gamow-Teller giant resonance (GTR) in the intermediate
nucleus. Since there is no experimental information on the
GTR energy for 150Nd, we use for this nucleus the same
gph = 0.90 as fitted for 76Ge (this value is slightly different
from the fitted gph = 1.15 of Ref. [16] because of a different
parametrization of the mean field used here). The parameter
gpp can be determined by fitting the experimental value of
the 2νββ-decay NME M2ν

GT = 0.07 MeV−1 [17]. To account
for the quenching of the axial-vector coupling constant gA, we
choose in the calculation, along with the bare value gA = 1.25,
also the quenched value g

qch
A = 0.75gA = 0.94, where the

quenching factor of 0.75 comes from a recent experimental
measurement of GT strength distribution in 150Nd [24]. The
two sets of the fitted values of gpp corresponding to the cases
without or with quenching of gA are listed Table I as cases (I)
and (II), respectively. Note, that the more realistic procedure
of fitting β2 adopted here also gives us more realistic gpp � 1
values than those of Ref. [16].

Having solved the QRPA equations, the two-nucleon
transition amplitudes (13) are calculated, and by combining
them with the two-body matrix elements of the neutrino
potential, the total 0νββ NME M0ν (12) is formed. The
present computation is rather time consuming since numerous
programming loops are needed to calculate the decompositions
of the two-body matrix elements in the deformed basis over
the spherical ones. Therefore, to speed up the calculations
the mean energy of 7 MeV of the intermediate states is
used in the neutrino propagator. Following Refs. [7,21,22],
we have taken into account the effects of the finite nucleon
size, and higher-order weak currents are included. Recently, it
was shown [22] that a modern self-consistent treatment of the
two-nucleon short-range correlations (s.r.c.) leads to a change
in the NME M0ν only by a few percent, much less than the
traditional Jastrow-type representation of the s.r.c. does. A very
similar effect is found in the present calculation (see below).

We start our discussion of the calculated 0νββ-decay
NME by a comparison of the matrix elements of this work
obtained in the spherical limit with the previous ones of
Refs. [7,21,22], which provides an important cross-check
of the present calculation. Though formally the adiabatic
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FIG. 1. The partial contributions M0ν(Kπ ) of different intermediate Kπ states to M0ν(1/r) for 150Nd→150Sm in the cases of vanishing
and realistic deformations. For simplicity, the BCS overlap factor is omitted in these results. The Fermi M0ν

F (1/r) and the GT M0ν
GT (1/r)

contributions are shown in the panels (a) and (b), respectively. The three bars represent (from left to right) the results obtained with the spherical
harmonic oscillator (HO) wave functions, with the Woods-Saxon (WS) wave functions in the spherical limit, and with the deformed WS wave
functions for realistic deformations from Table I.

Bohr-Mottelson approximation is not applicable in the limit
of vanishing deformation, it is easy to see that the basic
Eqs. (12)–(16) do have the correct spherical limit.

According to Eq. (12), the total calculated 0νββ-decay
NME is formed by the sum of all partial contributions
M0ν(Kπ ) of different intrinsic intermediate states Kπ , with
M0ν(|K|π ) = M0ν(−|K|π ). In the spherical limit, the total
angular momentum J becomes a good quantum number,
and the intermediate Kπ states corresponding to a given
Jπ state become degenerate. In addition, in this limit, each
projection K of an intermediate Jπ state contributes equally
to the calculated 0νββ-decay NME, as a consequence of
rotational symmetry. To represent standard spherical results
in the terms of the present paper, one has to use the following
expression for the spherical partial contribution of a projection
K: M0ν(Kπ ) = ∑

J�|K| M
0ν(Jπ )/(2J + 1); it is easy to see

that having summed over all Kπ , one obtains the total NME

M0ν = ∑
J M0ν(Jπ ). From this representation it can generally

be expected that the smaller is |K|, the larger the corresponding
partial contribution M0ν(Kπ ) should be (since simply more J ’s
contribute, and their contributions are of the same sign in most
cases, see Ref. [7]). This behavior is in fact revealed by most
of the calculation results (see below).

To test our new numerical code calculating 0νββ-decay
NME for deformed nuclei, we have taken the spherical limit
and used in it the spherical harmonic oscillator wave functions
as usually done in the QRPA calculations [7,21,22]. The NME
calculated by different codes are found to be in an excellent
agreement.

For the further discussion, we define the following contribu-
tions to the total 0νββ-decay NME: M0ν

F (1/r) and M0ν
GT (1/r)

are calculated by taking into account only the Coulomb-
like radial dependence of the neutrino potential. The total
corrections �M0ν

F and �M0ν
GT to M0ν

F (1/r) and M0ν
GT (1/r),

TABLE II. Different contributions to the total calculated NME M ′0ν for 0νββ decays 76Ge→76Se, 150Nd→150Sm, and 160Gd→160Dy. The
BCS overlap is taken into account. In columns 4 and 9 the leading contributions MF (1/r) and MGT (1/r) are shown. In columns 5 and 10
the total corrections �MF and �MGT to MF (1/r) and MGT (1/r) are listed. In columns 6,7 and 11,12 the corrections δiMF and δiMGT ,
respectively, coming from different choices of the s.r.c., are listed. In columns 8 and 13 both the F and GT parts of the total NME (17) are
shown (we prefer here the final value of M0ν corresponding to the modern self-consistent treatment of the s.r.c. [22]). Finally, in columns 14
and 15 the 0νββ-decay NME M ′0ν (3) and corresponding decay half-lives (assuming mββ = 50 meV) are listed.

A Def. gA M0ν
F M0ν

GT M ′0ν
T 0ν

1/2 (1026 yr)

M(1/r) �M δ1M δ2M Total M(1/r) �M δ1M δ2M Total (mββ = 50 meV)

76 “1” 1.25 −2.83 0.69 0.40 −0.08 −2.22 5.59 −2.49 −0.88 0.18 3.27 4.69 7.15
0.94 −2.98 0.73 0.40 −0.18 −2.44 7.69 −3.65 −1.47 0.27 4.31 4.00 9.83

“0” 1.25 −3.15 0.78 0.45 −0.09 −2.47 6.37 −2.85 −1.01 0.20 3.72 5.30 5.60
0.94 −3.31 0.82 0.46 −0.10 −2.59 7.28 −3.15 −1.04 0.21 4.35 4.10 9.36

150 “1” 1.25 −2.09 0.51 0.33 −0.06 −1.64 4.01 −1.86 −0.72 0.14 2.29 3.34 0.41
0.94 −2.16 0.52 0.33 −0.06 −1.70 4.44 −2.00 −0.73 0.14 2.58 2.55 0.71

“0” 1.25 −4.07 0.99 0.67 −0.13 −3.21 7.35 −3.54 −1.46 0.26 4.07 6.12 0.12
0.94 −4.12 1.00 0.68 −0.13 −3.25 7.69 −3.65 −1.47 0.27 4.31 4.52 0.23

160 “1” 1.25 −2.14 0.51 0.32 −0.07 −1.69 4.57 −2.04 −0.71 0.14 2.67 3.76 2.26
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FIG. 2. Partial contributions M0ν(Kπ ) of different intrinsic intermediate states to the total M0ν for 150Nd→150Sm in the case of realistic
deformation [panels (a) and (b)] and in the spherical limit [(c) and (d)]. The Fermi −M0ν

F (Kπ ) and GT M0ν
GT (Kπ ) contributions are shown for

each Kπ by the left and right bars, respectively. The contributions include the leading, Coulomb-like, radial dependence of the neutrino potential
[labeled “M(1/r)”], with the effects of the FNS, the closure energy, and higher-order weak currents included [labeled “M(1/r) + �M”], and
the final contributions, including in addition the effect of the Jastow-like s.r.c. [labeled “M(1/r) + �M + δ1M”]. The panels (a),(c) and (b),(d)
show the results corresponding to the unquenched gA = 1.25 and quenched gA = 0.94, respectively [fitted values (I) and (II) of gpp, see Table I].

respectively, come from the effects of the finite nucleon size
(FNS), the closure energy, and higher-order weak currents.
Finally, the corrections δiM

0ν
F and δiM

0ν
GT , respectively, come

from the effects of the s.r.c. (Jastow-like s.r.c. is denoted by
the subscript i = 1, and the self-consistent Bonn-CD s.r.c. by
the subscript i = 2). Thus, the final total 0νββ-decay NME is
given by

M0ν = M0ν(1/r) + �M0ν + δiM
0ν . (17)

The effect of deformation and different choices of the single-
particle wave functions on the partial contributions M0ν(Kπ )
of different Kπ intermediate states to M0ν(1/r) for 150Nd is
illustrated in Fig. 1. The BCS overlap factor is neglected here
for simplicity. The Fermi and the GT contributions are shown
in the left and right panels of the figure, respectively. The left
and middle bars for each Kπ represent the results obtained
for zero deformation with the spherical harmonic oscillator
wave functions and with the Woods-Saxon wave functions,

respectively, and the right bar represents the result calculated
with the deformed Woods-Saxon wave functions for the finite
deformations from Table I (case “1”). Each bar for K > 0
represents a sum of the equal contributions of the positive and
negative projections, M0ν(Kπ ) + M0ν(−Kπ ) = 2M0ν(Kπ ).
Because the partial contributions M0ν

F (Kπ ) to the Fermi NME
in the spherical limit are nonzero only for the intermediate
states of natural parity π = (−1)J , the equality M0ν

F (Kπ, π =
(−1)K) = M0ν

F ((K − 1)π , π = (−1)K) (K > 0) should hold
in this limit (this simply reflects equality of the contributions
of different projections K for a given J ). This equality is nicely
fulfilled in our calculations, as illustrated by Fig. 1. Also, one
can see in Fig. 1 that even for rather large deformations, the
partial contributions M0ν(Kπ ) (calculated with neglect of the
BCS overlap) do not differ much from the corresponding ones
of the spherical calculations. The corresponding results for the
other nuclei show very similar pattern.

The final results for the NME for 0νββ decays 76Ge→76Se,
150Nd→150Sm, and 160Gd→160Dy are listed in Table II (now
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FIG. 3. Same as in Fig. 2, but for 76Ge→76Se.

the values of the BCS overlap from the last column of Table I
are taken into account). In columns 4 and 9, the leading
contributions MF (1/r) and MGT (1/r) are shown. In columns
5 and 10, the total corrections �MF and �MGT to MF (1/r)
and MGT (1/r) are listed. One sees that these corrections
reduce the results of the leading order by about 20% for
the Fermi part and 40% for the GT part, which agrees with
the previous spherical QRPA calculations [25]. In columns 6
and 7 and 11 and 12, the corrections δ1,2MF and δ1,2MGT ,
respectively, coming from different choices of the s.r.c., are
listed. In columns 8 and 13, both the F and GT parts of
the total NME M0ν


 = M0ν

 (1/r) + �M0ν


 + δ2M
0ν

 are shown

(we prefer here the final value of M0ν corresponding to the
modern self-consistent treatment of the s.r.c. [22]). Finally,
in columns 14 and 15, the 0νββ-decay NME M ′0ν (3) and
corresponding decay half-lives (assuming mββ = 50 meV)
are listed. The corresponding Kπ decompositions of M0ν are
shown in Figs. 2 and 3.

By inspecting Table II and Figs. 2 and 3, one sees that the
difference between the spherical and deformed results mainly
come from the BSC overlap between the ground states of the
initial and final nuclei. As for the gpp dependence of the 0νββ-
decay NME, it is much less pronounced than the dependence
of the amplitude of 2νββ decay. A marked reduction of the

total M ′0ν for the quenched value of gA can be traced back to
a smaller prefactor (gA/1.25)2 in the definition of M ′0ν (3).

The strongest effect of deformation on M0ν (the suppression
by about 40% as compared to our previous QRPA result
obtained with neglect of deformation) is found in the case
of 150Nd. This suppression can be traced back to a rather large
difference in deformations of the ground states of 150Nd and
150Sm. Such an effect has been observed also by other authors
[8,10,11]. The modern self-consistent treatment of the s.r.c.
[22] makes the resulting M ′0ν = 3.34 (without quenching),
even a bit larger than the NME M ′0ν = 3.16 of Ref. [18],
where the influence of the s.r.c. was completely neglected.
This translates to the half-life T 0ν

1/2 = 4.1 × 1025 yr for the
effective Majorana neutrino mass 〈mββ〉 = 50 meV (cf. with
T 0ν

1/2 = 4.60 × 1025 yr of Ref. [18]). In the case of quenched
gA, the half-life T 0ν

1/2 = 7.1 × 1025 yr is about twice longer as
a consequence of a smaller NME M ′0ν = 2.55.

IV. CONCLUSIONS

In this paper a microscopic approach to calculation of the
nuclear matrix element M0ν for neutrinoless double-β decay
with an account for nuclear deformation is presented in length
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and applied to calculate M0ν for 76Ge, 150Nd and 160Gd. The
QRPA with a realistic residual interaction (the Brueckner G

matrix derived from the Bonn-CD nucleon-nucleon potential)
is used as the underlying nuclear structure model. The effects
of the short-range correlations and the quenching of the axial
vector coupling constant gA are analyzed and found to be in
accord with the spherical QRPA calculations. The strongest
effect of deformation on M0ν (the suppression by about 40%
as compared to our previous QRPA result obtained with
neglect of deformation) is found in the case of 150Nd. This
suppression can be traced back to a rather large difference
in deformations of the ground states of 150Nd and 150Sm,

which agrees with results by other authors. The preliminary
conclusion of Ref. [18] that neutrinoless double-β decay of
150Nd may provide one of the best probes of the Majorana
neutrino mass is confirmed.
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Rev. C 79, 014314 (2009); D. Fang, A. Faessler, V. Rodin,
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