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Localization in light nuclei
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We investigate the presence of spatial localization in nuclei using a method that maps the nucleon same-spin
pair probability and is based on the density matrix. The method is used to study spatial localization of light nuclei
within the Hartree-Fock approximation. We show that the method provides an alternative tool for studying spatial
localization in comparison to the localization observed from maxima in the nuclear mass density.
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I. INTRODUCTION

Clustering phenomena in light nuclei have always been
an intriguing aspect of nuclear structure physics. Theoretical
understanding of why and how conglomeration of nucleons to
subunits within a nucleus results in an increase in stability
remains an actively investigated question. In particular, α

clustering in light nuclei has a long history [1–4] and suggests
the existence of configurations resembling the formation of nu-
clear molecules [5–7]. It has also been suggested that neutron-
rich isotopes of some light nuclei may give rise to new types of
cluster structures [7,8]. Most of the theoretical analyses of clus-
ter structures have been performed with a priori initialization
in terms of clusters and effective interactions, which are deter-
mined so as to reproduce the binding energies and scattering
phase shifts of these configurations. In contrast, nuclear struc-
ture calculations based on independent-particle approximation
or density functionals also manifest cluster-like substructures
as marked concentrations of density in the visualization of the
total nuclear mass density. For example, Hartree-Fock (HF)
calculations for light nuclei often show such formations [9],
however, because the HF single-particle states are generally
spread across the whole nucleus, they are delocalized, which
makes the entanglement of these substructures in terms of
single-particle orbitals very difficult. Furthermore, the identi-
fication of cluster and shell structures based only on the mass
density may be an oversimplification, as it is missing other as-
pects of the many-body system, for example, the kinetic energy
density or density gradients, which may help to provide a more
detailed understanding of the underlying structure. Finally,
with the rising popularity of the density functional approach in
nuclear physics, it may be desirable to have a new localization
measure that stems directly from the nuclear density matrix,
as all of the information is contained in this quantity.

II. THE LOCALIZATION MEASURE

A. Outline of formalism

An alternative measure of localization had been developed
in the context of a mean-field description for electronic systems
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[10]. A fermionic mean-field state is fully characterized by the
one-body density matrix

ρqσσ ′(r, r′) =
∑
α∈q

φα(rσ )φ∗
α(r′σ ′). (1)

The probability of finding two nucleons with the same spin
at spatial locations r and r′ (same-spin pair probability) for
isospin q is given by

Pqσ (r, r′) = ρqσ (r)ρqσ (r′) − |ρqσσ (r, r′)|2, (2)

where ρqσ (r) = ρqσσ (r, r) is the local density. The conditional
probability of finding a nucleon at r′ when we know with
certainty that another nucleon with the same spin and isospin
is at r is

Rqσ (r, r′) = ρqσ (r′) − |ρqσσ (r, r′)|2
ρqσ (r)

. (3)

Because we are interested in the localization aspects of this
probability, it is sufficient to consider only the local short-range
behavior of the conditional probability, which one can obtain
by performing a spherical averaging over a shell of radius
δ about the point r and then Taylor expanding the resulting
expression to get [10]

Rqσ (r, δ) ≈ 1

3

(
τqσ − 1

4

[∇ρqσ ]2

ρqσ

− j2
qσ

ρqσ

)
δ2 + O(δ3), (4)

where τqσ and jqσ are the kinetic energy density and current
density given by

τqσ (r) =
∑
α∈q

|∇φα(rσ )|2,

jqσ (r) =
∑
α∈q

Im[φ∗
α(rσ )∇φα(rσ )],

∇ρqσ (r) = 2
∑
α∈q

Re[φ∗
α(rσ )∇φα(rσ )].

The reason for writing ∇ρqσ explicitly is to emphasize that to
have a smooth behavior of the quantities calculated below,
it is essential to calculate all quantities directly from the
wave functions. The expression shown in Eq. (4) suggests
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the definition of a localization measure,

Dqσ (r) =
(

τqσ − 1

4

[∇ρqσ ]2

ρqσ

− j2
qσ

ρqσ

)
, (5)

which is also valid for time-dependent Slater determinants
[11]. It is important to remember that Dqσ is the short-range
limit of the conditional like-spin pair probability and may
contain correlations that are not evident in simple one-
body observables, such as the mass density. The localization
measure defined by Eq. (5) is a reverse relation, for example,
the higher the probability of finding two like-spin particles
in the vicinity of each other, the smaller the value of D. For
this reason it is customary to define a reversed and normalized
localization measure,

Cqσ (r) =
⎡
⎣1 +

(
τqσ ρqσ − 1

4 [∇ρqσ ]2 − j2
qσ

ρqσ τTF
qσ

)2
⎤
⎦

−1

,

(6)

τTF
qσ = 3

5
(6π2)2/3ρ5/3

qσ ,

where τTF
qσ is the Thomas-Fermi kinetic energy density. The

latter is used to provide a natural scale, which then allows
the definition of a dimensionless measure. The current density
vanishes in the static case, which we consider in the following.

B. Limiting cases and interpretation

This criterion, Eq. (6), is known in electronic systems as the
electron localization function and it is used as one ingredient
to analyze the bond structure of molecules in the static [10]
and dynamic [11] domains. The information content of the
localization function is understood by considering limiting
cases.

The extreme case of ideal metallic bonding is realized for
homogeneous matter where τ = τTF

qσ . This yields C = 1
2 , a

value that thus signals a region with a nearly homogeneous
Fermi gas as is typical for metal electrons, nuclear matter,
or neutron stars. The opposite regime is space regions
where exactly one single-particle wave function of type qσ

contributes. This is called localization in molecular physics.
Such a situation yields Dqσ (r) = 0, as it is not possible to find
another like-spin state in the vicinity, and consequently, C = 1,
the value that signals localization. It should be noted that the
localization function is invariant under unitary transformations
among the single-particle wave functions in a Slater state [12].
In the nuclear case, it is the α particle that is perfectly
localized in this sense, that is, that has C = 1 everywhere for all
states. Well-bound nuclei usually show metallic bonding and
predominantly have C = 1

2 . Light nuclei are often expected to
contain pronounced α-particle substructures. Such a substruc-
ture means that in a certain region of space only an α particle is
found, which in turn is signaled by C = 1 in this region. In fact,
an α substructure is a correlation of four particles: p ↑, p ↓,
n ↑, and n ↓. Thus it is signaled only if we find simultaneously,
for all four corresponding localization functions, Cqσ ≈ 1. In
the following, we consider mainly N = Z nuclei for which
the four different particles have very similar wave functions.

In this case, it suffices to consider, pars pro toto, only one
localization function. Furthermore, it should be noted that
a full identification of α-cluster substructures requires also
checking the correlations among the four nucleons gathering
in a “localized” region of the nucleus. The localization function
is just the first step to identifying those regions, namely, the
minimum necessary condition.

III. RESULTS AND DISCUSSION

In our calculations, the static HF equations are solved on
a Cartesian three-dimensional mesh without any symmetry
assumptions. The grid spacing was 1 fm, with a box size of
(−15.5,+15.5) fm in each dimension. The Skyrme energy
functional was employed with the parametrization SkI3 [13].
The spatial derivatives are calculated using the fast Fourier
transform and periodic boundary conditions are employed,
except for the Coulomb potential, which is calculated with
boundary conditions at infinity as described in Ref. [14].

A. Ground states of N = Z nuclei

Figure 1 shows an x-z cut of the localization function,
Eq. (6), for even-even N = Z nuclei from A = 4 to A = 20.
The left panel shows the proton localization criterion Cp↑
complemented in the right panel by the corresponding total
density. As mentioned above, the states are spin symmetric,
which yields identical localization plots for spin-up and spin-
down. Moreover, for light N = Z nuclei proton and neutron
localizations are very similar owing to the small Coulomb
interaction. (For neutron-rich isotopes this is no longer true,
as we show below.) The color (gray-scale) coding is shown
at the top of each column and remains the same throughout
the column. The position of the density contour at half nuclear
matter density (ρ = 0.08 fm−3) is indicated by the color cyan
in the maps of proton localization. One should keep in mind
that the maxima and minima of the total nuclear density need
not be correlated with those of the localization function, which
is a topological quantity to describe localization (see also
Fig. 2 and discussion thereof). The top panel in Fig. 1 shows
the calculations for the 4He nucleus. As we have described
previously we see a perfect localization, with C = 1 in all
relevant regions where ρ > 10−4 fm−3. Lower densities lead to
erroneous results for C, owing to the very subtle cancellations
required. The strongly prolate 8Be shows a very distinct
localization pattern, with perfect localization in the left and
right halves of the contour plane and much smaller localization
in the contact region where the wave functions overlap. As
can be seen, this is much more pronounced in comparison to
the total mass density plot. Here, it is probably reasonable to
conclude that 8Be can be considered an α-α molecule. With
this version of the Skyrme force the ground state of 12C is
oblate deformed as shown in the right panel in Fig. 1. One
may be tempted to consider this a planar arrangement of three
α particles. A slight indication of that may be spotted in the
localization plot. But it is not well developed, the configuration
is too compact, and it shows preferably metallic binding, as
we can see from the localization (left column), which stays
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FIG. 1. (Color online) Color map (gray-scale) plots of proton
localization (left column) and total density (in fm−3; right column)
for Z = N nuclei up to 20Ne. The position of the density contour at
half nuclear matter density (ρ = 0.08 fm−3) is indicated by the color
cyan (light gray) in the maps of proton localization.

safely in a regime C ≈ 1/2. The strongly bound 16O nucleus
mostly shows a localization value of C = 1

2 throughout, as one
would have expected. Its density is known to have a dip at the
center [15]. This cannot be discriminated in the density plot
here but can be observed as a region of lower localization in
the localization map plot. To examine this further, we repeated
the same calculation for 16O using the SLy4 interaction [16].
In Fig. 2 we show a cut through the profile of the density
and, similarly, through the localization function. We observe
that the central dip in the total density is barely visible.
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FIG. 2. Density profile and localization function for the 16O
nucleus.

The localization function, however, shows a very pronounced
dip, indicating a strong and irreducible overlap of all wave
functions in this center region. Note, furthermore, that the
maxima of mass density and localization do not coincide.
The localization has a preference toward the surface, where
the lower density enhances the chance of finding one prevailing
wave function.

Finally, the last panel in Fig. 1 shows results for the
strongly prolate 20Ne nucleus. The localization map shows
two regions of high localization at the outer ends and a ring
of somewhat enhanced localization at the center around the
elongation axis. One can interpret this as a quasimolecular
α-12C-α configuration. The α substructures on both sides are
almost as well developed as in 8Be. We have also computed the
further series of N = Z nuclei, 24Mg, 28Si, 32S, 36Ar, and 40Ca.
These nuclei are increasingly compact and all show basically
metallic binding similar to that of 12C and 16O shown here.

B. Strongly deformed configurations of light N = Z nuclei

Very light N = Z nuclei are likely to display isomeric, or at
least transiently stable, configurations that are very elongated
and resemble chains of α particles [20]. For somewhat heavier
N = Z one often finds shape coexistence with strongly prolate
deformed nuclear configurations [21]. Such less bound and
spatially more extended configurations are more likely to
allow for α substructures. We thus have also considered such
isomeric configurations for a number of light N = Z nuclei.
These configurations were found numerically by starting
the static iteration from a sufficiently prolate configuration
such that the iteration converged to the elongated isomeric
state. Chain configurations were found immediately for 12C
and 16O, while the heavier systems preferred to maintain
a compact core between the α satellites. It is to be noted
that these configurations are stable minima in a mean-field
calculation. They may hybridize with the ground state in
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FIG. 3. (Color online) As Fig. 1, but for chain-like isomers of 12C
and 16O.

correlated calculations. Still, such configurations may show
up as transient configurations in nuclear reactions [20].

Figure 3 shows the total density and localization plots
for the linear-chain states of 12C and 16O nuclei. For both,
the density suggests an α-chain structure, which is, indeed,
corroborated by the localization, which also shows three or
four clearly separated maxima, C ≈ 1. The region of high
localization is very large at both ends but much smaller for
the maxima in the interior, owing to the larger wave-function
overlap. One interesting point about the 12C linear-chain con-
figuration localization plot is that, in studying the dynamical
formation of this chain state, as done in Ref. [17], we have
observed that the dynamical vibrations of the mass density
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FIG. 4. (Color online) As Fig. 1, but for stretched isomers of 24Mg
and 28Si.

resembled the localization plot with only the equilibrium
shape having the triple-α structure. This is consistent with the
kinetic interpretation of the localization function, suggesting
that kinetic energies of the same-spin pairs peak mostly around
the ends of the linear chain.

Figure 4 shows strongly prolate (not yet chain-like isomers,
which lie higher in energy) isomers of 24Mg and 28Si.
Unlike the compact ground-state configurations, these isomers
indicate interesting molecular substructures. One may interpret
24Mg as an α-12C-α-α molecule and 28Si as an α-α-12C-α-α.
Again, the outermost α’s are best developed, with large
regions of high localization. The inner α particles have already
degraded localization owing to neighboring wave functions
from both sides.

C. An example for N > Z: The 20C chain

Recently, much interest has been devoted to the study
of cluster configurations for neutron-rich isotopes of light
nuclei [5,6,18]. In particular, the linear-chain configurations
of C isotopes and their stability against bending modes has
been of interest. For nuclei with N > Z, where proton and
neutron wave functions are naturally different, the search for
α substructure requires a simultaneous analysis of proton and
neutron localization. To that end, we consider also as an
α localization the combination

√
Cp↑Cn↑. The spin-up and

spin-down wave functions are still degenerate such that it
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FIG. 5. (Color online) Color map plots of localizations and
density for the linear-chain configuration of 20C. Lower left: proton
localization. Upper left: neutron localization. Lower right: α localiza-
tion (≡√

Cp↑Cn↑). Upper right: total density (in fm−3). The position
of the density contour at half nuclear matter density (ρ = 0.08 fm−3)
is indicated by cyan color (light gray) in the maps of localization.
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suffices to consider one of the spins. In Fig. 5 we show proton,
neutron, and α localization plots for the linear-chain isomer
of the 20C nucleus. As expected, owing to the neutron excess
of 20C the localization plots for neutrons and protons look
considerably different. The protons show more distinct regions
with high localization values in comparison to the neutron
case, where the wave functions have more overlap owing to
the large number of neutrons. The α localization is the obvious
average of the two left panels. Despite the neutron cloud from
the excess neutrons, some faint α substructure still appears at
the edges of the chain. It is also interesting to observe that
the total mass density does not show any pronounced features
owing to the smoothing effect of the surplus neutrons, while
the localization plots still reveal noteworthy structures.

IV. CONCLUSION

In summary, we have applied a localization measure that
was developed originally for analyzing bonding structures in
molecules to a study of α substructures in light nuclei. The
localization function is obtained directly from the density
matrix, in the mean-field approximation. It depends on the
kinetic-energy density and current density, in addition to
the mass density. It can be easily implemented for density
functional theory calculations of nuclear structure. One of

the fundamental reasons why the new localization measure
is such an excellent predictor of correlation and localization
is that it incorporates the kinetic energy of the relative motion
of spin-parallel nucleons at a particular point in space, in
addition to the mass density for the system [19]. In most cases
this localization function shows more detailed localization or
clustering features in comparison to the total mass density.
Results for N = Z nuclei up to 40Ca show that pronounced
localization, associated with α-particle substructures, appear
only for the strongly prolate ground states of 8Be and 20Ne and,
of course, trivially for 4He. All other nuclei are more compact
and show metallic binding. However, stretched isomers of
light nuclei often show convincing α structures, particularly
well developed for the α chains of 12C and 16O, but also
for the prolate 24Mg and 28Si isomers. In the future we also
plan to study the new localization function in time-dependent
HF calculations of systems related to nuclear molecular
configurations.
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