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Projected shell model study of yrast states of neutron-deficient odd-mass Pr nuclei
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A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A = 130 mass region.
Highly deformed nuclei have been found in this region, providing opportunities to study the deformed rotational
bands. The description of the 125,127,129,131,133Pr isotopes with the projected shell model is presented in this paper.
Good agreement between theory and experiment is obtained and some characteristics are discussed, including the
dynamic moment of inertiaJ (2), kinetic moment of inertiaJ (1), the crossing of rotational bands, and backbending
effects.
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I. INTRODUCTION

The study of neutron-deficient nuclei in the A-130 mass
region has been an interesting subject in nuclear structure
physics [1]. In this mass region a highly-deformed band was
observed first in 132Ce [2], where a series of γ -ray transitions
with an energy separation of approximately 70 keV were
found. This band was quantitatively described by the projected
shell model (PSM) [3]. 132Ce has played a central role in the
investigation of superdeformed structure of A-130 nuclei.
The major interest in studying A-130 nuclei is to understand
the different contributions of neutrons and protons. In these
nuclei both neutrons and protons occupy the high-j h11/2

intruder orbitals. In odd-mass Pr nuclei, for example, the
neutron orbitals evolve in the middle of the h11/2 shell,
while the proton Fermi surface lies in the lower part of the
shell. Rotation alignment of the h11/2 protons would drive the
nucleus to a prolate shape, while alignment of h11/2 neutrons
would produce an opposite effect in deformation. This poses
an interesting situation with strong competition of neutrons
and protons in a fast rotating system.

The yrast bands in odd-Pr nuclei are characterized by a
decoupled h11/2 proton configuration for low spin states and
rotation alignment of an additional pair of nucleons for high
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spin states [4–7]. These bands have been investigated with
the cranked shell model (CSM) in which the calculations
predicted that the band crossing occurs around h̄ω ≈ 0.5 MeV
while the experimental data suggested a lower value around
h̄ω ≈ 0.4 MeV [6,8]. The origin of the crossing has not been
well understood despite many intensive studies. There have
been suggestions that it is attributed to the neutron alignment
[6,9–11], whereas other studies indicated an alignment of
a pair of protons [5,12]. We may thus conclude that the
configuration assignment for the high spin states in these
odd Pr nuclei and the nature of the rotation alignment are
still open questions. In the past two decades, the projected
shell model [13] has been applied to study the structure of
high spin states. Different from the CSM, which works in
the intrinsic frame, the PSM transforms the configurations
to the laboratory frame by using the angular momentum
projection, and further mixes them in the laboratory frame
by diagonalizing a two-body Hamiltonian. Mixing of the
configurations in the laboratory frame removes ambiguities in
the band-crossing region in the CSM, which is a well-known
problem of the cranking approximation first pointed out by
Hamamoto [14]. Thus the PSM is in principle better suited
for the study of the band-crossing phenomenon. The PSM has
been extensively applied to study superdeformed as well as
normal deformed bands in different mass regions [3,15–19].
The recent PSM calculations for the even-even 124–130Ce
isotopes [20,21], the 98–102Sr and 100–104Zr isotopes [22], the
neutron-rich 154–160Nd and 156–162Sm isotopes [23], as well
as for very heavy nuclei [24] and light nuclei [25], have
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shown satisfactory agreement with experimentally observed
yrast bands and demonstrated the ability of the PSM to describe
the backbending phenomenon.

The purpose of the present work is to carry out a systemati-
cal study on the yrast bands in the odd-mass 125–133Pr nuclei, a
set of isotopes which are difficult to describe. We demonstrate
that it is possible to reproduce the experimental data with the
PSM by using the same set of parameters as in the even-even
nuclei in the A = 130 mass region, and we further provide
detailed analysis for the structure of these isotopes. The paper
is arranged as follows. An outline of the PSM is given in Sec. II.
Theoretical discussion and comparison with experimental data
are presented in Sec. III. Finally, conclusions are drawn in
Sec. IV.

II. OUTLINE OF THE PROJECTED SHELL MODEL

The PSM has been developed as a shell model truncation
scheme which is implemented in a deformed single-particle
basis [13]. Pairing correlations are included in this basis,
which is constructed by the quasiparticle (qp) states obtained
from a Nilsson + BCS calculation. The shell model trunca-
tion is carried out by considering the low-lying multi-qp
configurations around the Fermi levels. We then use the
angular-momentum-projection method to restore the rotational
symmetry violated in the deformed basis. Finally, the two-body
Hamiltonian is diagonalized in the projected basis.

The following set of multi-qp configurations is used for
odd-proton nuclei:

|�k〉 = {a†
π |0〉, a†

πa
†
ν1a

†
ν2|0〉}, (1)

where a†’s are the qp creation operators and k labels each
configuration. The states are written in the Nilsson + BCS
representation, with ν’s (π ’s) representing the neutron (proton)
Nilsson quantum numbers, which run over low-lying orbitals,
and |0〉 the qp vacuum state. The 3-qp states are formed by
one quasiproton plus a pair of quasineutrons. The inclusion of
the 3-qp configurations is important for odd-mass nuclei for a
description of the band-crossing phenomenon which is caused
by a rotation alignment of a pair of quasineutrons.

The Hamiltonian employed in the calculation is [13]

Ĥ = Ĥ0 − χ

2

∑
µ

Q̂+
µQ̂µ − GMP̂ +P̂ − GQ

∑
µ

P̂ +
µ P̂µ, (2)

where H0 is the spherical single-particle Hamiltonian which
contains a proper spin-orbit force. The second term in Eq. (2) is
the quadrupole-quadrupole (QQ) interaction and χ represents
its strength, which is determined by the self-consistent relation
between the input quadrupole deformation ε2 and the one
resulting from the HFB procedure [13,26]. The last two terms
are the monopole and quadrupole pairing interactions, respec-
tively. The strengths of the monopole pairing interactions are
given by

Gν
M =

(
19.60 + 15.7

N − Z

A

)
1

A
, Gπ

M = 19.60
1

A
, (3)

and that for the quadrupole pairing interaction is related to the
monopole pairing by

GQ = γGM, (4)

with γ = 0.16. These strengths are the same as those in Ref.
[3], which have been tested by other PSM calculations for this
mass region [20,21]. As noticed by Dufour and Zuker [27],
these interactions represent the essence of the most important
correlations in the low-lying nuclear spectrum.

The Hamiltonian (2) is diagonalized in the shell model
space spanned by P̂ I

MK |�k〉, where the P̂ I
MK is the angular-

momentum-projection operator and |�k〉 the multi-qp states
of Eq. (1). The eigenvalue equation for each spin I is given by∑

k′

(
HI

kk′ − EIαNI
kk′

)
F Iα

k′ = 0, (5)

where α enumerates the states with the same spin. The
normalization is chosen such that∑

kk′
f α

k Nkk′f α′
k′ = δαα′ , (6)

and the Hamiltonian matrix elements HI
kk′ and the norm matrix

elements NI
kk′ in (5) are

HI
kk′ = 〈�k|Ĥ P̂ I

KK ′ |�k′ 〉, NI
kk′ = 〈�k|P̂ I

KK ′ |�k′ 〉. (7)

The band energies are obtained when we calculate the
expectation values of the Hamiltonian with respect to a
“rotational” band k, which are obtained from each angular-
momentum-projected state in (1). Thus the rotational energy
of a band k is defined as

Ek(I ) = 〈�k|Ĥ P̂ I
KK |�k〉

〈�k|P̂ I
KK |�k〉

= HI
kk

NI
kk

, (8)

which are the diagonal elements in Eq. (7) with respect to a
projected multi-qp state k. A diagram containing rotational
energies of various bands as a function of spin I is called
a band diagram [13]. From band diagrams we can study the
properties such as the crossing of rotational bands, which we
will discuss in the following sections.

III. CALCULATIONS AND COMPARISON WITH DATA

To carry out calculations, we use the PSM code published
in Ref. [28]. First, a deformed basis is constructed from the
standard Nilsson model, and the κ and µ parameters in the
Nilsson potential are taken from Ref. [29]. We consider three
major shells (N = 3, 4, and 5) for both neutrons and protons.
The parameters of the basis deformation (ε2 and ε4) and γ in
Eq. (4) for each nucleus are given in Table I. The deformation
parameters are very close to but slightly different from the
values given in Ref. [30]. We note that the present calculation
is of the shell model type which uses the deformed potential
with suitable input parameters to generate a model basis.
Different configurations (one- and three-quasiparticle states)
are built within the chosen basis. Although the quasiparticle
vacuum state is obtained with a fixed deformation, mixing
of the multi-qp configurations can introduce dynamically
some effects, such as those caused by qp alignments. These
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TABLE I. Parameters used in the calculation.

125Pr 127Pr 129Pr 131Pr 133Pr

ε2 0.300 0.283 0.267 0.234 0.194
ε4 0.00 0.00 0.027 0.027 0.027
γ 0.16 0.16 0.20 0.20 0.20

additional treatments (the construction of projected multi-qp
states and the configuration mixing) go beyond the usual
mean-field methods, and therefore our deformed states are
not necessarily the same as those in other models.
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FIG. 1. Comparison between theory and experiment. (a), (c),
(e), (g), (i): Dynamical moment of inertia J (2) (h̄2 MeV−1), and
(b), (d), (f), (h), (j): Twice the kinetic moment of inertia J (1)

(h̄2 MeV−1).

In the present work, the shell model space is truncated
in such a way that only states within an energy window
around the Fermi surface are selected. This determines the
size of the basis space |�k〉. The energy windows that we
used in the calculation are 3.5 MeV for 1-qp states and
6.5 MeV for 3-qp states. Finally, the basis states are projected
to good angular momentum states, and the projected basis
is used to diagonalize the shell model Hamiltonian. In this
way, we obtain the energy spectra which are compared to the
experimental data.

A. Backbending of moment of inertia in yrast bands

The backbending in moment of inertia, observed in the
rotational spectra of deformed nuclei, carries important infor-
mation on the interplay between the ground band and bands
with alignment of a pair of quasiparticles. Thus, an yrast
sequence is formed by states of both bands such that the
lower spin states are mainly of the ground band, and the major
component of the higher spin states belongs to the bands with
aligned quasiparticles. In Fig. 1, we compare the PSM results
with experimental data for the 125–133Pr isotopes. We plot the
dynamical moment of inertiaJ (2) as a function of the rotational
frequency h̄ω and twice the kinetic moment of inertia J (1) as
a function of h̄2ω2. These quantities are defined as

J (2) = 4

Eγ (I ) − Eγ (I − 2)
, 2J (1) = (2I − 1)

ω
, (9)

where the transition energy Eγ = E(I ) − E(I − 2) is related
to the rotational frequency through

h̄ω = Eγ√
(I + 1)(I + 2) − K2 −

√
(I − 1)I − K2

. (10)

As one can see from Fig. 1, the comparison between
theory and experiment is overall satisfactory. In the right
column of the figure, the kinetic moments of inertia of the
isotopes are reproduced almost perfectly, except for 131Pr
where the rise of J (1) in theory is shifted to a higher rotational
frequency. The dynamical moment of inertia J (2) is a very
sensitive quantity as it describes the variation of J (1). For
this quantity, the results obtained for 125,127Pr reproduce the
observed backbending effects [see Figs. 1(a) and 1(c)] as seen
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FIG. 2. (Color online) Comparison between theory and exper-
iment for dynamical moment of inertia J (2) (h̄2 MeV−1) for all
isotopes. (a) Experimental data. (b) The PSM calculation.
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from the experimental data [7,8]. Nevertheless, the change of
J (2) for 125Pr is predicted to occur at h̄ω ≈ 0.5 MeV while
experimentally it occurs at h̄ω ≈ 0.4 MeV, which still can be
considered as a good agreement with experiment. In the case
of 127Pr the change of J (2) with rotational frequency coincides
with the experimental data, with the observed value at h̄ω ≈
0.4 MeV. However, deviations of the theoretical J (2) from
the data are seen at the highest spin states. For 129Pr, the PSM
reproduces very well the experimental data [see Fig. 1(e)]. The
change of J (2) with rotational frequency is predicted correctly
at h̄ω ≈ 0.4 MeV.

The experimental data for 131,133Pr are taken from
Refs. [8,31]. For these two isotopes we used the original
Nilsson κ and µ parameters taken from Ref. [32].
For 131Pr the PSM predicts that the change of ro-
tational frequency occurs at h̄ω ≈ 0.5 MeV, while it
is observed around h̄ω ≈ 0.4 MeV [see Fig. 1(g)].
For 133Pr the PSM predicts a change in the rotational frequency
at around h̄ω ≈ 0.44 MeV, while it is observed at h̄ω ≈
0.43 MeV, which is very good [see Fig. 1(i)].

Comparing all the experimental dynamical moments of
inertia J (2), we see clearly that J (2) increases with decreasing
N at low frequencies [see Fig. 2(a)]. This general behavior
is correctly reproduced by the theoretical calculations of the
PSM [see Fig. 2(b)]. This is also consistent with the results
reported by Smith et al. [8] for the 127,129,131Pr isotopes.
This characteristic is understood to relate with the increase
in the associated deformation of all the πh11/2 bands while
decreasing N . In fact, the PSM calculations employed varying
deformation parameters from ε2 = 0.194 in the heavier 133Pr
isotope to ε2 = 0.300 in the lighter 125Pr isotope.
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FIG. 3. Deformed single-particle energy levels for protons and
neutrons near the Fermi level represented by the closed circle.

B. Band diagram analysis

The variation and backbending in moments of inertia
as shown above correspond to rotation alignment of quasi-
particles in particular orbitals. For odd-mass nuclei, it is
phenomenologically associated with crossings between bands
with 1- and 3-qp configurations. In our present case, 1-qp
configurations are those from the deformed proton h11/2 orbit,
while 3-qp ones consist of these proton 1-qp configurations
plus a pair of h11/2 neutrons. Thus before we analyze the
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FIG. 4. (Color online) Band diagrams for 125–129Pr.
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structure of the bands, it is useful to look at the deformed
single-particle levels.

Figure 3 shows the single-particle levels for protons and
neutrons which contribute to the 3-qp bands corresponding
to the region of the backbendings. The Nilsson states have
the following spherical components: N = 5, l = h, j = 11/2,

and m = 7/2, 3/2, 1/2, 5/2, 9/2, which can be repre-
sented as [5h11/27/2], [5h11/23/2], [5h11/21/2], [5h11/25/2],
and [5h11/29/2], respectively. For the case of the proton
single-particle levels there are mainly three levels that con-
tribute in the backbending region, which are [5h11/25/2]π ,
[5h11/23/2]π , and [5h11/21/2]π . These levels are closer when
the number of neutrons is increased, reflecting a weaker
splitting of the single-particle levels with a smaller defor-
mation. For 125,127Pr there are two neutron single-particle
levels [5h11/27/2]ν and [5h11/25/2]ν, which contribute in
the backbending region. In the case of 129Pr there are three
neutron single-particle levels [5h11/29/2]ν, [5h11/21/2]ν, and
[5h11/27/2]ν which are important. For 131,133Pr we have
only two neutron single-particle levels [5h11/29/2]ν and
[5h11/27/2]ν which are relevant to the discussion.

The band diagrams help us to understand the backbending
effects which are present in the odd-Pr nuclei. In Figs. 4 and 5,
the band diagrams for the 125,127,129,131,133Pr isotopes are
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FIG. 5. (Color online) Band diagrams for 131–133Pr.

shown. We have marked each band with the corresponding
qp configuration. In the calculation, our configuration space
is built by many more qp states, but we only show in each
diagram the most important ones.

In these diagrams for 125,127,129,131Pr, we can see that the low
spin states in the yrast bands are represented by a quasiproton
K = 3/2 state from πh11/2. This configuration suggests that
the low spin states are based on the decoupled h11/2 protons,
and in this way the first proton alignment is blocked. These
results are in agreement with the experimental assignment.
In the case of 133Pr, the low spin states are represented by
a quasiproton K = 1/2 state from πh11/2, which is different
from the results reported in Refs. [4–7].

For the case of 125Pr the band crossing in the yrast band
occurs approximately at I = 47/2−. The band which generates
this crossing is a 3-qp state consisting of an h11/2[1/2]
quasiproton plus a pair of quasineutrons, h11/2[5/2,−7/2].
The PSM predicts another band crossing at I = 63/2−, which
is caused by a 3-qp state of an h11/2[1/2] quasiproton plus
a pair of quasineutrons, h11/2[−3/2, 5/2] [see Fig. 4(a)]. In
127Pr, the crossing is predicted at I = 43/2− by a 3-qp band
also. This band has a configuration of a quasiproton state
h11/2[1/2] plus a pair of quasineutrons, h11/2[5/2,−7/2] [see
Fig. 4(b)]. For 129Pr, we can see that the crossing occurs at
I = 39/2−. The crossing band is identified as a 3-qp band
which has a configuration of a quasiproton state h11/2[1/2]
plus a pair of quasineutrons, h11/2[5/2,−7/2]. A third band
crossing is predicted at I = 59/2−. This band is generated by a
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FIG. 6. Alignment diagrams for 125,127,129,131,133Pr, where the
spin I is plotted against the rotational frequency ω. The cal-
culations of alignments are compared with the experimental
data.
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quasiproton state h11/2[-3/2] plus a pair state of quasineutrons,
h11/2[5/2,−7/2] [see Fig. 4(c)].

In the last two isotopes, 131,133Pr, it is possible to see
three configurations in each yrast band [see Figs. 5(a) and
5(b)]. In 131Pr the crossing occurs at I = 39/2− which
is generated by 3-qp band that has a configuration of a
quasiproton state h11/2[1/2] plus a pair state of quasineu-
trons, h11/2[5/2,−7/2]. In this case the high spin states
are generated by a quasiproton state h11/2[−3/2] plus a
pair state of quasineutrons, h11/2[5/2,−7/2]. For the 133Pr
isotope, the crossing occurs at I = 15/2−. This crossing
is represented by a 1-qp band with a configuration of a
quasiproton state h11/2[−3/2]. It is also possible to observe
another crossing in high spin states (I = 39/2− to 51/2−),
which is generated by a quasiproton state h11/2[−3/2] plus
a pair state of quasineutrons, h11/2[5/2,−7/2]. In this way
we can observe how the PSM describes very well all
yrast bands with more than one configuration in each Pr
isotope.

Finally, in Fig. 6, we compare the alignment diagrams of the
yrast bands obtained by the PSM with the experimental data.
It is possible to observe an amount of spin alignment in each
Pr isotope. This behavior is reproduced successfully by the
PSM, where it explains these effects in terms of the crossing
between the ground band and the 3-qp band as we have seen
before. However, in the nuclei with more neutrons (131,133Pr),
the high spin states are not reproduced satisfactorily perhaps
due to the presence of γ deformation in these nuclei.

We admit that the present calculation, while well repro-
ducing the variation in the interaction strength at the band
crossings, does not give all the observed variations of the cross-
ing frequencies when neutron number changes (see Fig. 2).
We note that precise positions (i.e., spins or rotational
frequencies) where quasiparticle alignments occur are very
sensitive to several calculation conditions. In the first place,
correct single-particle states are important for the behavior

of the aligned quasiparticle states. We note that our deformed
Nilsson single-particle states are obtained by using the original
Nilsson parameters [32] without any adjustment that may best
suit the present nuclei. More careful choices in the input
deformation parameters may also improve the agreement. We
do not do such a fine tuning as far as the essential physics has
been understood.

IV. CONCLUSION

The spectroscopic calculations obtained with the PSM for
125,127,129,131,133Pr nuclei have allowed us to study the observed
yrast bands in these odd-proton nuclei. Our calculations reveal
that the dynamical moment of inertia increases its value at low
frequency when N is decreased. This characteristic is related
to the increase in the associated deformation in these yrast
bands for the lighter isotopes.

The PSM reproduces very well the backbending phe-
nomenon. This model proposes that this phenomenon occurs
by the alignment of a 3-qp state which is formed by a quasipro-
ton state plus a pair of quasineutron states. In conclusion, the
PSM proved to be an excellent model to reproduce highly
sensitive experimental data in the odd-Pr isotopes.
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