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The liquid drop Hamiltonian is amended with a potential which allows us to separate, in the intrinsic frame,
the equations for β and γ coordinates. The Schrödinger equation for β is that for a sextic oscillator plus a
centrifugal term, while that for γ is just the equation for the Mathieu function. The total energy has a compact
form. The operator for the electric quadrupole transitions is considered in the intrinsic frame and involves two
parameters accompanying the harmonic and anharmonic components. The parameters determining the energies
as well as those defining the transition operator are to be determined by a fitting procedure. Applications refer
to five isotopes: 188Os, 190Os, 192Os, 228Th, and 230Th. Results are in good agreement with the corresponding
experimental data. Results are also compared with those obtained within the coherent state model. A possible
connection between the two formalisms is pointed out.
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I. INTRODUCTION

The first phenomenological approach [1] for nuclear energy
levels and transition probabilities, known as the liquid drop
model (LDM), has some natural limitations caused by the
fact that it considers a harmonic drop. Many improvements
have been proposed to describe oscillations around deformed
equilibrium shapes [2] or to account for anharmonicities
[3,4]. The drawback of the anharmonic model consists in
the large number of parameters involved. Although it is
hard to reduce the number of parameters and still provide
a realistic description of the complex nuclei, some attempts
have been made. Thus, the triaxial rigid rotor approach [5]
and its improvements [6,7] consider a special class of nuclei
without any symmetry axis. In [5], the β and γ have rigid
values, the energies being determined by the motion of Euler
angles specifying the intrinsic frame. The improvements refer
to relaxing the rigidity and considering either a soft β or a soft
γ variable. Exploiting the semiclassical features of the nuclear
states of high angular momentum, the coherent state model
(CSM) defines [8] the first three rotational bands by projecting
out the angular momentum from a coherent state and two
orthogonal polynomial excitations. The three sets of states are
approximate eigenstates of a quadrupole boson Hamiltonian.
The model is able to describe in a realistic fashion transitional
and well-deformed nuclei of various shapes including states
of high and very high angular momentum. Various extensions
to include other degrees of freedom such as isospin [9],
single-particle [10], or octupole [11,12] degrees of freedom
have been formulated [13].

It has been noticed that a given nuclear phase may be
associated with a certain symmetry. Hence, its properties may
be described with the help of the irreducible representation of
the respective symmetry group. Along this line, the interacting
boson approximation (IBA) [14,15] succeeded in describing
the basic properties of a large number of nuclei in terms of
the symmetries associated with a system of quadrupole (d)
and monopole (s) bosons which generate a U(6) algebra. Also,
three limiting symmetries, U(5), O(6), and SU(3), have been

considered which are dynamic symmetries for U(6). Moreover,
for each of these symmetries, a specific group reduction chain
provides the quantum numbers characterizing the states, which
are suitable for a certain region of nuclei. Besides the advantage
of unifying the group of theoretical descriptions of nuclei
exhibiting different symmetries, the procedure defines very
simple reference pictures for the limiting cases. For nuclei
lying close to the region characterized by a certain symmetry,
the perturbative corrections are to be included.

In Ref. [16], a new classification scheme was provided, all
nuclei being distributed on the border of a symmetry triangle.
The vertices of this triangle symbolize the U(5) (vibrator),
O(6) (γ soft), and SU(3) (symmetric rotor), while the legs of
the triangle denote the transitional region. In Refs. [17,18], it
was proved that on the U(5)-O(6) transition leg there exists
a critical point for a second-order phase transition, while the
U(5)-SU(3) leg has a first-order phase transition. In Ref. [19],
it was proved that most nuclei are mapped not on the border
of the symmetry triangle but in the interior of the triangle.
Examples of such nuclei are the Os isotopes [20].

Recently, Iachello [21,22] pointed out that these critical
points correspond to distinct symmetries, namely, E(5) and
X(5). For the critical value of an ordering parameter, energies
are given by the zeros of a Bessel function of half integer and
irrational indices [23–25]. In Ref. [26], the X(5) description
was extended to the first octupole vibrational band in nuclei
close to axial symmetry and also close to the critical point of
the U(5) to SU(3) phase transition. Other symmetries, called
Y(5) and Z(5), were pointed out in Refs. [27,28]. The former
symmetry corresponds to the critical point of the transition
from axial to triaxial nuclei, while the latter one is related to
the critical point of the transition from prolate to oblate through
a triaxial shape.

The nice feature of the critical point symmetry is that
the description in the intrinsic frame is performed by two
separated differential equations for β and γ degrees of
freedom. These equations are solvable, and the solutions
are irreducible representations for the specific symmetry.
Moreover, apart from an overall scaling parameter, the energies
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are parameter-free quantities. Since the idea of symmetries
associated with the critical points of various phase transitions
appeared, many attempts have been made to describe the two
dynamic deformations by solvable and separable differential
equations with specific β and γ potentials. Thus, a description
of soft γ nuclei around γ 0 = π

6 with an oscillator potential
in γ and a Kratzer potential in β has been developed in
Refs. [29–31].

This paper is devoted also to the description of the triaxial
nuclei. Indeed, the LDM Hamiltonian written in the intrinsic
frame is separated into two terms describing the β and γ

variables. The potential in β consists of a centrifugal term and
a sextic potential, while the differential equation for γ is that
for the Mathieu function. Due to this feature we shall call the
formalism developed here as the sextic and Mathieu approach
(SMA).

We state from the start that the equations for β and γ

characterizing SMA are different from the Z(5) formalism
as well as from those using the Kratzer potential for β. The
transition operator has an anharmonic structure. Theoretical
features as well as the quantitative results are compared with
those obtained within CSM. Moreover, a test for SMA is its
application to several nonaxial nuclei like 188Os, 190Os, 192Os,
228Th, and 230Th.

The project presented above is achieved according the
following plan. In Sec. II the derivation of the differential
equations for β and γ is performed. In Sec. III, the needed
equations for calculating the reduced transition probabilities
are presented. The main ingredients of CSM are described in
Sec. IV. In Sec. V we present the numerical application to five
isotopes which are considered to have a triaxial shape. The
final conclusions are drawn in Sec. VI.

II. SEPARABLE FORM FOR THE LIQUID DROP
MODEL HAMILTONIAN

The description of the triaxial nuclei proposed in the present
paper originates from the eigenvalue equation:

Hψ(β, γ,�) = Eψ(β, γ,�), (2.1)

where

H = − h̄2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1

4β2

3∑
k=1

Q2
k

sin2
(
γ − 2

3πk
)
]

+ V (β, γ ) (2.2)

is the liquid drop model (LDM) Hamiltonian written in the
intrinsic frame of reference. Here the dynamic deformation
variables are denoted by β and γ , the Euler angles by � ≡
(θ1, θ2, θ3), while the intrinsic angular momentum components
by Qk , with k = 1, 2, 3.

In what follows we shall describe a chain of approximations
for Eq. (2.1) which allows us to treat separately the dynamic
variables β and γ , by exactly solvable differential equations.

The potential energy is chosen such that the differential
equation (2.2) becomes separable. A possible form for V (β, γ )

is [32,33]

V (β, γ ) = V1(β) + V2(γ )

β2
, (2.3)

Inserting this expression into Eqs. (2.2) and (2.1) can be
separated into two parts, one equation involving the β variable
and the other one the γ variable and the Euler angles �. Note
that the equations of motion for the γ variable and the Euler
angles � are still coupled due to the rotational term

W = 1

4

3∑
k=1

Q2
k

sin2
(
γ − 2π

3 k
) . (2.4)

We separate the γ variable from the Euler angles � in two
steps. First we perform a second-order expansion of the W

term around γ 0 = π/6

W ∼
(

Q2 − 3

4
Q2

1

)
+ 2

√
3
(
Q2

2 − Q2
3

)(
γ − π

6

)

+
(

10Q2 − 39

4
Q2

1

) (
γ − π

6

)2

, (2.5)

and then we average the result with the Wigner function
DL

MR(�)

〈W 〉 ∼ L(L + 1) − 3

4
R2 +

(
10L(L + 1) − 39

4
R2

)

×
(

γ − π

6

)2

. (2.6)

The Wigner function is the rotation operator matrix in the basis
|LM〉 generated by the eigenstates of Q2 and Q1. Thus here
the symmetry axis, obtained in the limit γ → π

6 , is the axis 1
and not 3 as it happens for situations characterized by γ 0 = 0.
The term L(L + 1) from Eq. (2.6), multiplied by the factor
1/β2, is added to the β equation:[

− 1

β4

∂

∂β
β4 ∂

∂β
+ L(L + 1)

β2
+ v1(β)

]
f (β) = εβf (β).

(2.7)

The remaining terms depend on γ but also on β by means
of the factor 1/β2. In order that the variable separation is
achieved, the mentioned factor is replaced by an average
value 1/〈β2〉. Actually in our concrete calculation, this is
considered to be a free parameter. The resulting equation in γ

variable is[
− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
− 3

4
R2 +

(
10L(L + 1) − 39

4
R2

)

×
(

γ − π

6

)2

+ v2(γ )

]
φ(γ ) = ε̃γ φ(γ ), (2.8)

where the following notation is used:

v1(β) = 2B

h̄2 V1(β), v2(γ ) = 2B

h̄2 V2(γ ),
(2.9)

εβ = 2B

h̄2 Eβ, ε̃γ = 〈β2〉2B

h̄2 Eγ .

To solve the separated equations in β and γ , respectively, we
have to specify the potentials v1(β) and v2(γ ). Since v1(β) is
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a sextic oscillator potential in β, we give a few details about
the solution of the associated Schrödinger equation.

A. Sextic oscillator with a centrifugal barrier

The Hamiltonian of the sextic oscillator with a centrifugal
barrier has the expression [34,35]

Hx = − ∂2

∂x2
+

(
2s − 1

2

)(
2s − 3

2

)
x2

+
[
b2 − 4a

(
s + 1

2
+ M

)]
x2 + 2abx4 + a2x6,

(2.10)

where x ∈ [0,∞). The classical counterpart of Hx was studied
in Ref. [36]. Analytical solutions for the classical trajectories
have been found, which were then quantized. Also we note
that for the particular value a = 0 the sextic potential becomes
the Davidson potential [37]. Here we use the quantal form of
the equation of motion and show that they yield also analytical
solutions. To be concrete, the eigenvalue equation associated
with Eq. (2.10) is quasi-exactly solvable for any values of b.
Indeed, for any given non-negative integer M , it has M + 1
solutions which can be found algebraically. This can be easily
verified if we consider the Schrödinger equation

Hxψ(x) = Eψ(x) (2.11)

and take as an appropriate ansatz the function

ψn(x) = Pn(x2)x2s− 1
2 e− ax4

4 − bx2

2 , n = 0, 1, 2, . . . , (2.12)

where Pn(x2) is a polynomial in x2 of degree n. Indeed,
substituting Eq. (2.12) in Eq. (2.11) and eliminating the
common factor, we obtain an equation for the Pn(x2):

QPn(x2) = EPn(x2), (2.13)

with

Q = −
(

∂2

∂x2
+ 4s − 1

x

∂

∂x

)
+ 2b

(
x

∂

∂x
+ 2s

)

+ 2ax2

(
x

∂

∂x
− 2M

)
. (2.14)

Now, let us assume that M is a non-negative integer: M =
0, 1, 2, . . .. In this case, the differential spectral equation (2.13)
can easily be transformed into an algebraic form. The action
of the Q operator (2.14) on Pn(x2) gives again a polynomial
in x2 at the same order. Considering the coefficients of the
polynomial Pn(x2) as components of an (M + 1) vector,
one can treat Eq. (2.13) as an (M + 1)-dimensional spectral
matrix equation. This means that the initial Schrödinger
equation (2.11) has at least M + 1 solutions of the form
(2.12) and thus can be interpreted as a quasi-exactly solvable
equation of order M + 1. For illustration, in the Appendix,
we solve Eq. (2.13) for four particular values of M, i.e.,
M = 0, 1, 2, 3.

The functions (2.12) can be normalized to unity for a > 0
and arbitrary b. Moreover for a = 0, the eigenvalue equation
reduces to an ordinary oscillator equation. The norms of the

wave functions can also be given in the closed form by using
the result for the overlap integrals:

I (A) =
∫ ∞

0
xAe− a

2 β4−bβ2
dx = 1

2



(
A + 1

2

)
a− A+1

4

× e
b2

4a D−(A+1)/2

(
b√
a

)
, (2.15)

= 1

2



(
A + 1

2

)
(2a)(−A+1)/4U

(
A + 1

4
,

1

2
,

b2

2a

)
,

(2.16)

where Dp(z) is the parabolic cylinder function and U (α, δ; z)
is one of the forms for the confluent hypergeometric function.

B. Partial wave function depending on β

In Eq. (2.7), we make the change of function f (β) =
β−2ϕ(β) and get[

− ∂2

∂β2
+ L(L + 1) + 2

β2
+ v1(β)

]
ϕ(β) = εβϕ(β). (2.17)

We choose v1(β) such that Eq. (2.17) becomes the equation for
a sextic oscillator potential with a centrifugal barrier. Indeed,
this is achieved with the identifications

x = β, E = εβ,

(
2s − 1

2

) (
2s − 3

2

)

= L(L + 1) ⇒ s = L

2
+ 3

4
, (2.18)

v1(β) = (b2 − 4ac)β2 + 2abβ4 + a2β6,

c = L

2
+ 5

4
+ M.

This identification was possible after adding the term −2/β2

to Eq. (2.7) and 2/〈β2〉 to Eq. (2.8). In this way, the final
centrifugal term in Eq. (2.17) will be L(L + 1)/β2. This trick
ensures a rational form for s.

Suppose we fixed the constant parameters a and b. Then,
the potential depends on c which at its turn depends on L and
M . It is desired that the potential be independent of angular
momentum, that is, c is a constant. Due to the equation relating
c and L

L = 2c − 5
2 − 2M, (2.19)

this infers a certain dependence of L on M . Indeed, to keep
c constant, it is necessary that increasing or decreasing M by
one unit should take place while decreasing or increasing L

by two units. So we get two constant values for c, one for L

even and other for L odd:

(M,L) : (k, 0); (k − 1, 2); (k − 2, 4); (k − 3, 6) · · ·
⇒ c = k + 5

4 ≡ c+ (L even), (2.20)

(M,L) : (k, 1); (k − 1, 3); (k − 2, 5); (k − 3, 7) · · ·
⇒ c = k + 7

4 ≡ c− (L odd). (2.21)

The final form of the potential will be

vπ
1 (β) = (b2 − 4acπ )β2 + 2abβ4 + a2β6 + uπ

0 (π ≡ ±),

(2.22)
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where uπ
0 are constants which will be fixed such that the

minima (βπ
min > 0) of the two potentials v+

1 (β) and v−
1 (β) have

the same energy. The extremal points can be obtained from the
first derivative of the potential:

∂vπ
1 (β)

∂β

∣∣∣∣
β=βπ

0

= 0 ⇒ (
βπ

0

)2 = 0,

(2.23)(
βπ

0

)2 = 1

3a
[−2b ±

√
b2 + 12acπ ].

For βmin = 0, we have u+
0 = u−

0 . When βmin > 0, we can set
u+

0 = 0, and from the condition v−
1 (β−

0 ) − v+
1 (β+

0 ) = 0, we get

u−
0 = (b2 − 4ac+)(β+

0 )2 − (b2 − 4ac−)(β−
0 )2

+ 2ab[(β+
0 )4 − (β−

0 )4] + a2[(β+
0 )6 − (β−

0 )6].(2.24)

The shape of the potential vπ
1 (β) depends on the signs

of b2 − 4acπ and b. When b > 2
√

acπ , the potential has
a minimum at β = 0 and it increases monotonously with
β. When −2

√
acπ < b < 2

√
acπ , a minimum shows up at

β > 0, while for b < −2
√

acπ , the potential has a maximum
and a minimum.

The excitation energies for the β equation are easily
obtained using Eqs. (2.9) and (2.18).

Eβ(nβ, L) = h̄2

2B

[
4bs(L) + λ(M)

nβ
(L) + uπ

0

]
,

(2.25)
nβ = 0, 1, 2, . . . ,M.

As shown in the Appendix, the notation λ(M)
nβ

is used for
the eigenvalue corresponding to the eigenvector determining
the coefficients defining the polynomial Pn(x2). Functions
in the β variable are given by Eq. (2.12) replacing x

with β

ϕ
(M)
nβ ,L(β) = Nnβ,LP

(M)
nβ ,L(β2)β2s− 1

2 e− a
4 β4− b

2 β2
,

(2.26)
nβ = 0, 1, 2, . . . , M,

where Nnβ,L are the normalization constants.

C. Description of the γ wave function

In what follows we show that Eq. (2.8) can be reduced to
the Mathieu equation [38]. First we change the function

φ(γ ) = M(3γ )√| sin 3γ | . (2.27)

The equation for the new function is[
∂2

∂γ 2
+

(
ε̃γ + 1

4
+ 3

4
R2

)
+ 9

4 sin2 3γ

−
(

10L(L + 1) − 39

4
R2

)(
γ − π

6

)2

− v2(γ )

]
M(3γ )=0.

(2.28)

The potential in γ is chosen to exhibit a minimum at γ0 = π/6:

v2(γ ) = µ cos2 3γ. (2.29)

Making the Taylor expansions around the minimum value of
the γ potential

9

4 sin2 3γ
∼ 9

4
+ 81

4

(
γ − π

6

)2

,

(2.30)

µ cos2 3γ ∼ 9µ

(
γ − π

6

)2

,

the equation for the variable γ becomes[
∂2

∂γ 2
+

(
ε̃γ + 3

4
R2 + 5

2

)
−

(
10L(L + 1) − 39

4
R2

+ 9µ − 81

4

) (
γ − π

6

)2
]
M(3γ ) = 0. (2.31)

Using again in Eq. (2.31) the approximation(
γ − π

6

)2
= 1

9
cos2 3γ, (2.32)

and making the change of variable y = 3γ , we obtain[
∂2

∂y2
+ 1

9

(
ε̃γ + 3

4
R2 + 5

2

)
− 1

9

(
10

9
L(L + 1) − 13

12
R2

+µ − 9

4

)
cos2 y

]
M(y) = 0. (2.33)

This can be written in a compact form as(
∂2

∂y2
+ a − 2q cos 2y

)
M(y) = 0, (2.34)

where

q = 1

36

(
10

9
L(L + 1) − 13

12
R2 + µ − 9

4

)
,

(2.35)

a = 1

9

(
ε̃γ + 3

4
R2 + 5

2

)
− 2q.

Equation (2.34) is just the well-known Mathieu equation.
Using the expression for the characteristic value a, Eq. (2.35),
of the Mathieu equation, one can find the expression for the
excitation energy of the γ equation

Eγ (nγ , L,R) = h̄2

2B

1

〈β2〉
[

9anγ
(L, R) + 18q(L, R)

− 3

4
R2 − 5

2

]
, nγ = 0, 1, 2, . . . . (2.36)

The orthonormalization restriction for the Mathieu functions is∫ 2π

0
Mn(y)Mm(y)dy = πδnm. (2.37)

The total energy for the system is obtained by adding the
energies given by Eqs. (2.25) and (2.36)

E(nβ, nγ , L,R) = E0 + Eβ(nβ, L) + Eγ (nγ , L,R). (2.38)

The excitation energies depend on four quantum numbers, nβ ,
nγ , and L, R, and five parameters, h̄2/2B, a, b, 1

〈β2〉 , and µ.
The quantum numbers defining the ground, β, and γ bands

are as follows:

nβ = 0, nγ = 0, R = L, L= 0, 2, 4, . . . ground band,
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nβ = 0, nγ = 1,

{
R = L − 2, L = 2, 4, 6, . . .

R = L − 1, L = 3, 5, 7, . . .
γ band,

nβ = 1, nγ = 0, R = L, L = 0, 2, 4, . . . β band.

(2.39)

.

III. ELECTROMAGNETIC TRANSITIONS

The wave function describing the whole system is

|LRMnβnγ 〉 = NL,nβ
NL,R,nγ

fL,nβ
(β)φL,R,nγ

(γ )

×
√

2L + 1

16π2(1 + δR0)

[
DL

MR(�)

+ (−1)LDL
M−R(�)

]
. (3.1)

The factors NL,nβ
and NL,R,nγ

are related to the norms of the
partial wave functions by

N2
L,nβ

∫ ∞

0

∣∣fL,nβ
(β)

∣∣2
β4dβ = N2

L,nβ

∫ ∞

0

∣∣ϕL,nβ
(β)

∣∣2
dβ = 1,

(3.2)

N2
L,R,nγ

∫ 2π

0

∣∣φL,R,nγ
(γ )

∣∣2| sin 3γ |dγ

= 6

π

∫ π
3

0

∣∣ML,R,nγ
(3γ )

∣∣2
dγ = 1. (3.3)

Note that the integration over β is performed with the measure
β4dβ, while that over γ with the measure | sin 3γ |dγ . These
measures are characterizing the (β, γ ) space within the LDM.
The wave functions just defined will be further used to
calculate the reduced E2 transition probabilities.

In our approach, the quadrupole transition operator is
defined as

T
(E2)

2µ = t1α2µ + t2[α × α]2µ, (3.4)

where α2µ denotes the quadrupole coordinates of the nuclear
surface. The strengths t1 and t2 are free parameters which
are fixed by fitting two particular B(E2) values. The operator
from Eq. (3.4) is written in the laboratory frame coordinates.
Writing the quadrupole coordinates α2,µ in terms of intrinsic
deformation variables β and γ and the Euler angles �, one
obtains for T

(E2)
2µ , the following expression:

T
(E2)

2µ = t1β

[
cos

(
γ − 2π

3

)
D2

µ0 + 1√
2

sin

(
γ − 2π

3

)

× (
D2

µ2 + D2
µ,−2

)] + t2

√
2

7
β2

[
− cos

(
2γ − 4π

3

)

×D2
µ0 + 1√

2
sin

(
2γ − 4π

3

) (
D2

µ2 + D2
µ,−2

)]
.

(3.5)

The argument γ − 2π/3 of the trigonometric functions is
justified by the fact that it defines axis 1 of the principal inertial
ellipsoid. Indeed, the transformation from the laboratory to the
intrinsic frame is a rotation defined by the matrix DL

MR , where

the quantum numbers M and R are eigenvalues of the operator
Q1.

The reduced E2 transition probabilities are defined as

B(E2, Ji → Jf ) = ∣∣〈Ji |
∣∣T (E2)

2

∣∣|Jf 〉∣∣2
, (3.6)

where Rose’s convention [39] was used for the reduced matrix
elements.

Summarizing the results obtained so far, we may say that
the formalism proposed describes the β variable by Eqs. (2.17)
and (2.18), while γ by Eq. (2.34). These equations provide for
the total energy given by Eq. (2.38) a compact form. The wave
functions obtained by solving the quoted equations, together
with the transition operator of Eq. (3.5), are used to calculate
the electric quadrupole transition probabilities. Conventionally
we call the formalism proposed as the sextic and Mathieu
approach (SMA).

Several groups have studied the γ soft nuclei around
γ 0 = π

6 [28–31]. Those approaches differ from the present
formalism by the equations used for the description of β and
γ coordinates.

Since the results of the SMA formalism will be compared
with those obtained by the coherent state model (CSM), in
what follows we shall briefly present its main ingredients.

IV. COHERENT STATE MODEL (CSM)

The CSM defines [8] first a restricted collective space whose
vectors are model states of ground, β, and γ bands. In choosing
these states we were guided by some experimental information
which results in formulating a set of criteria to be fulfilled by
the searched states.

All these required restrictions are fulfilled by the following
set of three deformed quadrupole boson states:

ψg = e[d(b†0−b0)]|0〉 ≡ T |0〉, ψγ = �
†
γ,2ψg, ψβ = �

†
βψg,

(4.1)

where the excitation operators for β and γ bands are defined by

�
†
γ,2 = (b†b†)2,2 + d

√
2

7
b
†
2,2,

(4.2)

�
†
β = (b†b†b†)0 + 3d√

14
(b†b†)0 − d3

√
70

.

From the three deformed states, one generates through
projection three sets of mutually orthogonal states

ϕi
JM = Ni

J P J
M0ψi, i = g, β, γ, (4.3)

where P J
MK denotes the projection operator

P J
MK = 2J + 1

8π2

∫
DJ ∗

MKR̂(�) d�, (4.4)

and Ni
J are the normalization factors and DJ

MK the rotation
matrix elements. It was proved that the deformed and
projected states contain the salient features of the major
collective bands. Since we attempt to set up a very simple
model, we rely on the experimental feature saying that the
β band is largely decoupled from the ground as well as from
the γ bands and choose a model Hamiltonian whose matrix
elements between β states and states belonging either to the
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ground or to the γ band are all equal to zero. The simplest
Hamiltonian obeying this restriction is

H = A1(22N̂ + 5�
†
β ′�β ′ ) + A2Ĵ

2 + A3�
†
β�β, (4.5)

where N̂ is the boson number, Ĵ 2 angular momentum squared,
and �

†
β ′ denotes

�
†
β ′ = (b†b†)00 − d2

√
5
. (4.6)

Higher-order terms in boson operators can be added to the
Hamiltonian H without altering the decoupling condition for
the β band. An example of this kind is the correction

�H = A4
(
�

†
β�2

β ′ + H.c.
) + A5�

†2
β ′ �

2
β ′ . (4.7)

The energies for the β band as well as for the γ band states
of odd angular momentum are described as average values of
H (4.5) or H + �H on ϕ

β

JM and ϕ
γ

JM (J odd), respectively.
As for the energies for the ground band and those of γ band
states with even angular momentum, they are obtained by
diagonalizing a 2 × 2 matrix for each J.

The quadrupole transition operator is considered to be a
sum of a linear term in bosons and one which is quadratic in
the quadrupole bosons:

Q2µ = q1(b†2µ + (−)µb2,−µ) + q2((b†b†)2µ + (bb)2µ). (4.8)

The form of the anharmonic component of Q2µ is justified
by the fact that this is the lowest-order boson term that may
connect the states from β and ground bands in the vibrational
limit, i.e., d small.

Using the Rose convention, the reduced probability for the
E2 transition J+

i → J+
f can be expressed as

B(E2; J+
i → J+

f ) = (〈J+
i ||Q2||J+

f 〉)2. (4.9)

Three specific features of CSM are worth mentioning:

(a) The model states are generated through projection
from a coherent state and two excitations of that

through simple polynomial boson operators. Thus, it is
expected that the projected states may account for the
semiclassical behavior of the nuclear system staying in
a state of high spin.

(b) The states are infinite series of bosons, and thus highly
deformed states can be described.

(c) The model Hamiltonian is not commuting with the
boson number operator, and because of this property
a basis generated from a coherent state is expected to
be most suitable.

The CSM has been successfully applied to several nuclei
exhibiting various equilibrium shapes which, according to the
IBA (interacting boson approximation) classification, exhibit
the SO(6), SU(5), and SU(3) symmetries, respectively. Several
improvements of the CSM have been proposed by considering
additional degrees of freedom such as isospin [9], quasiparticle
[10], or collective octupole coordinates [11,12]. A review of
the CSM achievements is found in Ref. [13].

V. NUMERICAL RESULTS

The formalisms SMA and CSM presented in the previous
sections have been applied for calculating the excitation ener-
gies and the available B(E2) values for five isotopes: 188Os,
190Os, 192Os, 228Th, and 230Th. We start with the excitation
energies analysis. As seen before, the total energy provided
by SMA depends on five parameters: h̄2/2B, a, b, 1

〈β2〉 , and
µ. These were fixed by fitting the excitation energies using
the least-squares procedure. The results are given in Table I.
Concerning CSM, the parameters determining the energies are
d,A1, A2, A3. They were fixed as follows. We cycled d within
a large interval with a small step. For each d we determined
A1 and A2 by fitting the energies of two states, one belonging
to the ground band and one from the γ band. A3 was obtained
by fitting one level energy from the β band. Then we chose
that d which yielded an overall good fit. The fitted parameters
are given in Table I. Using the parameters from Table I, we can

TABLE I. Parameters h̄2/2B, a, b, 1
〈β2〉 , µ involved in the energy expression provided by SMA (2.38), are given for 188Os, 190Os, 192Os,

228Th, and 230Th. Also we give the values for the parameters t1 and t2 defining the transition operator used by SMA (3.5). The last six rows give
the parameters determining the CSM excitation energies, d, A1, A2, A3, and the specific E2 transition operators, i.e., q1 and q2.

188Os 190Os 192Os 228Th 230Th

h̄2

2B
(keV) 2.003 0.865 1.095 1.147 0.467

a 932.16 4115.397 2497.596 1323.661 3041.51
b 20 46.421 81 −41.9 100

1
〈β2〉 2.438 1.455 3.879 2.439 2.59
µ 296 3268 189 2936 9093
t1 5.608 (e b) 8.301 (e b) 7.591 (e b) t1 136.0 [(W.u.)1/2]
t2 79.992 (e b) 426.959 (e b) 210.209 (e b) 3.376t1 1822.4 [(W.u.)1/2]
d 2.35 2.05 1.5 3.14 3.16
A1 (keV) 10.256 9.063 8.531 17.731 13.904
A2 (keV) 14.336 15.679 14.490 15.122 2.650
A3 (keV) 10.130 6.230 15.128 −7.021 −10.000
q1 0.132 (10−1 e b) 0.105 (10−1 e b) 0.437 (10−1 e b) 15.927 (e b) 0.961 [(W.u.)1/2]
q2 −0.226 (e b) −0.272 (e b) −0.315 (e b) −1.132 (e b) −1.255 [(W.u.)1/2]
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FIG. 1. Potentials V +
1 (β) (full line) and

V −
1 (β) (dashed line) for 188Os (a), 190Os (b),

192Os (c), and 228Th (d). These potentials are
given in keV.

draw the β potentials characterizing SMA for the five nuclei.
For a better representation, these plots are collected in Fig. 1
for the first four nuclei and in Fig. 5 for 230Th.

Note that the potentials have different minima points and
different depths for the five isotopes considered in this paper.
Also we notice that V −

1 and V +
1 are only slightly different,

and that happens especially for small values of β. How the
wave functions normalized to unity, for the potentials shown
in Figs. 1 and 5 behave in a β interval, is shown in Figs. 2
and 5, respectively. There are common features revealed by
these pictures. Indeed, functions from ground and γ bands
have no node and one maximum located close to the potential
minimum, while the function describing the state 0+

β has
one node and two extrema, the minimum being close to the
potential minimum.

The γ potential plots are given in Fig. 3 for each of the
nuclei 188,190,192Os and 228Th. The potential for 230Th is given
in Fig. 5.

Some plots of Mathieu functions corresponding to
188,190,192Os and 228Th are given in Fig. 4, while those for

230Th are in Fig. 5. Note that the functions for 0+
g and 12+

g are
almost indistinguishable.

The excitation energies determined with the parameters
listed in Table I are represented in Figs. 6–10. The results are
compared with experimental data taken from Refs. [40–45].
The excitation spectra of the isotopes considered have been
studied by different types of experiments. Thus Os isotopes
were studied by Coulomb excitation using 40Ca, 58Ni, 138Xe,
and 208Pb ions while 228Th by electron capture decay of
228Pa and alternatively by the reactions 230Th(p, t) 228Th and
226Ra(α, 2n)228Th. As shown in Ref. [42], 230Th has been
investigated by similar types of reactions. As seen in Figs. 6–10
all nuclei but 230Th have the common feature of having the
β band more excited than the γ band. For this reason, we may
say that all of them are γ unstable nuclei.

There is a long-standing debate about the nature of the
spectra characterizing Os isotopes. Some groups consider
these nuclei as being γ soft [4,46,47], while others as
asymmetric rotor [5] which assumes rigidity in the γ degrees of
freedom. The equilibrium values, γ 0, predicted by Leander for
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FIG. 2. Functions in β variable for 188Os (a),
190Os (b), 192Os (c), and 228Th (d).
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FIG. 3. Potentials V2(γ ) for 188Os (a), 190Os
(b), 192Os (c), and 228Th (d), given in keV.

188,190,192Os in Ref. [47] are 200, 200, 250, respectively, which
might be considered closer to the γ 0 = 300 picture of the ideal
triaxial liquid drop. The Os isotopes considered here have been
treated [48] in terms of the IBA model in the transition region
from the rotor to γ unstable limit. Actually, in Ref. [49], these
isotopes are considered textbook examples of this transition.
The triaxial vibration rotation model (TRVM) [50] predicts
for 228Th γ 0 = 130. One may ask why we add to the set of
nuclei mentioned before the isotope 230Th. The reason is as
follows. It is well known that the most distinctive signature of
the triaxial rigid rotor is the equation relating the energies of
three particular states

E2+
1

+ E2+
2

= E3+
1
. (5.1)

Actually this equation is only approximately obeyed. Denoting
by �E the modulus of the difference between the left- and
right-hand sides of the mentioned relation, the experimental

data for the five nuclei lead to the values

�E = 2, 11, 5, 4, 8 keV, (5.2)

for 188Os, 190Os, 192Os, 228Th, and 230Th, respectively. Clearly
these deviations suggest that the nuclei considered in the
present paper are close to an ideal triaxial rotor. As a matter
of fact, this is the experimental feature which inspired us to
take the γ = 300 as the reference picture. Deviations from this
static situation were considered by a Taylor expansion. It is
worth mentioning that the Th isotopes considered here have
been found [51,52] to be located in the region with octupole
vibration, as opposed to octupole deformation, the boarder
between the two regions located at 224Th or 226Th [51–53].
One may say that the Th isotopes may be used to study not
only the transition from γ unstable to triaxial shapes but also
the one from octupole deformed to octupole vibrational nuclei.
It is an open question whether a quadrupole triaxial shape may
favor the onset of the static octupole deformation.
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FIG. 4. Functions in γ variable for 188Os (a),
190Os (b), 192Os (c), and 228Th (d).
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some eigenfunctions in β (c), and γ (d) for 230Th.

The results of our calculations with SMA as well as with
CSM are presented in Figs. 6–10. From these figures, we
may conclude that the SMA procedure provides a reasonable
quantitative description of the experimental data. Moreover,
the two theoretical methods yield agreements with the data of
similar quality.

Let us discuss now the results concerning the transition
probabilities. The SMA made use of an anharmonic transition
operator written in the intrinsic frame of reference (3.5), while
CSM employs a second-order boson operator in the laboratory
frame (4.8). In both cases the operators involve two parameters:
t1 and t2 for SMA and q1 and q2 for CSM. These parameters
were fixed by fitting two particular transitions for each nucleus.
The fitted parameters are given in Table I. Experimental data
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FIG. 6. Excitation energies, given in keV, for ground, β, and γ

bands of 188Os, calculated by the present approach (SMA) and CSM,
compared with the corresponding experimental data [40,41].

for the five nuclei were taken from different sources, and for
that reason they are presented in different manners.This is the
reason for which the results for 228Th and 230Th are given in
separate tables.

Inspecting Table II, we notice that both formalisms describe
fairly well the intratransition in the ground and γ bands.
Concerning the transitions J+

γ → J+
g , we remark that they

are quantitatively well described by both theoretical methods.
CSM predicts for the B(E2) associated with the transition
J+

γ → (J − 2)+g a value comparable to that corresponding
to the transition J+

γ → J+
g . Concerning the transition J+

γ →
(J + 2)+g , CSM predicts B(E2) values small but comparable
to the experimental data, while SMA yields vanishing values.

For 228Th we present, in Table III, results for some
branching ratios which are compared with the corresponding
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FIG. 7. Same as in Fig. 6, but for 190Os. Data are from
Refs. [40,42].
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data taken from Ref. [44]. Within SMA we determined the
ratio t2/t1 by fitting one particular branching ratio. Thus, to
determine t1, information about a E2 transition is needed.
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FIG. 9. Same as in Fig. 6, but for 228Th. Experimental data are
from Ref. [44].
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FIG. 10. Same as in Fig. 6, but for 230Th. Experimental data are
from Ref. [45].

Theoretical results agree quite well with the data. Note
again that the B(E2) values of the transitions 2+

γ → 4+
g and

4+
γ → 6+

g provided by SMA are vanishing. The corresponding
experimental data are small in magnitude.

The results for 230Th are listed in Table IV, where the
experimental data taken from Ref. [45] are also given. We
see that the intraband transitions have a collective character,
while the interband ones are of the order of a Weisskopf unit,
which is consistent with the commonly accepted definition of
rotational bands.

As we mentioned before, a signature for triaxiality within
the rigid rotor formalism is given by Eq. (5.1). Many authors
investigated the transition from the γ unstable regime to a
triaxial behavior. The two nuclear phases are characterized
by different doublet structures in the γ band. While in the
γ unstable limit the γ -band levels form doublets arranged
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TABLE II. Some B(E2) values for 188,190,192Os obtained within two theoretical approaches, SMA and CSM, compared with the
corresponding experimental data [40].

B(E2) (e b)2 188Os 190Os 192Os

Ji → Jf Expt. SMA CSM Expt. SMA CSM Expt. SMA CSM
2+

g → 0+
g 0.502 0.502 0.456 0.468 0.468 0.360 0.424 0.424 0.236

4+
g → 2+

g 0.776 0.722 0.744 0.623 0.684 0.579 0.497 0.632 0.449
6+

g → 4+
g 0.843 0.945 0.918 0.679 0.912 0.708 0.660 0.858 0.611

8+
g → 6+

g 0.927 1.103 1.062 0.814 1.079 0.814 0.754 1.030 0.754
10+

g → 8+
g 1.191 1.232 1.191 0.754 1.218 0.909 0.688 1.175 0.887

4+
γ → 2+

γ 0.352 0.302 0.369 0.389 0.291 0.350 0.298 0.261 0.277
6+

γ → 4+
γ 0.466 0.392 0.764 0.520 0.384 0.741 0.336 0.352 0.595

8+
γ → 6+

γ 0.382 0.593 0.984 0.398 0.590 0.976 0.314 0.549 0.814
2+

γ → 0+
g 0.047 0.005 0.165 0.039 0.001 0.202 0.037 0.006 0.192

2+
γ → 2+

g 0.150 0.150 0.150 0.227 0.227 0.155 0.303 0.303 0.055
2+

γ → 4+
g 0.029 0.000 0.001 0.007 0.000 0.001 0.024 0.000 0.000

4+
γ → 2+

g 0.009 0.003 0.163 0.005 0.001 0.220 0.002 0.004 0.274
4+

γ → 4+
g 0.134 0.031 0.202 0.229 0.050 0.229 0.203 0.068 0.137

4+
γ → 6+

g 0.036 0.000 0.001 0.048 0.000 0.000 0.018 0.000 0.000
6+

γ → 4+
g 0.001 0.002 0.194 0.003 0.001 0.269 0.000 0.002 0.357

6+
γ → 6+

g 0.164 0.018 0.227 0.238 0.030 0.270 0.171 0.042 0.171

as 2+, (3+, 4+), (5+, 6+), . . . , the rigid rotor doublets are
(2+, 3+), (4+, 5+), (6+, 7+), . . . . Transition from one regime
to another has been studied by one of us (A.A.R.) in Ref. [12]
within the CSM formalism. In the vibrational limit, the
doublets of the γ unstable picture become degenerate states.
Going with deformation apart from zero, the degeneracy
is lifted up, the doublet structure shows up, and for large
deformation the doublet structure specific to triaxial shape
is set on. The transition is also reflected in the dependence of
the ratio

TJ = B(E2; (J + 1)+γ → J+
γ )

B(E2; 2+
g → 0+

g )
(5.3)

TABLE III. Some B(E2) branching ratios for 228Th calculated
alternatively within SMA and CSM, and compared with the corre-
sponding experimental data [44].

B(E2) ratios 228Th

Ji ; Jf 1, Jf 2 Expt. SMA CSM

2+
γ → 0+

g 0.450 0.450 0.450
→ 2+

g 1.000 1.000 1.000
→ 4+

g 0.031 0.000 0.064
3+

γ → 2+
g 1.000 1.000 1.000

→ 4+
g 0.670 0.890 0.797

4+
γ → 4+

g 1.000 1.000 1.000
→ 6+

g 0.062 0.000 0.017
2+

β → 0+
g 0.410 0.374 0.590

→ 2+
g 1.000 1.000 1.000

→ 4+
g 4.200 1.800 1.870

4+
β → 4+

g 1.000 1.000 1.000
→ 6+

g 4.700 1.247 1.490

on the deformation parameter d. In the limit of d → 0, the
function TJ is vanishing for some angular momenta. In the
first interval of d, TJ is an increasing function then, it reaches
a maximum value and then decreases. In the region of large d,

the values TJ are clustered in the same manner as the energy
levels.

Another group [54,55] considers the level staggering in the
γ band as a sensitive signature for triaxiality. The doublet
structure is reflected in the sawtooth shape of the function

S(J )= [E(J ) − E(J − 1)] − [E(J − 1) − E(J − 2)]

E(2+
g )

, (5.4)

where E(J ) stands for the energy of the state J+ belonging to
the γ band. It is worth noting that S(J ) is proportional to the
discrete second derivative of E(J ) with respect to J . To see
whether this signature is revealed also by the present approach,
we plotted in Figs. 11 and 12 the function S(J ) for the nuclei
considered here. As shown there, experimental evidence for
staggering is found for 192Os, but very weak staggering can be

TABLE IV. Results for the B(E2) values of a few transitions in
230Th, obtained within SMA and CSM formalisms, and compared
with the corresponding experimental data [45].

B(E2) (W.u.) 230Th

Ji → Jf Expt. SMA CSM

2+
g → 0+

g 192 192 192
4+

g → 2+
g 261 271 480

2+
β → 0+

g 1.1 1.8 0.25
2+

β → 4+
g 3.8 13.8 1.50

2+
γ → 0+

g 3.0 0.34 5.49
2+

γ → 2+
g 5.4 5.4 5.40

2+
γ → 4+

g 0.35 0 0.10
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(a) (b)

(d)(c)

FIG. 11. Experimental and theoretical S(J )
for 188,190,192Os and 228Th.

seen in 188,190Os and 228Th. The staggering in 192Os is quite
well described by SMA, while for the other mentioned nuclei,
the CSM is closer to the experimental data. For 230Th, there
are not enough relevant data, while the two formalisms, SMA
and CSM, keep the pattern shown for other nuclei. We note
that the oscillation amplitude of S(J ) is increasing with J . As
mentioned before, the transition to a triaxial regime in CSM is
determined by anharmonicities and quadrupole deformation.
Within the SMA, which describes the deformations β and
γ in the intrinsic frame, the triaxial shape is assumed from
the beginning when a potential with a minimum in γ0 = π

6
is chosen and the rotational term is expanded in powers of
γ around γ = π

6 . Actually this is reflected in Fig. 11, which
suggests an excess of staggering. It is interesting to notice that
while Eq. (5.2) recommends 188,190Os and 228Th as exhibiting
a triaxial shape, from Fig. 11 we see that experimental data
as well as the CSM indicate that these nuclei show either no
staggering (188Os) or a weak staggering (190Os and 228Th).
In this context it is still unclear which of the two signatures,
Eq. (5.1) or the level staggering in the γ band, is more closely
related to the shape triaxiality.

Triaxiality has been investigated within the IBA formalism
in relation to various effects. Thus including higher-order
terms, the triaxiality of 190,192Os has been studied in Ref. [56].
Including the g boson, in a recent study [57] no shape or

4 5 6 7 8 9 10
0.5

0.0

0.5

1.0

J

S
J

CSM
SMA
Exp 230Th

FIG. 12. Experimental and theoretical S(J ) for 230Th.

phase transition toward stable triaxial shapes was found. A
phase diagram of IBA-2 (which distinguishes protons from
neutrons) including triaxial shapes has been constructed in
Refs. [58–60].

Triaxiality has recently been studied in the framework of the
algebraic collective model [61], and the onset of rigid triaxial
deformation has been considered [62].

VI. CONCLUSIONS

Here we summarize the main results obtained in the pre-
vious sections. The LDM Hamiltonian written in the intrinsic
frame of reference was amended by a potential depending
on the dynamic variables β and γ and chosen such that the
equation for β is separated from that for γ . The first equation is
that for a sextic oscillator potential. Choosing as a trial function
a product of a polynomial of degree n and an exponential
function, solving the differential equation is reduced to solving
an simple eigenvalue equation of a known tridiagonal matrix
having as eigenvectors the polynomial coefficients. In the limit
of small deviation from the shape with γ 0 = π

6 the equation in
γ is obeyed by Mathieu functions. The formalism obtained is
conventionally called the sextic and Mathieu approach (SMA).
The total energy depends on five parameters which were fixed
by a fitting procedure. Transition probabilities were treated
by using an anharmonic transition operator involving two
parameters which are to be determined by fitting two particular
B(E2) values.

The formalism was applied to five nuclei: 188,190,192Os,
228Th, and 230Th. The comparison with experimental data
shows a good agreement between the corresponding results
and data. We also compare the SMA results with those obtained
with CSM. They are close to each other, although one is
using intrinsic variables while the other is a boson description.
Actually there is a strong reason for the closeness of the two
quantitative descriptions. Indeed, following the procedure used
in Ref. [63], one can show that the sextic oscillator equation can
be derived starting with the CSM Hamiltonian, dequantizing
it, treating the classical equations, and then quantizing them.
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Also, by quantizing the classical variable γ defined in the
dequantized picture in the manner described in Ref. [64], one
may obtain a Mathieu equation. Details about this comparison
will be published elsewhere.

Before closing this section, we would like to mention
that several authors have previously treated the γ soft nuclei
around γ 0 = π

6 [28–31]. However, their equations for β as
well for γ variables are different from those proposed in
the present paper. The β potential is either an infinite square
well [28] or a Coulomb or Kratzer potential [29–31]. Recently
[65], the Davidson potential was used in relation to triaxial
nuclei. Concerning γ , all quoted descriptions use an oscillator
potential. The sextic potential was previously used in Ref. [34]
but only for a few low-lying states. Again, the description of
γ is different.

As a final conclusion, SMA provides a realistic tool for
the description of nuclei with equilibrium shapes close to
γ 0 = π

6 .
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APPENDIX

Here we treat a few examples corresponding to M = 0,
M = 1, M = 2, and M = 3.

The case M = 0:

P (0)
n (x2) = c00, 0c00 = λc00,

E(0)
n = 4bs + λ(0)

n = 4bs, ψ (0)
n (x) ∼ c00x

2s− 1
2 e− ax4

4 − bx2

2 ,

n = 0, 1, . . . . (A1)

Here we introduced the notation

λ ≡ E − 4bs. (A2)

The case M = 1:

P (1)
n (x2) = c10 + c11x

2,

(
0 −4(2s + 0)

−4a 4b

) (
c10

c11

)
= λ

(
c10

c11

)
,

E(1)
n = 4bs + λ(1)

n ,

ψ (1)
n (x2) ∼ [

c10
(
λ(1)

n

) + c11
(
λ(1)

n

)
x2

]
x2s− 1

2 e− ax4

4 − bx2

2 ,

n = 0, 1, . . . . (A3)

The case M = 2:

P (2)
n (x2) = c20 + c21x

2 + c22x
4,⎛

⎜⎝
0 −4(2s + 0) 0

−8a 4b −8(2s + 1)

0 −4a 8b

⎞
⎟⎠

⎛
⎜⎝

c20

c21

c22

⎞
⎟⎠ = λ

⎛
⎜⎝

c20

c21

c22

⎞
⎟⎠ ,

E(2)
n = 4bs + λ(2)

n , ψ (2)
n (x2) ∼ P (2)

n (x2)x2s− 1
2 e− ax4

4 − bx2

2 ,

n = 0, 1, . . . . (A4)

The case M = 3:

P (3)
n = c30 + c31x

2 + c32x
4 + c33x

6,

⎛
⎜⎜⎜⎝

0 −4(2s + 0) 0 0

−12a 4b −8(2s + 1) 0

0 −8a 8b −12(2s + 2)

0 0 −4a 12b

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c30

c31

c32

c33

⎞
⎟⎟⎟⎠

= λ

⎛
⎜⎜⎜⎝

c30

c31

c32

c33

⎞
⎟⎟⎟⎠ ,

E(3)
n = 4bs + λ(3)

n , ψ (3)
n (x2) ∼ P (3)

n (x2)x2s− 1
2 e− ax4

4 − bx2

2 ,

n = 0, 1, . . . . (A5)

Looking at the matrices obtained for the four cases considered
above (M = 0, 1, 2, 3), it is clear that by induction one can
write the matrix for a general case M = k, where k ∈ N .
Actually this general form has been used to solve the sextic
potential equation for high angular momenta. Details about
solving the equation for a centrifugal plus sextic oscillator
potential can be found in Ref. [66].
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