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We study the bulk deformation properties of the Skyrme nuclear energy density functionals (EDFs). Following
simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density
functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the
commonly used functional parametrizations against the data on excitation energies of superdeformed band heads
in Hg and Pb isotopes and fission isomers in actinide nuclei. After subtracting shell effects, the results of our
self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on
strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear EDFs. The
resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to
the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms,
the deformability of neutron-rich nuclei strongly depends on the surface symmetry energy; hence, its proper
determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission
rates for r-process nucleosynthesis.
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I. INTRODUCTION

Ongoing efforts to develop the nuclear energy density
functional (EDF) of spectroscopic quality are faced with
the challenge to find optimal experimental and theoretical
constraints that would help us pin down its various coupling
constants. Traditional parametrizations of nuclear EDFs, such
as Skyrme and Gogny often rely, through the fitting protocol
applied, on a combination of carefully selected experimental
data as well as pseudodata characterizing properties of nuclear
matter (see, e.g., the discussions in Refs. [1–5]). Considering
the fairly simple forms (and small number of coupling
constants) of commonly used nuclear EDFs, the success of
the nuclear density functional theory (DFT) to describe a
wide range of nuclear properties has been truly remarkable.
However, the robustness of these parametrizations when
going away from the neighborhood of the stability valley,
where experimental data are abundant, to the neutron-rich
region where data are scarce or nonexistent, is questionable.
Indeed, large differences in predictions for very neutron-rich
or superheavy elements seen for various EDFs [6–8] is highly
unsatisfactory. In fact, recent systematic studies of Skyrme
EDFs showed that some coupling constants cannot be properly
constrained by existing data and that the current forms of
EDFs are too limiting [9,10]. Moreover, early attempts to
employ statistical methods of linear regression and error
analysis [11] have been revived recently and have been applied
to determine the uncertainties of EDF parameters, errors of
calculated observables, and to assess the quality of theoretical
extrapolations [4,10,12–14]. The major uncertainty in nuclear
EDFs lies in the isovector channels that are poorly constrained
by experiment; hence, new data on unstable nuclei with large

neutron excess that have a large lever arm from the valley of
stability are essential [15].

The pool of fit observables entering the optimization proto-
col of EDFs, usually contains experimental data characterizing
both bulk (global) and local nuclear properties, as well as
theoretical pseudodata pertaining to global nuclear matter
properties (NMPs). The characterization in terms of bulk and
local nuclear properties is not very precise and somehow
arbitrary; it has its origin in the macroscopic-microscopic
approach, which offers a description in terms of a macroscopic
liquid drop (LD) (whose properties change smoothly as
a function of nucleon numbers) and shell correction that
oscillates rapidly with shell filling [16–19]. In the context of
DFT, the binding energy of a nucleus of mass A and neutron
excess I = (N − Z)/A can be split into a smooth function of I

and A, and a fluctuating shell correction term by means of the
Strutinsky energy theorem [16,20–23]. This theorem, together
with the shell-correction method, offers a formal framework
to link the self-consistent DFT with macroscopic-microscopic
models that often provide useful insights in terms of the liquid
drop (or droplet) model (LDM) and shell effects.

Single-particle shell structure can be accessed through,
for example, experimental separation energies and single-
particle strength. Such fit observables are often used in
the determination of EDF parametrizations [1,24]. Similarly,
the volume and symmetry terms of the LDM [25,26] are
related to nuclear matter properties, which are relatively well
determined. This effectively constrains specific combinations
of parameters of the EDF. However, surface terms of the LDM
are harder to pin down. In a recent work [27], the leptodermous
expansion of the nuclear binding energy was revisited, and
the LDM parameters of several EDFs were extracted from
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DFT calculations for very large nuclei. While the surface and
curvature terms came out to be fairly robust, it was found
that the surface symmetry coefficient assym of the LDM could
vary by a factor of 3 across the set of parametrizations. This
coefficient enters the expression for the symmetry energy in
the spherical LDM,

ELDM
sym

A
=

(
asym + assym

A1/3

)
I 2, (1)

where asym is the (volume) symmetry energy coefficient.
A thorough compilation of symmetry energy coefficients
obtained in different EDFs, assuming various definitions, can
be found in Sec. 4.7 of Ref. [28].

In early Hartree-Fock (HF) and extended-Thomas-Fermi
studies [29–32] using various EDFs, a correlation between
assym and asym was pointed out. Namely, EDFs having large
values of asym also have large |assym|. Since the surface
symmetry coefficient is negative, these two terms act in
opposite directions in Esym. The correlation between bulk
and surface symmetry energies was further discussed in
Refs. [28,33–36]; it was concluded that the presence of the
correlation makes an absolute determination of asym and assym

from nuclear masses difficult (see also discussion in an early
Ref. [37]).

The experimental information about assym is fairly limited.
The ratio of the surface symmetry to symmetry (or volume
symmetry) coefficients, rS/V = assym/asym, has been estimated
from the electric dipole strength distribution [38], masses
[36,39–41], masses and radii [33,35], and excitation energies
of isobaric analog states [42]. Recently, an attempt has been
made to extract assym [43] from the separation energies through
the displacement of neutron and proton chemical potentials.
They noted a large A variation of rS/V . As discussed later,
the DFT values of rS/V obtained in Refs. [27,28,44] are fairly
consistent with phenomenological estimates.

Since the absolute value of assym is not well constrained by
experimental data on ground-state (g.s.) nuclear properties,
one needs to find some mechanism that would enhance
the surface symmetry term with respect to the dominant
volume symmetry energy. Since the surface symmetry energy
increases with both neutron excess and nuclear surface area, it
is anticipated that strongly deformed configurations of nuclei
with appreciable neutron excess can be of help. Indeed, the
nuclear shape deformation increases the surface area, thus,
amplifying the surface symmetry energy in a neutron-rich
nucleus. Conversely, the precise determination of surface
symmetry energy is important to describe the deformability of
neutron-rich systems and to validate theoretical extrapolations.
In this context, one can mention several phenomena involving
neutron excess and deformation:

(i) Position of the neutron drip line. Deformed nuclei are
expected in several regions near the neutron drip line
[45,46]. In some cases, deformation energy can impact
their mere existence. For instance, it has been predicted
that there exist particle-bound even-even nuclei that
have, at the same time, negative two-neutron separation
energies caused by shape coexistence effects [45].

(ii) Borders of the superheavy region. The super- and
hyperheavy nuclei with Z > 126 can exist in states
associated with very exotic topologies of nuclear
density as the competition between Coulomb, surface,
symmetry, and shell effects can give rise to formation
of voids [47]. The subject of exotic (bubble, toroidal,
and bandlike) configurations in nuclei with very large
atomic numbers has been addressed by several studies
[48–51]. At present, it is difficult to say whether these
exotic topologies can occur as metastable states [50]
and what is their stability to various shape deformations.

(iii) Fusion and fission of neutron-rich nuclei. Synthesis
of heavy and superheavy neutron-rich nuclei is pro-
foundly affected by nuclear deformability through the
energetics of fusion and fission valleys [52,53]. Our
ability to describe fission of neutron-rich systems is
also important for modeling nuclear reactors. While
DFT calculations are currently able to predict barrier
heights of known nuclei with a typical accuracy of 20%,
the resulting uncertainties in fission cross sections are
still large [46]. The ability of modern nuclear EDFs to
predict neutron-induced fission rates for neutron-rich
nuclei that cannot be measured is crucial. At this
point, the dependence of rates on fission barriers is
appreciable [54].

(iv) Rotational properties of neutron-rich nuclei. Nuclear
deformation determines the response of the nucleus to
angular momentum. Little is known about the collective
rotation of very neutron-rich systems [55] and the
corresponding interplay between deformation, isospin,
and rotation.

(v) Astrophysical r process. Fission of neutron-rich nuclei
impacts the formation of heavy elements at the final
stages of the r process through the recycling mechanism
[56,57]. The fission recycling is believed to be of partic-
ular importance during neutron star mergers where free
neutrons of high density are available [54,57]. Also,
neutrino-induced fission of neutron-rich nuclei could
affect the r-process flow in some scenarios [58].

(vi) Structure of neutron stars. Nucleonic phases in the inner
crust of neutron stars are associated with very neutron-
rich deformed nuclei or strongly deformed pasta and
antipasta phases [59,60].

The primary motivation of this paper is to assess the role
played by the surface symmetry energy in neutron-rich nuclei.
To this end, we study the surface symmetry contribution to the
LDM energy and demonstrate that it may be as important
as the Coulomb term in driving deformation properties of
very neutron-rich systems. Using the self-consistent DFT, we
survey excitation energies of superdeformed (SD) states in
the Hg-Pb region and SD fission isomers in the actinides.
By subtracting microscopic shell corrections, we extract
the macroscopic part of the HF deformation energy and
demonstrate that the outcome is consistent with qualitative
macroscopic estimates. Our results indicate that experimental
data on strongly deformed configurations in neutron-rich
nuclei are key for optimizing the isospin channel of the nuclear
EDF.
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Our paper is organized as follows. In Sec. II, based on the
spherical and deformed LDM, we discuss general properties
of the surface symmetry term. In particular, we analyze
symmetry energy parameters of various Skyrme EDFs, study
global correlations between assym and asym, and show how to
disentangle the surface symmetry term by studying deformed
configurations in nuclei with nonzero neutron excess. Self-
consistent DFT calculations of fission isomers in the actinides
and band heads of SD rotational bands in the A ∼ 190 region
are presented in Sec. III. The methodology used to extract
the smooth contribution to the total energy is outlined in
Sec. IV. Section V presents our calculations of the smooth
contributions to the deformation energy of SD states and
compares Hartree-Fock-Bogoliubov (HFB) and LDM results.
Finally, the conclusions of our work are given in Sec. VI.

II. LDM FROM THE SKYRME EDF

The LDM provides a convenient parametrization of the bulk
part of the binding energy of a spherical even-even nucleus
with Z protons and N neutrons. Expressed in terms of volume
(avol), surface (asurf), curvature (acurv), symmetry, surface
symmetry, Coulomb, and Coulomb exchange parameters, it
reads

ELDM
sph = avolA + asurfA

2/3 + acurvA
1/3

+ asymI 2A + assymI 2A2/3 + a(2)
symI 4A

+ 3

5

e2

rch
0

Z2

A1/3
− 5

4

(
3

2π

)2/3 3

5

e2

rch
0

Z4/3

A1/3
, (2)

where e is the electric charge and rch
0 is the Wigner-Seitz

radius. The justification of Eq. (2) can be given in terms of
the leptodermous expansion valid for systems with a well-
developed surface [61–63] that sorts the various contributions
to the binding energy of finite nuclei in terms that have
transparent physical meaning. The expansion (2) can be
extended to higher orders [64,65]. The second-order symmetry
energy term ∝I 4 is not always included in the macroscopic
LDM, but it is naturally present in the microscopic LDM
expression [27].

A. Approaches to bulk nuclear properties

Some LDM parameters are fundamental NMPs and can
be determined microscopically from ab initio calculations of
the equation of state of nucleonic matter [66–68]. Another
phenomenological strategy is to obtain LDM constants, or at
least some of them, from a direct fit to selected experimental
data from finite nuclei. The original work of Myers and
Swiatecki followed such a strategy [69]: By modeling local
fluctuations in particle numbers caused by shell effects, one
can extract smooth LDM trends from experimental nuclear
masses. Subsequent refinements involved the upgrade from
a simple drop to a more accurate droplet model [26], which
allowed pinning down additional terms in the leptodermous
expansion. Further refinements can be found in, for example,
Refs. [39,64,70–72].

Just as in the microscopic approach, whose outcome
depends on both the input (i.e., nucleon-nucleon interactions)
and the theoretical method used to solve the many-body
problem, the results of phenomenological procedure depend
on the choice of fit observables and prescription used to
compute shell corrections (see Ref. [73] for a recent concise
overview of this topic). There are significant correlations
among the different LDM terms, and some parameters are
poorly determined [36]. In particular, precise extraction of
higher-order isospin-dependent terms requires abundant data
for very neutron-rich and/or heavy nuclei, which are not
available at present.

B. Spherical LD based on DFT

An advantage of the macroscopic approach to bulk nuclear
properties is that it can also be applied in the context of
the nuclear DFT. While some LDM constants pertaining to
infinite or semi-infinite NMP can be extracted from EDF
parametrizations [1,28,74], surface and curvature terms are
best determined by using the semiclassical approach [75,76]
or by removing the contribution from shell effects from
self-consistent DFT results [23]. There are relatively few
examples of latter studies in the literature, and most were
confined to spherical symmetry. In Ref. [77], the parameters
avol, asym, asurf , assym, and rch

0 were estimated from spherical
HFB calculations using the finite-range Gogny force D1S [78].
In Ref. [79], a similar work was carried out for the NL3
parametrization of the relativistic mean field (RMF) [80].

This program was carried out more systematically in
Ref. [27] for Skyrme EDFs and several parametrizations of
RMF Lagrangians using the HF method. The main difference
with Refs. [77,79] is that the convergence of the leptodermous
expansion was tested using an extended sample of very large
spherical nuclei. The Coulomb terms were ignored to be
able to approach nuclei of arbitrary sizes and to avoid radial
instabilities (Coulomb frustration) characteristic of systems
with many protons. The shell corrections were extracted from
the HF results according to Green’s function method and the
generalized Strutinsky smoothing procedure of Refs. [81–83].
Table I displays the values of the symmetry, surface symmetry,
and surface coefficients for various realizations of the nuclear
EDF. These values are fairly close to those obtained in
Ref. [28]. We also note that, in the case of NL3, there are
relatively large differences between the values in Table I and
those reported in Ref. [79]: These can be attributed to different
ways of extracting the shell correction and fitting the LD
formula (sample size, treatment of the Coulomb term).

As noted in Ref. [27], the leading surface and symmetry
terms appear relatively similar within each family of EDFs,
with a clear difference for asym between nonrelativistic and
relativistic approaches. Obviously, even small variations in
asurf and asym seen in Table I can have an appreciable impact on
the binding energy, as these coefficients are multiplied by large
A- and I 2-dependent factors [27]. For the surface symmetry
coefficient, however, there are much larger discrepancies. For
Skyrme EDFs, for instance, there is a factor of 2 between the
largest and smallest values. This demonstrates that assym is
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TABLE I. Surface, symmetry, and surface symmetry LDM
coefficients (in MeV) of various EDFs extracted from leptodermous
expansion in Ref. [27]. The Skyrme EDF parametrizations are SkM*
[84], SkP [85], BSk1 [86], BSk6 [87], SLy4-SLy6 [88], SkI3-SkI4
[89], and SkO [90]. The RMF Lagrangians are NL1 [91], NL-Z [92],
and NL-Z2 [93]. For comparison, the results of LDM fits are given
as LDM(1) [39] and LDM(2)-LSD [72].

EDF asurf asym assym EDF asurf asym assym

SkM* 17.6 30.04 −52 NL1 18.8 43.48 −110
SkP 18.2 30.01 −45 NL3 18.6 37.40 −86
BSk1 17.5 27.81 −36 NL-Z 17.8 41.74 −125
BSk6 17.3 28.00 −33 NL-Z2 17.4 39.03 −90
SLy4 18.4 32.01 −54
SLy6 17.7 31.96 −51 LDM(1) 21.1 30.56 −48.6
SkI3 18.0 34.84 −75 LDM(2) 19.4 29.28 −38.4
SkI4 17.7 29.51 −34 LSD 17.0 28.82 −38.9
SkO 17.3 31.98 −58

very poorly constrained in the current EDF parametrizations
(see also the discussion in Ref. [28]).

In addition, as discussed in Sec. I, there appears a clear
(anti)correlation between the (positive) value of the symmetry
coefficient and the (negative) value of the surface symmetry
coefficient [28–36]. Figure 1, displays the pairs (assym, asym)
for the Skyrme EDFs of Table I and the EDFs of Ref. [28].
The ratio rS/V extracted from experimental masses is rS/V ≈
−1.7 [36]. When looking into details, however, it exhibits a
large A variation [43]; rS/V ranges between −1 (for A � 12)
and −1.7 (for A � 50). As discussed in Ref. [44], the data
on the electric dipole polarizability yield rS/V ≈ −1.65. The
DFT values shown in Fig. 1 are not inconsistent with these
phenomenological estimates. While a correlation between asym
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FIG. 1. (Color online) Correlation between the symmetry and
surface symmetry coefficients extracted from Skyrme EDFs from
Table I (dots) and Skyrme EDFs of Ref. [28] (circles). The
phenomenological LDM values of Table I are also indicated (stars)
as well as the hydrodynamical [38] and mass [43,44] estimates:
rS/V = −2 and −1.6, respectively (dashed lines). The linear fit to
the values of Ref. [28] is shown by a dotted line.
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FIG. 2. (Color online) Contributions to the microscopic LDM
energy per nucleon along the LDM valley of stability: volume
symmetry term asymI 2 (top), surface symmetry term assymI 2A−1/3

(middle), and the total symmetry energy (bottom) for the microscopic
LDM derived from Skyrme EDFs of Table I.

and assym is clear, a very large spread of values is indicative
of the inability of current data on g.s. nuclear properties to
adequately constrain assym. It is interesting to note that the
LDM values of Table I and phenomenological estimates cluster
around asym = 30 MeV and assym = −45 MeV.

To get more insight into the consequences of this observa-
tion, in Fig. 2, we plot the symmetry and surface symmetry
contributions to the binding energy per nucleon ELDM/A for
the microscopic LDM derived from Skyrme EDFs listed in
Table I along the LDM valley of stability.The latter one
is defined by minimizing the LDM energy in the (Z,N)
plane. The symmetry energy slightly increases with mass
number (upper panel), owing to the fact that the valley of
stability bends down for increasing Z so that the energy per
nucleon Esym = asymI 2 increases. Contrariwise, the surface
symmetry energy slightly decreases with A because of the
A−1/3 dependence.

Interestingly, the total symmetry energy (i.e., the sum
of volume and surface contributions) exhibits much smaller
spread between various EDFs: from about 0.4/A MeV for both
Esym/A and Essym/A to about 0.1/A MeV for the sum. This
is a consequence of the aforementioned correlation between
volume and surface symmetry energies that implies that large
discrepancies between individual contributions to the bulk
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energy tend to cancel out at the level of the total binding
energy. We note that nuclear binding energies are indeed prime
fit observables constraining parameters of most EDFs.

C. Deformation energy of nuclear LD

The relative LDM contributions of the volume symmetry
and surface symmetry energies can be disentangled if shape
deformation is present. Indeed, the deformation energy of the
deformed LDM can be written as [17,39,94]

ELDM
def = ELDM − ELDM

sph

= (bs − 1)asurfA
2/3 + (bcurv − 1)acurvA

1/3

+ (bs − 1)assymI 2A2/3 + (bc − 1)
3

5

e2

r0

Z2

A1/3
, (3)

where the geometrical factors bs, bcurv, and bc depend on the
shape of the deformed drop (by definition, they are equal to
unity at the spherical shape). Since the nuclear volume is
conserved in the LDM, the surface and curvature b factors
increase with deformation. On the other hand, bc becomes less
than 1 as the Coulomb energy of the deformed drop is lower
than that of the spherical drop. While the volume symmetry
energy is shape independent, the surface symmetry term has
the same dependence on the nuclear shape and A as the surface
term. Consequently, these two contributions to the symmetry
energy behave differently in deformed nuclear drops.

As an example, in Fig. 3, we plot the individual contribu-
tions to ELDM

def for the two A = 100 drops at a fixed quadrupole
deformation β̃2 = 0.6. (All remaining deformations are set
to zero.) Specifically, shown are contributions from the
surface, curvature, Coulomb, and surface symmetry terms
corresponding to different Skyrme EDFs. The Coulomb radius
r0 was assumed to be the same as the Wigner-Seitz radius
defining the saturation density.

Since, for 100Sn, the isospin excess is zero, the deformation
energy contribution coming from the surface symmetry term
vanishes. The variations of the total LDM energy between dif-
ferent EDF parametrizations are relatively small and primarily
related to slightly different values of asurf . The picture changes
dramatically when going to 100Zn, a very neutron-rich nucleus
with isospin I = 0.4. The variations between predictions
of different EDFs have a much larger amplitude and are
caused almost exclusively by the surface symmetry term.
This indicates that the theoretical differences in the LDM
deformation energy of heavy neutron-rich nuclei are almost
entirely driven by the poorly determined surface symmetry
term. As is clear from Fig. 3, an experimental access to
this term can be provided by extracting shell energy from
the measured masses of very deformed configurations in
neutron-rich nuclei. Another interesting observation drawn
from the deformed LDM exercise is that, contrary to the usual
scenario in which the macroscopic deformability is solely
driven by the competition between surface and Coulomb terms,
the macroscopic deformation energy of very neutron-rich
nuclei involves a three-way competition between the repulsive
surface term and the attractive Coulomb and surface symmetry
terms.

FIG. 3. (Color online) Individual contributions to the total defor-
mation energy per nucleon of the microscopic LDM for nine Skyrme
EDFs for two A = 100 isobars: 100Sn (I = 0, top) and 100Zn (I = 0.4,
bottom). The assumed quadrupole deformation is β̃2 = 0.6.

III. SKYRME HFB CALCULATIONS
AT LARGE DEFORMATIONS

The binding energy of a deformed nuclear configuration can
be decomposed into a macroscopic part and shell correction.
To determine whether the macroscopic features related to the
surface symmetry energy, identified in Sec. II C, show up in
self-consistent DFT calculations for actual nuclei, we have
performed HFB calculations for a number of states at large
deformation with available experimental information.

A. Survey of SD band heads and fission isomers

We selected two regions of the nuclear chart: In the
actinides, there is a number of isotopes where the excitation
energy of the fission isomer is relatively well known [95]. In
the neutron-deficient Hg and Pb isotopes, the linking transition
between the SD and the g.s. bands has been identified for
several nuclei so that the energy of the 0+ band head could be
extracted [96–101]. All SD band-head data used in this paper
are listed in Table II.

HFB calculations were performed with the DFT solvers
HFBTHO [102] and HFODD [103–107]. To benchmark binding
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TABLE II. Experimental energies of 0+ band heads of SD states
in A = 190 mass region and in the actinides.

Nucleus ESD(0+) (MeV) References

192Hg 5.3 (9) [98]
194Hg 6.017 [97]
192Pb 4.011 [96]
194Pb 4.643 [99]
196Pb 5.630(5) [101]
236U 2.750 [95]
238U 2.557 [95]
240Pu 2.800 [95]
242Cm 1.900 [95]

energies of SD configurations, we employed several Skyrme
EDFs in the particle-hole channel. Pairing correlations were
modeled by a mixed-pairing interaction with a dependence
on the isoscalar density [108,109]. All calculations were per-
formed with a cutoff energy of Ecut = 60 MeV to truncate the
quasiparticle space. For each parametrization of the Skyrme
interaction, the pairing strength was fitted to the average neu-
tron pairing gap in 120Sn according to the procedure described
in Ref. [108]. In both solvers, the quasiparticle solutions to the
HFB problem are expanded on the deformed harmonic oscilla-
tor (HO) basis. Since we are probing very elongated systems,
we performed the calculations using a stretched basis with a
large number of deformed HO shells, Nmax = 20. All calcu-
lations were performed assuming axial reflection symmetric
shapes. The constrained minimization was performed using
the augmented Lagrangian method [110] and the procedure of
Refs. [111,112].

As an illustration of typical deformation landscapes in the
two regions, Fig. 4 shows the calculated potential energy
curves for 194Pb and 236U as functions of the quadrupole
deformation β extracted from the mass quadrupole moment
〈Q̂20〉 and the total rms radius:

β ≡
√

π

5

〈Q̂20〉
〈r2〉 . (4)

While the actinide nuclei of interest are always predicted to
have prolate-deformed g.s.s with β2 ≈ 0.3, neutron-deficient
Hg and Pb isotopes show a more complex g.s. pattern involving
coexisting oblate and spherical structures [113].

The predicted excitation energy of the SD minimum
relative to the g.s., E∗

th = ESD − Eg.s., between the HFB SD
minimum and the g.s. minimum can be compared with the
experimental value E∗

exp. The residuals �E = E∗
th − E∗

exp are
plotted in Fig. 5 for 22 different Skyrme EDFs. It is rather
striking to notice that, for a given nucleus, the differences
between various EDFs can be as high as 4 MeV, which is
often greater than the excitation energy itself. These large
fluctuations sometimes occur within a family of Skyrme EDFs
(e.g., SLy[x]) and have been explained in some cases by
the different recipes to treat the center of mass [114]. In
contrast, the Brussels-Montreal parametrizations Bsk[x] and
Msk[x] are more consistent with one another. An appreciable
EDF dependence for SD states had already been pointed

d

FIG. 4. (Color online) Potential energy curves for 194Pb (top)
and 236U (bottom) versus quadrupole deformation β calculated
with SkI3, SkI4, SkM*, SkO, SLy4, and SLy6 Skyrme EDFs. All
curves are normalized to the spherical point. Axial symmetry is
assumed.

out in previous Refs. [115,116]. Similarly, the sensitivity
of fission barriers on EDF parametrizations was studied in
Refs. [117–119]. In the context of this paper, it is especially
interesting to point out that the surface symmetry term has been
claimed [118] to have a significant influence on self-consistent
fission barriers.

The large spread in calculated values of E∗ comes as little
surprise: Very few EDFs have been optimized by considering
data probing large deformations. The importance of consid-
ering strongly deformed shapes when fitting the coupling
constants of EDFs was discussed in Refs. [32,84,120], but this
program has been carried out only in a handful of cases. The
SkM* functional [84] has been fitted by considering the ex-
perimental fission barrier in 240Pu. The D1S Gogny interaction
[78,121] was also optimized for fission properties. In the Bsk14
EDF of the HFB-14 mass model [122], data on fission barriers
were utilized to optimize the EDF parameters by adding a phe-
nomenological collective correction accounting for the zero-
point rotational-vibrational motion. In this paper, we do not
employ zero-point corrections as we are primarily interested
in the deformation properties of the functionals themselves.
We refer, for example, to Ref. [123] for a more thorough
discussion of dynamical correlations and their impact on
deformation properties of nuclei. We note, in passing, that such
correlations are supposed to impact standard DFT predictions
of g.s. energies of Hg and Pb nuclei because of coexistence
effects [124,125].
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FIG. 5. (Color online) Residuals �E = E∗
th − E∗

exp (top) and rms
deviations from experiment (bottom) for various Skyrme EDFs.
Additional references for the Skyrme forces: SLy5-SLy7 [88], SkMP
[126], SkX-SkXC [127], SIII [128], MSk1-MSk6 [129], BSk2 [87],
SkO’ [90]. The average rms deviation for the set of EDFs considered
(marked by a dashed line in the lower panel) is 1.26 MeV for the nine
data points of Table II and 1.34 MeV for the fission isomers nuclei.

B. Estimation of theoretical errors

Since the values of �E in Fig. 5 are subject to numerical
and experimental uncertainties, it is important to estimate their
respective errors before assessing the model dependence of
results. To validate E∗

th, we studied the convergence of our
HFB results with respect to the size of HO space used. Figure 6
shows the HFB + SkM* energy of the g.s. and SD state
of 240Pu calculated with the HFBTHO solver as a function of
Nmax, The HFBTHO numbers are compared to the benchmark
results obtained with the precise coordinate-space DFT solver
HFB-AX [130].

With the large HO basis used here (Nmax = 20), the
theoretical error on the energy of either the g.s. or the SD
state is around 600 keV. Since the HFB theory is variational,
the error on the excitation energy, in fact, is much smaller (see
the bottom panel of Fig. 5), and comes principally from the
different convergence rates of HFB states with β2 ≈ 0.3 and
β2 ≈ 0.6. Those differences are caused by the combination of
effects coming from the basis deformation and the choice of
oscillator frequency h̄ω. At Nmax � 16, the dependence on h̄ω

is rather weak; hence, the only remaining source of fluctuations
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FIG. 6. (Color online) Convergence of the HO basis expansion
for the HFB + SkM* binding energy of the fission isomer and g.s. (top
panel) and the excitation energy of the fission isomer (bottom panel)
in 240Pu as a function of the HO basis size. Results are compared with
the benchmark numbers obtained with the precise coordinate-space
solver HFB-AX [130].

is the basis deformation. For the residuals, we estimate the
latter empirically to be at most 500 keV for 16 shells and less
than 100 keV for Nmax � 16 shells.

The convergence pattern of HFB calculations seen in Fig. 6
is, to a large extent, exponential. A similar behavior has also
been observed in ab initio calculations of Refs. [131–133].
However, in all these many-body approaches, the size of the
actual model space grows combinatorially with the number
of active particles and single-particle states taken, which is
not the case for DFT. In a recent work, the exponential
convergence of wave functions expanded in a HO basis, in
fact, has been related to its weak differentiability proper-
ties [134]. It has been argued therein that this may be a
generic property of systems with exponentially decaying wave
functions.

For all the nuclei considered in Fig. 6 and Table II,
experimental g.s. masses are known to an excellent precision
of approximately 2 keV [135]. In the A ∼ 190 region, the
uncertainty of the SD band head comes from the extrapolation
of the rotational band down to spin 0+. This procedure is
slightly model dependent, but its error is estimated to be only
∼5 keV [96–101]. In the actinides, the determination of the
excitation energy of the fission isomer is slightly less precise:
It is about 5–10 keV for 236,238U and about 200 keV for 240Pu
and 242Cm [95].

Considering the foregoing, the theoretical fluctuations of
approximately several MeV in �E seen in Fig. 5 are well above
numerical uncertainties in E∗

th and experimental uncertainties
in E∗

exp. Consequently, these deviations are rooted in actual
EDF parametrizations. In Sec. IV, we will investigate the
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relation between the fluctuations in �E and the underlying
LDM description.

IV. BULK DEFORMATION ENERGY
OF THE SKYRME EDF

To extract the smooth LDM energy from HFB results, the
fluctuating contributions to the energy (i.e., shell-correction
and pairing terms) must be removed. After describing the
details of the extraction technique employed, we show how the
leptodermous expansion of the smoothed HFB energy works.

A. Pairing and shell corrections

To extract shell and pairing corrections from the total HFB
energy is not an easy task as the building blocks of HFB
are quasiparticles rather than the single-particle states that
enter the Strutinsky energy theorem [22]. Moreover, while the
contribution of pairing correlations to the total energy must be
eliminated, the induced shape polarization must be kept as is
relevant for performing the direct comparison with experiment.

To extract the effect of HFB pairing, we carried out HF
calculations at the equilibrium deformations of HFB g.s. and
SD configurations. This was achieved by constraining the
expectation values of the HF multipole moments at those
corresponding to HFB solutions. In practice, it sufficed to
consider Q̂20, Q̂40, Q̂60, and Q̂80 moments, higher-order terms
being negligible. The advantages of this procedure are twofold.
First, it enables us to remove all direct pairing effects. Second,
it provides a set of single-particle HF states that can be used
to compute the shell correction δEshell.

Shell corrections were calculated according to the proce-
dure outlined in Refs. [82,83]. It combines the standard shell-
correction smoothing method (our original implementation
is based on Ref. [17]) with the Green’s function oscillator
expansion method technique that is aimed at removing the
spurious contribution to δEshell stemming from the nonreso-
nant continuum of positive-energy states. Following Ref. [81],
we employed the following smoothing parameters: smoothing
widths γn = 1.66 for neutrons and γp = 1.54 for protons
(in units of h̄ω0 = 41/A1/3) and the curvature correction
p = 10. This choice guarantees that the generalized plateau
condition is satisfied [82].

As an illustration, Fig. 7 shows the smooth single-particle
density g̃(e) for protons in the g.s. and fission isomer of 240Pu
obtained with SkM* EDF. The generalized plateau condition
requires that this function must be linear across several
oscillator shells, and this is indeed well fulfilled. Figure 8
displays the convergence of the shell-correction contribution
to the deformation energy, δESD

shell − δE
g.s.
shell, as a function of

Nmax. While the convergence is not perfect, the uncertainty
remains fairly small, around 200 keV.

We should emphasize that there exist alternative ways
to extract shell correction, see, for example, Refs. [73,136].
However, since we use LDM parameters extracted in Ref. [27]
by employing the Green’s function prescription [82], it is
important to follow the same procedure for our analysis to
remain consistent.
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FIG. 7. (Color online) Proton smoothed single-particle density
g̃(e) in the g.s. and SD configuration of 240Pu calculated with the
SkM* EDF and Nmax = 16 HO shells.

B. Determination of microscopic LDM deformations

To compare the LDM deformation energy with the HFB
bulk energy, one needs to properly define the shape of
the (sharp) surface of the drop. For the axial reflection
symmetric shapes considered in this paper, the drop surface is
typically parametrized in terms of deformations β̃l defining the
multipole expansion of the drop radius. Therefore, the problem
consists of mapping a set {β̃l}l=2,4,...,NQ

to a set of multipole
moments 〈Q̂λ〉HF = 〈rλYλ0〉 coming from HF calculations.

The LDM deformation parameters β̃l can be determined
from the system of nonlinear equations [137],

〈Q̂λ(β̃l)〉 = 〈Q̂λ〉HF, λ = 0, 2, 4, . . . , NQ. (5)

However, in such an approach involving standard (volume)
multipole moments, the role of higher-order multipoles be-
comes artificially exaggerated. Therefore, it was argued (see
Refs. [138,139] and references quoted therein) that a mapping
between the two sets of shape deformations can be best

FIG. 8. (Color online) Convergence of the shell-correction con-
tribution to the deformation energy, δESD

shell − δE
g.s.
shell, for 240Pu as a

function of Nmax. Calculations were performed with with the SkM*
EDF.
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achieved by using the surface multipole moments defined
as Q̂λ ≡ r2Yλ0, which have a much softer radial dependence
than volume moments. Therefore, deformation parameters β̃l

can be extracted by requiring that the set of equations for
dimensionless surface moments [138,139],

〈Q̂λ(β̃l)〉
〈r2(β̃l)〉

= 〈Q̂λ〉HF

〈r2〉HF
(6)

be satisfied, with l, λ = 2, . . . , NQ. In practice, only the four
lowest terms with l = 2, 4, 6, 8 are important at SD shapes.
This choice provides the best mapping between self-consistent
multipole moments and deformations of the sharp surface.

C. Coulomb polarization

In Ref. [27], the microscopic LDM parameters were
extracted from a set of spherical HF calculations without
the Coulomb term. However, such a methodology is clearly
not applicable in realistic calculations. First, the Coulomb
term crucially affects nuclear deformability. Second, while
its contribution to the total energy can easily be subtracted,
the Coulomb potential induces a long-range polarization of
the mean field, which affects the equilibrium deformations,
single-particle states, etc. Most importantly, this Coulomb
polarization is deformation dependent. As a result, the con-
tribution of the Coulomb term to the excitation energy, E∗

Cou,
can vary by up to several MeV for the interactions that we
consider in this paper.

To take this effect into account at the LDM level, we first
extract the spherical charge radius Rch

0 = rch
0 A1/3 from the self-

consistent spherical HF calculations for each nucleus (Z,N)
and then use this value of rch

0 in Eq. (3). Thus, since the charge
radius obtained does not come from a systematic fit but is
obtained locally, it introduces shell fluctuations into LDM.
However, since spherical self-consistent radii behave smoothly
as a function of shell filling [140], the corresponding shell
effect is very small indeed.

Our actual determination of the LDM charge radius goes
as follows. From the spherical rms proton HF radius 〈R2

p〉, we
extract the rms charge radius 〈R2

ch〉 according to the standard
formula

〈
R2

ch

〉 = 〈
R2

p

〉 + 〈
r2
p

〉 + N

Z

〈
r2
n

〉
, (7)

where 〈r2
p〉 = 0.764 fm2 and 〈r2

n〉 = −0.116 fm2 are the
squared rms proton and neutron charge radii, respectively. The
geometrical charge radius Rch

0 is then obtained from the rms
charge radius in the usual way:

Rch
0 = 5

3

√〈
R2

ch

〉
. (8)

We note that the condition (R2
ch)LD = 〈R2

ch〉HF together with
Eq. (6) implies that the charge surface of the microscopic LD
is close to that of HF.

FIG. 9. (Color online) Extraction of the LDM deformation energy
from constrained HF + SLy4 calculations for 236U at several values
of quadrupole deformation β. Shown are the total shell correction
δEshell (squares), the smooth HFB deformation energy ẼHF

def (β) (dots),
and the corresponding LDM deformation energy ELDM

def (β) (triangles).
The inset shows the equivalent LDM deformations β̃l with l = 4, 6,
and 8.

D. Example: Extraction of the smooth deformation
energy for 236U

To illustrate the extraction procedure of smooth deforma-
tion energy from HF results and to assess the quality of the
leptodermous expansion, we carry out constrained HF + SLy4
calculations for 236U shown in Fig. 9. The constraint on the
quadrupole moment was determined so that the deformation
β of Eq. (4) takes the values β = −0.20,−0.15, . . . ,+0.80.
Since the HF potential energy curve consists of several sharply
crossing configurations as evidenced by rapidly varying LDM
deformations shown in the inset of Fig. 9, we made no
attempt to interpolate between the mesh points in β. The
shell correction was extracted at each β according to the
procedure discussed in Sec. IV A. The smooth energy at
deformation β is given by ẼHF(β) = EHF(β) − δEshell(β),
which defines the smooth component of the HF deforma-
tion energy ẼHF

def (β) = ẼHF(β) − ẼHF(β = 0). At each β, the
LDM deformation parameters β̃l are computed according to
Sec. IV B. Finally, the deformed LDM energy ELDM

def (β) is
obtained using Eq. (3) with the LDM constants corresponding
to the SLy4 interaction taken from Table I and the charge
radius defined according to Sec. IV C. As expected, the smooth
deformation energy is growing as a function of deformation;
the local variations are caused by configuration changes in HF
calculations and corresponding changes in higher-order shape
deformations.
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Although the agreement between ELDM
def and ẼHF

def is not
perfect, it is gratifying to see that the LDM energy nicely
follows the smooth energy extracted from HFB. The deviation
has multiple sources, such as the error on the regression anal-
ysis carried in Ref. [27], uncertainties of the shell-correction
procedure, neglect of the second-order effects in density fluctu-
ations [22], LDM assumption of the sharp surface, limitations
of the leptodermous expansion used, etc. Considering all this,
the quality of the leptodermous expansion of the deformation
energy in deformed nuclei is very reasonable.

V. SURFACE SYMMETRY ENERGY AND DEFORMED
NEUTRON-RICH NUCLEI IN DFT

We are now ready to determine the smooth part of the
deformation energy from HFB results and to compare it with
the microscopic LDM using the methodology described in
Sec. IV. In Fig. 3, we demonstrated that the uncertainties in
the determination of assym impact the deformation properties
of neutron-rich nuclear drops. Therefore, it is interesting to
see whether, in the studies of well-deformed states in realistic
nuclei, these uncertainties would show up.

Figure 10 shows the smooth excitation energy Ẽ∗ of fission
isomers calculated in HFB and LDM for seven EDFs.For each
nucleus, we first carried out HFB calculations to determine the
g.s. and SD configurations. The constrained HF calculations
are then performed based on the multipole moments of the
HFB solution. Shell energies are subtracted from g.s. and SD
HF energies, and this defines the smooth part of the excitation
energy Ẽ∗

HFB in HFB (i.e., the smooth deformation energy of
the excited state relative to the g.s.). By using the surface
moments obtained in the g.s. and SD minima of HFB, we
extract the equivalent LDM deformation parameters β̃l and
the LDM excitation energy.

As in Sec. III, clear differences between various EDF
parametrizations can be seen. Overall, these variations can

FIG. 10. (Color online) Smooth excitation energy Ẽ∗ of fission
isomers in 236,238U, 240Pu, and 242Cu calculated in HFB and LDM for
seven EDFs. See text for details.

FIG. 11. (Color online) Same as in Fig. 10 except for SD band
heads in 192,194Hg and 192,194Pb.

be as large as 4 MeV at the LDM level. As discussed earlier in
Sec. IV D, there is an ∼2−MeV shift of the LDM curves with
respect to the HFB results. However, it is rewarding to see that
the shift is systematic and the EDF variations seen in HFB are
properly captured by the equivalent LDM. The results for the
SD band heads are displayed in Fig. 11. In these lighter nuclei,
the agreement between HFB and equivalent LDM is better on
average, but local fluctuations can be appreciable (see SkO or
SkI3 results for Pb isotopes) and might be related to a complex
pattern of g.s. equilibrium deformations in these nuclei.

The results shown in Figs. 10 and 11, combined with
the overall picture of the residuals in Fig. 5, demonstrate
that large differences between Skyrme EDFs exist when
it comes to deformation properties of nuclei. While these
differences certainly depend on variations of EDF parameters
controlling the shell structure, such as, for example, the
effective mass or spin-orbit splitting, our analysis indicates
that there are also fundamental discrepancies at the level of
the bulk energy. Therefore, one may question whether EDF
optimization protocols based exclusively on a small amount of
data in nuclear matter and spherical nuclei are able to capture
the deformability of EDF.

As discussed in Sec. II and, in particular, in Figs. 1
and 2, assym varies very significantly from one EDF to another.
Consequently, surface and symmetry properties of EDFs are
intertwined in a nontrivial way when it comes to deformability.
Guided by the results of Figs. 10 and 11, we may wonder
whether the large variations in assym are indeed reflected in the
results of self-consistent calculations.

Figure 12 shows the surface and surface symmetry con-
tributions to the LDM excitation energy of SD states in the
actinides for the same Skyrme EDFs as in Figs. 10 and 11. The
equilibrium deformations that are used in the LDM for both
the g.s. and the SD state are obtained in HFB. The LDM results
are compared to the smooth HFB energy Ẽ∗

HFB. To facilitate
interpretation, all curves are normalized to SkM* values. In
this way, we can better compare relative variations obtained
in various EDFs. It is interesting to see that the inter-EDF
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FIG. 12. (Color online) Surface and surface symmetry contribu-
tions to the LDM excitation energy of fission isomers in the actinides
compared to the smooth HFB excitation energy for the same Skyrme
EDFs as in Figs. 10 and 11. All curves are shown relative to SkM*
results.

fluctuations of Ẽ∗
HFB are rather well correlated with the surface

symmetry energy. In other words, the contribution from the
Coulomb and curvature terms (not plotted in Fig. 12 for better
legibility) cancel out the surface term to a large extent. This
result is significant because it seems to confirm the simple
analysis of Sec. II in a realistic case: In nuclei having large
neutron excess I (here, on the order of I ≈ 0.2), differences
in deformation energy between various EDF parametrizations
reflect the differences of the surface symmetry coefficient.
In contrast, a similar analysis of individual macroscopic
contributions in the Hg-Pb region does not allow pinning down
a single LDM term as a primary deformation driver.

To further illustrate the importance of the surface symmetry
term, we calculated the LDM excitation energy of the fission
isomer for a sequence of U isotopes. Here, we employed
the SkM* and BSk6 parametrizations. The SkM* EDF is
known to perform rather well for fission barriers [141,142]. Its
surface symmetry coefficient is also close to the average among
Skyrme forces and values from phenomenological estimates,
so it can be viewed as fairly representative of the Skyrme
functionals. The BSk6 parametrization gives a reasonable rms
deviation for excitation energies of SD states, see Fig. 5. The
isotopes considered include some very neutron-rich species
important in the context of r-process fission recycling. It is
worth noting that HFB potential energy landscapes change
considerably within this isotopic sequence. For example,
N = 184 is a neutron magic number for SkM* [81]; hence, g.s.
configurations around 276U are spherical rather than prolate,
see Fig. 13. Therefore, the equivalent LDM equilibrium
deformations reflect these structural changes in a nontrivial
way.

For each isotope, we computed the relative contribution
of the surface, surface symmetry, curvature, and Coulomb
term to the total LDM excitation energy: These are the
only terms that depend on deformation. Figure 14 shows
the percentage of the LDM excitation energy from these

FIG. 13. (Color online) Quadrupole deformations β in SkM* for
g.s.s and fission isomers in a sequence of neutron-rich U isotopes
(top) and the corresponding excitation energies (bottom).

contributions. As the neutron excess grows, one can notice the
gradual relative decrease of the Coulomb contribution—which
depends only on the number of protons and proton density and,
therefore, remains relatively constant in value. This decrease
is compensated by an increase of the surface symmetry
contribution. For the most neutron-rich nuclei considered here,
the total contribution from Essym is as large as 19% for SkM*.
For the two parametrizations selected here, the role of the

FIG. 14. Relative contributions of the Coulomb, surface symme-
try, curvature, and surface terms to the equivalent LDM excitation
energy of fission isomers for the same U isotopes as in Fig. 13.
Calculations are based on SkM* and BSk6.
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surface symmetry term increases by a factor of 3 from 236U to
the fission recycling region.

VI. CONCLUSIONS

This paper contains a comprehensive study of deformation
properties of nuclear EDFs based on the leptodermous expan-
sion of the smooth nuclear energy. Since symmetry and surface
symmetry terms in the expansion are strongly correlated, a way
to resolve them is to consider data on deformed neutron-rich
nuclei in which the surface symmetry term is amplified.
Based on intuitive LDM arguments, we argue that deformation
properties of neutron-rich nuclear drops are governed by an
interplay of the deformation-driving Coulomb and surface
symmetry terms and the surface energy that acts against
shape deformation. To estimate this interplay, we extracted
the smooth deformation part of the HFB energy by means of
the shell-correction procedure.

Self-consistent DFT calculations for excitation energies
of SD states show marked differences in their predictions
depending on the parametrization used. For the set of EDFs
considered, the average rms deviation between predicted
energies of SD states and experimental values is 1.26 MeV.
Within this set, the MSk1 parametrization provides the best
overall reproduction of the data: The corresponding rms
deviation is 0.53 MeV, and this sets a benchmark for future
improvements. For the subset of fission isomer data, the best
performer is SkI4: Its rms deviation is 0.48 MeV.

We showed that interparametrization differences reflect, to
a large extent, macroscopic properties of EDFs. In particular,
our calculations indicate that the bulk deformation properties
of actinides are strongly driven by surface symmetry effects,
while in the proton-rich A ∼ 190 nuclei, there is more
competition between the various macroscopic contributions.
This finding should have an impact on the fissility of heavy very
neutron-rich nuclei of the kind encountered, for example, in the
r process. For example, the surface symmetry contribution to
the bulk part of the excitation energy of fission isomer in very
neutron-rich uranium isotopes can reach ∼20% as compared
with ∼5% for 236U.

The importance of the surface symmetry term on fission can
be quantified at the LDM level by the dimensionless fissility
parameter,

x = ECoul(sph)

2Esurf(sph)
≈ Z2

47A(1 − ηI 2)
, (9)

where η ≡ −assym/asurf . If x > 1, the nuclear LD is unstable
for fission. In the presence of neutron excess, the fissility pa-
rameter increases (i.e., the tendency toward fission increases).
In Refs. [56,143], the value η = 1.7826 was used. By taking
LDM parameters from Table I, we see that η is 1.9 for BSk6,
2.9 for SkM*, and 4.16 for SkI3 (i.e., this parameter is very
uncertain).

Figure 15 shows the LDM fission limit for the SkI3 and
SkM* EDFs as well as for η = 1.7826 and η = 0 (no isospin
dependence). The minimum value obtained for Z2/A [i.e., 47
in Eq. (9)] is not very precise as it depends on assumptions
about the LDM constants [144]. Therefore, this diagram should
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FIG. 15. (Color online) The upper part of the chart of the nuclides
with the x = 1 limit indicated for SkI3 and SkM* EDFs, the value
of η = 1.7826 used in Ref. [143] (LDM), and no isospin dependence
(η = 0). The region of known nuclides is marked by black squares.

be considered as a qualitative guidance. A clear message
drawn from Fig. 15 is that the surface symmetry term can
significantly impact LDM fission barriers: The greater the
value of η, the lower the threshold for fission. This result
is especially important in the context of the fission recycling
mechanism in the r process and hot fission reactions leading
to excited neutron-rich superheavy nuclei. Since shell effects
are, to a large extent, washed out at high temperatures
[16,145], the fission of hot compound nuclei is expected to
be governed by the LDM fission barrier (or smooth HFB
deformation energy). As seen in Fig. 15, the uncertainty in
assym, hence, η makes it difficult to reliably predict fission
rates of the heaviest and superheavy neutron-rich nuclei.
(In this context, we note that, according to the recent estimates
[146], assym and η are expected to depend very weakly on
temperature.)

The results obtained in this paper suggest that adding to the
list of fit-observables data on strongly deformed nuclear states
(such as excitation energies of SD states or fission barriers),
combined with the usual constraints on bulk properties and
shell structure, should constrain the surface properties of the
nuclear EDF quite effectively. Such a strategy is currently
being pursued within the Universal Nuclear Energy Density
Functional (UNEDF) project [147,148]. On the experimental
side, new information on deformed properties on neutron-rich
systems is the key.
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054311 (2005).

[10] M. Kortelainen, J. Dobaczewski, K. Mizuyama, and J. Toiva-
nen, Phys. Rev. C 77, 064307 (2008).

[11] J. Friedrich and P.-G. Reinhard, Phys. Rev. C 33, 335 (1986).
[12] J. Toivanen, J. Dobaczewski, M. Kortelainen, and K.

Mizuyama, Phys. Rev. C 78, 034306 (2008).
[13] P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 81, 051303(R)

(2010).
[14] M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz, J. Sarich,
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[31] M. Farine, J. Côté, and J. M. Pearson, Phys. Rev. C 24, 303

(1981).
[32] F. Tondeur, M. Brack, M. Farine, and J. M. Pearson, Nucl.

Phys. A 420, 297 (1984).
[33] P. Danielewicz, Nucl. Phys. A 727, 233 (2003).
[34] A. W. Steiner, M. Prakash, J. M. Lattimer, and P. J. Ellis, Phys.

Rep. 411, 325 (2005).
[35] A. E. L. Dieperink and P. Van Isacker, Eur. Phys. J. A 32, 11

(2007).
[36] M. W. Kirson, Nucl. Phys. A 798, 29 (2008).
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[48] J. Dechargé, J.-F. Berger, M. Girod, and K. Dietrich, Nucl.

Phys. A 716, 55 (2003).
[49] Y. Yu, A. Bulgac, and P. Magierski, Phys. Rev. Lett. 84, 412

(2000).
[50] W. Nazarewicz, M. Bender, S. Ćwiok, P. H. Heenen, A. T.

Kruppa, P.-G. Reinhard, and T. Vertse, Nucl. Phys. A 701, 165
(2002).
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