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Evolving nuclear many-body forces with the similarity renormalization group
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In recent years, the Similarity Renormalization Group has provided a powerful and versatile means to soften
interactions for ab initio nuclear calculations. The substantial contribution of both induced and initial three-body
forces to the nuclear interaction has required the consistent evolution of free-space Hamiltonians in the three-
particle space. We present the most recent progress on this work, extending the calculational capability to the
p-shell nuclei and showing that the hierarchy of induced many-body forces is consistent with previous estimates.
Calculations over a range of the flow parameter for 6Li, including fully evolved NN + 3N interactions, show
moderate contributions due to induced four-body forces and display the same improved convergence properties
as in lighter nuclei. A systematic analysis provides further evidence that the hierarchy of many-body forces is
preserved.
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I. INTRODUCTION

A major goal of nuclear structure theory is to make
quantitative calculations of low-energy nuclear observables
starting from microscopic internucleon forces. Renormaliza-
tion group (RG) methods can be used to soften the short-
range repulsion and tensor components of available initial
interactions so convergence of nuclear structure calculations
is greatly accelerated [1,2]. A major complication is that these
transformations change the short-range many-body forces.
In fact, any softening transformation will induce many-body
interactions in the course of renormalizing the matrix elements
in a lower sector. To account for these changes, we must include
consistently evolved three-body (and possibly higher) forces
in structure calculations.

A previous letter [3] presented the first such evolution
of three-body forces in free space by using the Similarity
Renormalization Group (SRG) [4–9]. The SRG offers an
approach to evolving many-body forces that is technically
simpler than other unitary RG formulations. Irrespective of
the chosen initial Hamiltonian, the evolution produces a
variational Hamiltonian and enables smooth extrapolation of
results, in contrast to Lee-Suzuki [10] type transformations
which produce results that are model-space dependent (in
both Nmax and A) [11]. While the SRG induces many-body
forces as a product of renormalization, these terms come in
a hierarchy of decreasing strength if a hierarchy is initially
present. Particularly useful in an analysis of such a hierarchy
are chiral effective field theories (χEFTs), which provide a
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systematic construction of many-body forces as the initial
input to our evolution calculations [12]. Our results expand on
prior evidence that the SRG explicitly preserves the initial EFT
many-body hierarchy as it improves convergence properties of
evolved Hamiltonians.

Section II reviews some background material on how the
SRG is applied in these calculations. In Sec. III we explore
the convergence properties of the renormalized Hamiltonians,
including new A = 6 calculations. In Sec. IV we present the
calculations as a function of the evolution parameter and
explore the effect of SRG flow on other initial interactions.
Section V dives deeper into the analysis of how the SRG acts to
evolve the input interaction, expanding on the analysis done for
one-dimensional models [13]. We make a brief advertisement
of operator evolution and conclude with comments on the
future use of this approach.

II. BACKGROUND

As implemented in Refs. [7,8] for nuclear physics, the SRG
is a series of unitary transformations, Uλ, of the free-space
Hamiltonian,

Hλ = UλHλ=∞U
†
λ , (1)

labeled by a momentum parameter λ that runs from ∞ toward
zero, which keeps track of the sequence of Hamiltonians (s =
1/λ4 is also used elsewhere [7,8]). These transformations are
implemented as a flow equation in λ (in units where h̄2 =
M = 1),

dHλ

dλ
= − 4

λ5
[[T ,Hλ],Hλ], (2)

whose form guarantees that the Hλ’s are unitarily equivalent
[6,7]. Once the Hamiltonian has been evolved we also have the
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option to build the unitary transformation operator directly as
a sum over outer products of the evolved and unevolved wave
functions:

Uλ =
∑

α

|ψα(λ)〉〈ψα(0)|, (3)

where α is an index over the states in the chosen configuration
space. This feature is useful in applications to external
operators [14]. Note that Uλ can also be evolved directly and
the choice of method is open to efficiency and convenience for
a particular use.

The appearance of the nucleon kinetic energy T in
Eq. (2) leads to high- and low-momentum parts of Hλ

being decoupled, which means softer and more convergent
potentials [15]. This is evident in a partial-wave momentum
basis, where matrix elements 〈k|Hλ|k′〉 connecting states with
kinetic energies differing by more than λ2 are suppressed by
e−(k2−k′2)2/λ4

factors and therefore the states decouple as λ

decreases. However, decoupling also results from replacing T

in Eq. (2) with other operators [6,7,16,17]. The optimal range
for λ is not yet established and also depends on the system.
Previous experience with SRG and other low-momentum
potentials suggested that running to about λ = 2.0 fm−1 is
a good compromise between improved convergence from
decoupling and the growth of induced many-body interactions
[15]. Current results show that this limit might be extended as
far as λ = 1.0 fm−1, at least for lighter nuclei.

One formal way to see how the two-, three-, and higher-
body potentials evolve is to decompose Hλ in second-
quantized form [6]. We can write a general A-body Hamil-
tonian as:

Hλ =
∑
ij

Tij a
†
i aj + 1

2!2

∑
ijkl

V
(2)
ijkl,λa

†
i a

†
j alak

+ 1

3!2

∑
ijklmn

V
(3)
ijklmn,λa

†
i a

†
j a

†
kanamal + · · · , (4)

where a
†
i and ai are creation and destruction operators with

respect to the vacuum in some single-particle-momentum
basis. The quantities Tij , V

(2)
ijkl , and V

(3)
ijklmn denote matrix

elements of their respective operators. Equation (4) defines
Tij , V

(2)
ijkl,λ, V

(3)
ijklmn,λ, . . . , as the one-body, two-body, three-

body, . . . , matrix elements at each λ. By evaluating the com-
mutators in Eq. (2) using Hλ from Eq. (4), and normal ordering
the resulting terms of creation/annihilation operators, we find
that higher-body potentials are generated with each step in λ,
even if initially there are only two-body potentials. We note that
in this article we are not actually evolving in a single-particle
basis as indicated in Eq. (4), but nothing a priori prevents it
as a choice of basis. In particular, the center-of-mass (c.m.)
solutions will factor out in the properly truncated harmonic
oscillator single-particle basis. Furthermore, the SRG will not
mix different center-of-mass solutions since Tc.m. commutes
with the Hamiltonian.

Here we are normal ordering with respect to the vacuum, as
opposed to the in-medium SRG which normal orders with
respect to a nonvacuum reference state. With in-medium
normal ordering, SRG evolution generates an A-dependent

rearrangement of the higher-body contributions to the evolved
interaction; the density-dependent zero-, one-, and two-body
normal-ordered interactions are found to absorb the dominant
free-space many-body interactions [18]. For free-space normal
ordering, matrix elements in a given sector are determined
completely by evolution in that sector. In addition, each
A-body sector contains as a subset the (A − 1)-body sector
evolutions. Thus, when applied in an A-body subspace, the
SRG will “induce” A-body forces, with 〈T 〉 fixed, 〈V (2)

λ 〉 deter-
mined completely in the A = 2 subspace with no dependence
on 〈V (3)

λ 〉, 〈V (3)
λ 〉 determined in A = 3 given 〈V (2)

λ 〉 and 〈V (3)
λ=0〉,

and so on.
Because only the Hamiltonian enters the SRG evolution

equations, there are no difficulties from having to solve T ma-
trices (of the Lippmann-Schwinger equation) in all channels
for different A-body systems [1]. However, in a momentum
basis the presence of spectator nucleons requires solving
separate equations for each set of 〈V (n)

λ 〉 matrix elements. In
Ref. [19], a diagrammatic approach was introduced to handle
this decomposition. But while it is natural to solve Eq. (2) in
momentum representation, it is an operator equation allowing
us to use any convenient basis. Here we evolve in a discrete
basis of Jacobi-coordinate harmonic oscillator wave functions,
where spectators are handled without a decomposition and
induced many-body interaction matrix elements can be directly
identified. Having chosen a basis, we obtain coupled first-order
differential equations for the matrix elements of the flowing
Hamiltonian Hλ, where the right side of Eq. (2) is evaluated
using simple matrix multiplications.

The procedures used here build directly on Ref. [13], which
presents a one-dimensional implementation of our approach
along with a general analysis of the evolving many-body
hierarchy. We start by evolving Hλ in the A = 2 subsystem,
which completely fixes the two-body matrix elements 〈V (2)

λ 〉.
Next, by evolving Hλ in the A = 3 subsystem we determine
the combined two-plus-three-body matrix elements. We can
isolate the three-body matrix elements by subtracting the
evolved 〈V (2)

λ 〉 elements in the A = 3 basis [13]. Having
obtained the separate NN and NNN matrix elements, we
can apply them unchanged to any nucleus. We are also
free to include any initial three-nucleon force in the initial
Hamiltonian without changing the procedure. If applied to
A � 4, four-body (and higher) forces will not be included and
so the transformations will be only approximately unitary. The
questions to be addressed are whether the decreasing hierarchy
of many-body forces is maintained and whether the induced
four-body contribution is unnaturally large. We summarize in
Table I the different calculations to be made here for 3H, 4He,

TABLE I. Definitions of the various calculations.

NN-only: No initial NNN interaction
and do not keep NNN-induced interaction.

NN + NNN-induced: No initial NNN interaction
but keep the SRG-induced NNN interaction.

NN + NNN: Include an initial NNN interaction
and keep the SRG-induced NNN interaction.
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and 6Li to confront these questions. These calculations will
also be made when other nuclei are considered.

Hamiltonians obtained via free-space SRG evolution are
independent of the basis choice. Up to truncations induced
by conversion to a particular basis, a Hamiltonian evolved to
a given λ reproduces the results of a Hamiltonian evolved
to the same λ in a different basis. Two types of truncations,
in model-space size and A, are relevant to controlling the
quality and consistency of SRG evolved interactions. Our
calculations are performed in the Jacobi coordinate harmonic
oscillator (HO) basis of the no-core shell model (NCSM) [20].
This is a translationally invariant, antisymmetric basis for
each A-body sector, in which a complete set of states in
the model space defines the maximum excitation of Nmaxh̄�

above the minimum energy configuration, where � is the
harmonic oscillator parameter. Hamiltonians are derived and
evolved in this basis and then switched to a Slater determinant
basis. The Jacobi coordinates used to build this basis have a
convenient normalization that treats all A-body clusters on an
equal footing. Operators in an A-body space, like the A-body
Hamiltonian, can be embedded in an (A + n)-body space in
a straightforward manner. Due to the antisymmetric nature
of the basis, they need only be multiplied by a combinatoric
factor: (

A + n

A

)
= (A + n)!

A!(n)!
. (5)

For example, a three-body system has ( 3
2 ) = 3 pairs, a four-

body system has ( 4
2 ) = 6 pairs, and ( 4

3 ) = 4 triplets, and so
on. This embedding factor was a direct predictor of behavior
in one dimension [13], but in the realistic case, many physical
constraints may complicate the end results, including, but not
limited to, Pauli blocking, angular momentum selection rules,
and cancellations intrinsic to the initial Hamiltonian.

A major drawback of the HO basis is its single intrinsic
scale, h̄�, which is problematic for systems with multiple
scales. However, it is a widely used basis in part because it
facilitates the separation of spurious center-of-mass solutions
and vital to the translationally invariant physics of nuclear
structure calculations. To understand the cutoffs inherent in the
finite oscillator basis we can consider that the local maxima
in the harmonic oscillator function are essentially Gaussians
modulated by polynomial terms up to Nmax. These maxima,
in the momentum and coordinate space representations, will
be correlated with the high- and low-momentum cutoffs
respectively. These cutoffs have the large Nmax behavior [21]

�UV ∼
√

mNmaxh̄� and �IR ∼
√

mh̄�

Nmax
. (6)

When h̄� grows large, individual oscillations are large and
lose resolution on the small details in the momentum basis
potential that correspond to large r structures. However,
high Nmax polynomials have many small oscillations at low
momenta compensating for the large h̄� value. Thus, �IR is
lowered and �UV is raised by increasing Nmax as expected
when the basis is extended toward completeness. Note that
only the value of Nmax, not h̄�, affects the number of matrix
elements in the basis, so the computational cost is the same for

TABLE II. Definitions of the truncations used on initial
Hamiltonians.

Nmax: The size of the final A-body space
NA3max: The size of the basis for initial three-body matrix elements
NA2max: The size of the basis for initial two-body matrix elements

each h̄�. Changing h̄� effects the balance between �IR and
�UV completeness.

Note that the behavior attributed to �IR does not manifest as
an explicit cutoff in the momentum representation but rather a
distortion of matrix elements at low momentum. Specifically,
the effective cutoff operator in momentum representation
displays bands of ringing artifacts along the off-diagonal
direction that ultimately behave as a cutoff; both smaller h̄�

and larger Nmax bases alleviate this effect, as is apparent from
Eq. (6).

Because of computational constraints we were forced to
apply separate truncations, NA2max and NA3max, to the A = 2
and A = 3 sectors of the initial Hamiltonian (see Table II).
In previous work [3] with 3H and 4He and an initial χEFT
interaction, we found that NA2max = NA3max = 32 was suffi-
cient because these nuclei are less sensitive to the asymptotic
behavior of the oscillator wave functions. However, for 6Li or
4He using a harder potential (such as Argonne V18), larger
space was required for the initial NN Hamiltonian. When
needed we used NA2max = 300, which is more than enough
to accommodate any potential at any relevant h̄�. In some
calculations we were restricted to NA2max = 196, but these
cases are also converged to the keV level. The A = 3 basis size
grows much more quickly so the evolution of Hamiltonians
above NA3max = 40 are very intense computations. In our
final results there is a slight effective truncation of the
induced three-body forces, but this is only a truncation of
the initial interaction that is then evolved. Additionally, the
NNN interaction is a perturbative correction to the NN so this
truncation has a small impact on our results. These truncation
issues are addressed throughout the article when discussing
the convergence properties of our results.

The present calculations make use of both the Jacobi oscil-
lator basis described above and a Slater determinant oscillator
basis often referred to as the m scheme. The size of the Jacobi
basis scales well with Nmax but poorly with A due to the effort
involved in antisymmetrization. A Slater determinant basis
trades ease of antisymmetrization for very large (dimensions
into the billions) but sparse matrices, solvable with the Lanczos
algorithm. Given the convergence advantages provided by the
SRG, we obtain the initial Hamiltonians in the Jacobi basis,
evolve them in A = 2 and 3, and transform them into a Slater
determinant basis for use in existing configuration interaction
(CI) codes.

Our calculations are limited by the size of the input
three-body interaction file: The present code is not able to
distribute the matrix elements among nodes and therefore must
hold the entire A-body Hamiltonian on each node. For our
calculations of 6Li at Nmax = 8, the three-body file is 13 Gb
of matrix elements in addition to two-body matrix elements
already stored. This is the largest calculation possible on most
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available nodes with 16 or 32 Gb of memory; at Nmax = 10
the three-body file is 33 Gb. However, the m-scheme code
MFDn of Vary et al. [22] is capable of distributing the input
matrix elements among several nodes and efforts are underway
to perform these calculations in larger spaces. Furthermore,
the size of these input files can be dramatically reduced in
the future by implementing a compression scheme based
on angular-momentum couplings and calculations could be
extended with the importance truncation method [23,24].
Future calculations of 8Be, 10B, and 12C are planned. Recent
results of 12C and 16O using importance truncation provide a
benchmark for future efforts [25].

For the lower λ’s in the lighter nuclei, our predictions for
ground-state energies are fully converged. However, in other
cases we need to extrapolate the energies to Nmax = ∞. Here
we use the same extrapolation procedure applied in Ref. [2].
The model used for ground-state energies is

Eαi = E∞ + Aα e−bαNi , (7)

where α labels the h̄� values, i the Nmax values for each α,
and Aα and bα are constants. The goal of a fit to the following
calculations is to determine the common parameter E∞, which
is the estimate for the ground-state energy extrapolated to
Nmax = ∞.

This can be cast as a one-dimensional constrained mini-
mization problem with the function

g(E∞) =
∑
α,i

[log(Eαi − E∞) − aα − bαNi]
2/σ 2

αi, (8)

where the {aα} and {bα} are determined directly within the
function g by invoking a constrained linear least-squares
minimization routine. The constraint is the bound E∞ �
min({Eαi}), where E∞ < 0 and “min” means “most negative.”
We can also allow for weights depending on Nmax and/or
h̄�. In the present investigation, we apply Eq. (8) with only
the h̄� value that yields the lowest energy in the largest
space, weighting different Nmax by the slope of the energy
vs. Nmax and using the spread of results from neighboring h̄�

values to determine a conservative confidence interval for the
extrapolation. Alternative approaches to extrapolation in the
NCSM are described in Ref. [26].

We have considered a variety of interactions as initial
inputs to the SRG evolution, including chiral EFT, Argonne
V18 [27], and CD-Bonn [28]. The initial (λ = ∞) chiral NN
potential is the 500-MeV N3LO interaction from Ref. [29].
With the chiral potential we also have available an initial
NNN potential at N2LO [30] in the local form of Ref. [31],
with constants cD = −0.2 and cE = −0.205 fit to the average
of triton and 3He binding energies and to triton β decay as
described in Ref. [32]. NCSM calculations with these initial
chiral interactions and the parameter set in Table I of Ref. [32]
yield energies of −8.473(4) MeV for 3H and −28.50(2) MeV
for 4He compared with −8.482 MeV and −28.296 MeV from
experiment, respectively. There is a 20-keV uncertainty in
the calculation of 4He from incomplete convergence but a
200-keV discrepancy with experiment. The latter is consistent
with the omission of three- and four-body chiral interactions
at N3LO [33]. These provide the scale for assessing whether
induced four-body contributions are important compared to

other uncertainties. The best result for 4He using the AV18
potential is −24.23(1) MeV [34] and using CD-Bonn we
compare to −26.1(1) MeV. Here there are larger discrepancies
with the experimental values due to the omission of consistent
initial three-body interactions, but these calculations are still
useful to assess the effects of induced NNN.

For 6Li calculations we use only the chiral interactions
at N3LO [29] for NN and at N2LO for NNN in the form
described above. The best existing binding energy with the
N3LO interaction, using a Lee-Suzuki–based renormalization
up to Nmax = 14, is 28.5 ± 0.5 MeV. With NNN included the
converged value is 32.5 ± 0.5 MeV [35]. The truncations
analogous to NA2max and NA3max for these calculations were
NA2max = 400 and NA3max = 40, equivalent to the initial
Hamiltonian inputs for the present work. Results are generally
not dependent on the particular values of the LECs in a range
of cD ∼ −2 to + 2 (with cD and cE constrained by the fit to
3H [32]) but some observables may be particularly sensitive
as discussed in Ref. [36].

III. CONVERGENCE

In Fig. 1, we show the triton ground-state energy as a
function of the oscillator basis size, Nmax. The convergence
of the bare interaction is compared with the SRG evolved
to λ = 2.0 and 1.5 fm−1. The oscillator parameter h̄�

in each case was chosen to optimize the convergence of
each Hamiltonian. We also compare to a Lee-Suzuki (LS)
calculation (green squares), which has been used in the
NCSM to greatly improve convergence [36,37]. All of these
effective interactions result from unitary transformations. The
LS is done within the model space of a target nucleus, in
contrast to the free-space transformation of the SRG, which
yields nucleus-independent matrix elements. Consequently,
the LS results are nonvariational independent calculations
at each Nmax while the SRG-evolved Hamiltonians can be
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FIG. 1. (Color online) Ground-state energy of 3H as a function
of the basis size Nmax for an N3LO NN interaction [29] with an
initial NNN interaction [12,32]. Unevolved (“bare”) and Lee-Suzuki
(L-S) results with h̄� = 28 MeV are compared with SRG evolved to
λ = 2.0 fm−1 and 1.5 fm−1 with h̄� = 20 MeV.
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FIG. 2. (Color online) Ground-state energy of 4He as a function
of the basis size Nmax for an N3LO NN interaction [29] with an
initial NNN interaction [12,32]. Unevolved (λ) results are compared
with Lee-Suzuki (L-S) and SRG evolved to λ = 2.0 and 1.2 fm−1 at
h̄� = 28 and 36 MeV. The black arrow indicates the experimental
value.

simply truncated to produce the curves shown. A dramatic
improvement in convergence rate compared to the initial
interaction is seen even though the χEFT initial interaction
is relatively soft. The SRG acts to decouple high-momentum
degrees of freedom so the UV part converges faster with
respect to Nmax. Thus, once evolved, a much smaller Nmax

basis is adequate for a particular accuracy.
Figure 2 illustrates for 4He the same rapid convergence

with Nmax of an SRG-evolved interaction. However, in this
case the asymptotic value of the energy differs slightly because
of the omitted induced four-body contribution. The difference
can be as large as 100 keV for λ = 1.0 but no larger than
50 keV for the substantially evolved λ = 2.0 fm−1. The SRG-
evolved asymptotic values for different h̄� (solid vs. dotted

curves) differ by only 10 keV, so the gap between the converged
bare/L-S result and the SRG result is dominated by the induced
NNNN rather than incomplete convergence. Convergence is
even faster for lower λ values, ensuring a useful range for the
analysis of few-body systems. However, because of the strong
density dependence of four-nucleon forces, it will be important
to monitor the size of the induced four-body contributions for
heavier nuclei and nuclear matter. In Sec. V we present a tool
for analyzing the growth of induced many-body forces.

Also evident in Fig. 2 is the evolving dependence on h̄�.
Calculations are variational in h̄� with the optimal value
indicating balance between �UV and �IR. For the initial
Hamiltonian, the limit of Nmax = 20 is small and the larger h̄�

is necessary to provide a sufficient �UV. The larger IR cutoff
due to higher h̄� is less of a problem than the smaller UV
cutoff due to the low Nmax. However, if the initial Hamiltonian
is evolved in the Nmax = 32 space, then more UV information
is shifted down into the Nmax = 20 space. Now the high IR
cutoff is more significant and a lower h̄� is more optimal. In
the figure, one can see that the h̄� = 28 calculation (solid
curves) has significantly better convergence properties for
lower λ, especially at the small Nmax (� 8) that is crucial for
larger A.

Evolving Hamiltonians such as Argonne V18 and CD-Bonn
also results in much improved convergence properties, as seen
in Figs. 3(a) and 3(b). Here a large initial A = 2 cutoff, NA2max,
is crucial due to the strong high-momentum components in
the AV18 potential. However, at NA2max = 196 the NN-only
results are converged with respect to variation in NA2max

to within 1 keV. For CD-Bonn we found that NA3max = 40
and Nmax = 20 was sufficient to converge results to within
30 keV. Calculations for the Argonne potential require a bit
more effort, obtaining convergence with respect to NA3max

to within 130 keV. The optimal frequency for both of these
interactions evolved to λ = 2.0 was found to be h̄� = 44 MeV.
Larger values for NA3max are possible for these potentials, but
the current level of convergence is sufficient to observe the
qualitative behavior of the SRG in Sec. IV.
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FIG. 3. (Color online) Ground-state energy of 4He for select λ as a function of the basis size Nmax for the (a) AV18 [27] and (b) CD-Bonn [28]
interactions. Results are shown for h̄� = 44 MeV with NA3max = 40. Dotted lines indicate current best results for these potentials [34].
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FIG. 4. (Color online) Ground-state energy of 6Li as a function
of the basis size Nmax for an initial N3LO NN interaction [29] and
an initial N2LO NNN interaction [12,32] evolved to various λ. Note
the large scale and complete lack of convergence for unsoftened
Hamiltonians (λ = 100 fm−1). The dotted line is the best Lee-Suzuki
result.

A multitude of chiral EFT interactions are available for use
in initial Hamiltonians. We have used here the one version
(500 MeV N3LO from Ref. [29]) for which the accompanying
three-nucleon terms have been rigorously fit to data. An
important task in the future will be to apply SRG techniques
to many more available interactions to compare and contrast
them. Some of these can be significantly harder than that
chosen here, so running to low λ would be especially important
though computationally expensive.

Figure 4 shows just how important a softening transforma-
tion is to achieve convergence in light nuclei. Here we plot 6Li
binding energies up to Nmax = 8 for several λ’s from 100 to
1.0 fm−1. A meaningful extrapolation is simply not possible,
even with the relatively soft chiral potential, without some
form of softening renormalization like the SRG or Lee-Suzuki
type transformations. A key advantage of the SRG program is

the ability to perform systematic extrapolations to spaces that
are computationally inaccessible.

Compare this to the case of 4He where the initial chiral EFT
Hamiltonian is sufficiently soft to produce a nearly converged
result at Nmax = 20. For A = 6 we are restricted to smaller
Nmax because the basis scales with Nmax much faster than at
A = 4. In addition the radius of 6Li is larger and requires a
lower IR cutoff. Thus more oscillator basis states of the initial
interaction are required to accurately describe this nucleus.
In other words, even if we could perform the Nmax = 20
calculation of 6Li, it would still not converge as well as 4He
does at that level. With the SRG the information of the larger
basis can be moved into a smaller space in a smooth controlled
way.

In Fig. 5 we show the convergence patterns of the ground
state of 6Li on a more detailed scale. Here the three different
calculations of Table I are shown side-by-side for clarity, with
several λ values. The initial Hamiltonian was defined by the
truncations NA2max = 300 and NA3max = 40 and the truncation
errors from (or convergence with respect to) these limits are 1
and 80 keV respectively. The 6Li calculation was performed
up to Nmax = 8 for the three-body matrix element versions,
and Nmax = 10 for NN-only (possible with only two-body
matrix elements). Further calculations with three-body matrix
elements will require a distributed memory approach like
MFDn of Vary et al. [22] and the other techniques mentioned
above; such codes will be used for future calculations of larger
p-shell nuclei. The straight dotted line shows the converged
Lee-Suzuki results for NN-only and NN + NNN calculations.

While we can see the improvement in convergence by the
data points alone, we can only measure the effect of induced
many-body forces by considering the extrapolated converged
value for each λ. We provide a sample of the extrapolations
we will use to assess the converged values for 6Li, in the
form of the dotted lines extending from each curve. The
spread of these lines at large Nmax is the chief indicator
of remaining scale dependence in the results. In Fig. 5(a),
which is NN-only, one can clearly see the large spread due
to omitted induced three-body matrix elements. This spread
is decreased in the other plots by including three-body matrix
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FIG. 5. (Color online) Ground-state energy of 6Li as a function of the basis size Nmax for an initial N3LO NN interaction [29] and an
initial N2LO NNN interaction [12,32] evolved to various λ. Here the initial NN potential was included up to NA2max = 300 and the NNN up to
NA3max = 40. Results are compared with the best Lee-Suzuki shown by the thin black dotted line (see text). The dotted lines extending from
the curves are examples of the extrapolations made throughout.
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FIG. 6. (Color online) Ground-state energy of 6Li as a function of the oscillator frequency, h̄�. Again we use a N3LO NN [29] up to
NA2max = 300 and N2LO NNN [12,32] up to NA3max = 40. Panels (a)–(d) are NN-only while (e) and (f) include both induced and initial NNN.
The black arrows indicate the experimental value. Note for comparison, the left is shifted relative to the center due to the difference in initial
interactions.

elements, first, in Fig. 5(b) by including those induced by
the renormalization and in Fig. 5(c) by including the initial
NNN strength in the evolution. In both NNN-inclusive plots
the curves have a smooth qualitative progression from higher
to lower λ, indicating less interplay between attractive and
repulsive components of the interaction, as discussed in Sec. V.

The size of induced four- to six-body forces in this
calculation is estimated by measuring the spread of the lines in
the center and right plots or, alternatively, by considering the
slope of the binding energy as a function of λ. However,
the spread is actually smaller than it appears here because only
the λ = 1.5 and 1.8 curves are satisfactorily converged at this
h̄�. The curves for other λ’s are optimal at different values of
h̄� and their converged values are not accurately represented in
this simple example. However, the full extrapolation procedure
does indeed take this h̄� dependence into account and this
figure serves as a visual reminder of the process.

Finally, we mention the sensitivity of the extrapolations
to the range in Nmax used to fit the exponential function.
Results at Nmax = 10 with NN-only allow an assessment of the
extrapolation procedure. We find that including the Nmax = 2
points bias the extrapolation high, so the best estimates use
Nmax = 4–8 when NNN matrix elements are included.

Figure 6 shows the convergence of the 6Li ground state
as a function of h̄� for selected λ’s. The separate panels
compare, for two different λ’s (top and bottom), the current
results with a previous study [2] of NN-only calculations
where the evolutions were performed in momentum space.
The momentum-space evolutions used only the neutron-proton
part of the interaction, Vnp, as an average for the complete NN
interaction and added the Coulomb contribution separately
afterward, causing a systematic overbinding of about 1 MeV.
We have used the whole N3LO [29] interaction and included
the Coulomb in our evolutions but have checked that we
recover the previous NN-only results with Vnp. The left panel
shows the momentum-space evolved calculations. The center

panel shows a reproduction of those results with a systematic
shift due to the revised handling of the initial interaction.
The right panel shows the full NN + NNN calculation. All
three panels show good correspondence in h̄� dependence
between the previous and current calculations, indicating that
the NN-only calculations are good predictors of the minima
for the larger 3N-inclusive version.

As discussed above, a lower h̄� results in a lower cutoff,
�UV [see Eq. (6)] and requires a larger basis (larger Nmax)
to achieve the same convergence. This can be seen in the
NN + NNN panel by observing the trend in Nmax for each
h̄�. The values that each of the h̄� spaces are converging
toward differ, indicating that the initial Hamiltonian has been
truncated by different incomplete bases and will not obtain
the same result; the lowest Nmax curve is not yet flat. This is
especially evident at the smallest h̄� which has the worst
truncation. Improving this convergence requires increasing
the three-body basis size, NA3max. Here, at NA3max = 40,
the dimension of a single A = 3 channel (with quantum
numbers JπT ) can be 7–8000 states, requiring 60–70 nodes for
12 h with a hybridized MPI-OpenMP evolution code. This is
currently the most significant computational bottleneck in our
SRG program.

In Fig. 7, we show the spectrum for 6Li in absolute level
energies on the left and excited state spacings on the right. We
chose λ = 1.8 fm−1 due to sufficient convergence as indicated
by our extrapolation procedure. This example happens to
closely match the excitation spectrum of available LS based
results, though the variation in λ is not large. We also include a
spectrum with the excitation energies shifted to the converged
ground-state energy.

The upper pair of plots shows the convergence with respect
to the final Nmax of the 6Li calculation. In Fig. 7(a) we
can see a consistent convergence pattern from 2h̄� down
to 8h̄�, but the results are clearly not converged at 8h̄�.
In Fig. 7(b), the excitation energies indicate that the higher
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FIG. 7. (Color online) Spectrum of 6Li as a function of NA3max. Convergence in Nmax is shown in (a) and (b) and convergence in NA3max

is shown in (c) and (d). Absolute energies are shown in (a) and (c) while excitation energies are used in (b) and (d). All four panels are for
λ = 1.8 fm−1 with NN + NNN at h̄� = 20 MeV and NA2max = 300.

J states are converging more slowly due to stronger depen-
dence on the higher A = 3 partial waves. This was tested by
using various levels of truncation in the initial Hamiltonian for
channels with higher values of J so, for example, if J > 1,
then Nmax < NA3max for that channel. We can also see here
that the excitation energies compare well to the existing LS
calculations.

The lower panels show the dependence on the initial
truncation of the A = 3 sector, NA3max. In Fig. 7(c) we see
that the Hamiltonian is well converged when NA3max = 40.
In Fig. 7(d) the excitation energy of the 3+ state drops
significantly with increasing NA3max. In these calculations,
not only is NA3max larger, but also individual channels are
truncated less severely to provide more of the Hamiltonian for
these higher-J states. Specifically, at NA3max = 36 each step
up in J corresponded to a reduction in Nmax of 4. But, for
the NA3max = 40 calculations this was changed to 2 Nmax for
every step in J . It is possible to push NA3max and these channel
truncations even higher and may be needed in the future for
increased accuracy.

Table III gives a summary of the levels of convergence
achieved in the present calculations. These are unextrapolated

results from complete model spaces for the purposes of
comparison to existing and future results and experiment.
Extrapolated results for 6Li will be given below. We strongly
advise the reader that the specific choice of λ is less important
than the λ dependence in the final results. The λ dependence
is the indicator that many-body forces are being induced to
account for the renormalized components. Here we choose
to display λ’s = 1.0 and 1.8 fm−1 as they reach over the
range of λ dependence in this work. For the potentials AV18
and CD-Bonn the value for NN + NNN-induced in the
table corresponds to the unevolved minimum. The optimal
frequency for the unevolved potential in these cases is h̄� �
52 MeV and these values are quoted in the table.

IV. EVOLUTION OF MANY-BODY FORCES

In Fig. 8, the general flow of an SRG evolved nuclear
Hamiltonian is illustrated. The ground-state energy of the
triton is plotted as a function of the flow parameter λ from
∞, which is the initial (or “bare”) interaction, toward λ = 0.
We used NA2max = 196, NA3max = 36, and h̄� = 20 MeV, for
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TABLE III. Results for binding energy in all calculations for 3H and 4He. All errors for SRG results are convergence margins at the
quoted basis size. The columns marked NN+3N show NN + NNN-induced values except for rows that include an initial NNN. Basis sizes are
NA3max = 40 and NA2max = 196 for all except N3LO calculations used NA3max = 32.

Nucleus/ h̄� NN-only NN + 3N NN-only NN + 3N LS
potential λ = 1.0 λ = 1.0 λ = 1.8 λ = 1.8

3H, AV18 28/52 −7.487(1) −7.486(40) −8.467(1) −7.486(40) −7.62(0)
CD-Bonn 28/52 −7.505(1) −7.863(40) −8.553(1) −7.863(40) −7.99(1)
N3LO 20 −7.471(2) −7.852(5) −8.351(1) −7.852(5) −7.852(5)
+NNN 20 − −8.473(5) − −8.473(5) −8.473(5)
4He, AV18 44 −24.419(23) −24.339(14) −29.267(15) −23.904(25) −24.23(1)
CD-Bonn 44 −24.484(16) −26.217(9) −29.739(11) −25.926(17) −26.1(1)
N3LO 28 −24.284(0) −25.641(1) −28.446(1) −25.325(1) −25.39(1)
+NNN 28 − −28.661(3) − −28.464(2) −28.50(2)

which all energies are converged to better than 10 keV. The
previous work [3] used a less stringent NA2max = NA3max =
36. However, those results are within 1 keV of the current
calculations, showing that the larger NA2max is not critical
for 3H.

We first consider the NN-only curve (squares). If Hλ is
evolved in only an A = 2 system, higher-body induced pieces
are not included. The resulting energy calculations will be only
approximately unitary for A > 2 and the ground-state energy
will vary with λ (squares). Keeping the induced NNN matrix
elements, by performing the A = 3 evolution, yields a flat line
(circles), which confirms an exactly unitary transformation
in that sector. The line is equally flat if an initial NNN is
included (diamonds). Note that the net induced three-body
is comparable to the initial NNN contribution and thus is of
natural size.

The shape of the NN-only curve, first increasing binding and
then rebounding, can be understood from the fact that early in
the evolution the high-momentum matrix elements are most
affected by the transformations. These are predominantly the
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FIG. 8. (Color online) Ground-state energy of 3H as a function
of the SRG evolution parameter, λ. See Table I for the nomenclature
of the curves. The calculations use NA2max = 196, NA3max = 36, and
h̄� = 20 MeV.

short-range repulsive parts of the potential and are transformed
into strength in the induced NNN matrix elements. As the
evolution progresses to lower-momentum scales the more
attractive parts of the potential are affected, causing a rebound
in the NN-only result. Note that all this information is not
lost but merely reorganized into NNN terms, and when we
keep those terms we regain the unitary result. This analysis is
supported by studies in one-dimensional models that showed
purely attractive initial potentials to have monotonically
decreasing binding energy [13,21].

In Fig. 9, we examine the SRG evolution in λ for 4He
using a chiral N3LO potential [29] with h̄� = 36 and 28 MeV,
the dashed and solid sets respectively. The 〈V (2)

λ 〉 and 〈V (3)
λ 〉

matrix elements were evolved with basis sizes NA2max = 196
and NA3max = 32 and then truncated to Nmax = 18 at each
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FIG. 9. (Color online) Ground-state energy of 4He as a function of
the SRG evolution parameter, λ. Note the comparison of two values
for h̄� (solid and dashed) and the best LS results (dotted). Here,
NA2max = 196 and NA3max = 32 compared to NA2max = NA3max = 28
for the prior work [3]. The results here are converged to within 10 keV
of those from Ref. [3]. See Table I for the nomenclature of the curves.
Note the comparison of two values for h̄� (solid and dashed) and the
best LS results (dotted). The thick arrow indicates the experimental
value.
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FIG. 10. (Color online) Ground-state energy of (a) 3H and (b) 4He as a function of λ, starting from Hamiltonians based on CD-Bonn [28],
Argonne V18 [27], and N3LO [29]. See Table I for the nomenclature of the curves. Here we used h̄� = 28/28/20 and 44/44/28 for 3H and
4He, respectively. The dotted lines show the converged LS results for each potential. For 3H these values are AV18 = −7.62, CD-Bonn =
−7.99, and N3LO = −7.85.

λ to diagonalize 4He. Again, the higher NA2max has little
impact on the final results for this nucleus. The NN-only
curve has the characteristic shape discussed above. When the
induced NNN is included, the λ dependence is significantly
reduced. The pattern depends only slightly on the inclusion
of the initial NNN interaction. In both cases the dotted line
represents the converged value for the initial Hamiltonian using
a Lee-Suzuki–based procedure. The residual λ dependence is
due to missing induced four-body forces.

At large λ, the discrepancy with the dotted line is due to a
lack of convergence for unevolved potentials at Nmax = 18, but
at λ < 3 fm−1 SRG decoupling takes over and the discrepancy
is due to short-range induced four-body forces. This transition
is emphasized by showing the calculation at two different
values of h̄�. The point in λ where they meet is an indicator
of the momentum scale at which the evolving Hamiltonian is
converged with Nmax = 18. All the information included in
the initial Hamiltonian at NA3max has been transformed into
the smaller basis defined by Nmax. Any residual difference
between values of h̄� (invisible on this scale) indicate the
level of convergence with respect to the included 〈V (3)

λ 〉 matrix
elements defined by NA3max.

In the three-body-inclusive curves the discrepancy due to
induced four-body forces is about 50 keV net at λ = 2 fm−1.
This is small compared to the rough estimate in Ref. [33]
that the contribution from the long-ranged part of the N3LO
four-nucleon force to 4He binding is of order a few hundred
keV. If needed, we could evolve four-body matrix elements
in A = 4 and will do so when nuclear structure codes can
accommodate them.

Figure 10 compares the flow of 3H and 4He binding energies
for several initial Hamiltonians, AV18 [27], CD-Bonn [28],
and N3LO [29]. For 3H we have used harmonic oscillator
frequencies h̄� = 28, 28, and 20 MeV, respectively. For 4He
these optimal frequencies are h̄� = 44, 44, and 28 MeV,
respectively. The general shape of all the NN-only curves is

quite similar here with a initial dip in binding and then a turn
over at λ = 1.8 fm−1. Evolution to low λ (< 2.0 fm−1) of
different initial Hamiltonians at A = 2 produce a very similar
evolved form [18]. Previously this had only been observed at
the level of comparing selected two-body matrix elements.
Here we show that observables at A > 2 also exhibit this
behavior. The NN-only points for all three initial Hamiltonians
converge as λ decreases past 1.8. Note that the values for the
unevolved potentials AV18 and CD-Bonn do not approach the
Lee-Suzuki results because these potentials require a larger
UV cutoff and therefore a larger h̄� (� 52) or Nmax for
convergence. The converged values for the bare potentials are
quoted in Table III and would be the equivalent of the unitary
line shown in Fig. 8.

Of course, we should not expect the NN + NNN-induced
calculations to produce identical results at small λ because they
are not equivalent Hamiltonians at the A = 3 level. However,
their very similar shape indicates a specific scale dependence
of three- and four-body forces generated during evolution. This
is reminiscent of evolution of the chiral interaction in Fig. 9
with and without initial NNN, where the shape is similar but
shifted by the initial difference. This is a promising indication
of a universality phenomenon. A full test of this idea will
require coding analogous three-body interactions for the other
initial potentials (i.e., IL-IX for AV18) and evolving other
initial NN interactions.

Figure 11 shows extrapolated ground-state energies for 6Li
at different values of λ. We used truncations NA2max = 300
and NA3max = 40 and performed the final diagonalization to
Nmax = 8. The gray bands represent the best Lee-Suzuki re-
sults available for NN-only and NN + NNN initial interactions,
with error estimates. The analogous truncations for these
calculations were NA2max = 400 and NA3max = 40 with 6Li
being calculated up to Nmax = 14 for NN-only. The results are
28.5 ± 0.5 MeV without and 32.5 ± 0.5 MeV with initial
three-body forces.
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FIG. 11. (Color online) Extrapolated ground-state energy of 6Li
as a function of the SRG evolution parameter, λ. Error bars are based
on variation of the minimum in h̄� as discussed in the text. The
truncations used were NA2max = 300 and NA3max = 40.

The λ dependence is shown for the lower values where the
result is near convergence. The results plotted here are obtained
from the extrapolation procedure previously described. This
procedure accounts for the variation, with λ, of the minimum
h̄� and extrapolates in Nmax the converged binding energy.
The error bars are dependent on the range in h̄� for which
we have results. For any given λ the error bars will be
larger if the optimal h̄� is not present in the data set used
for extrapolation. In fact, the extrapolation tends to predict
too low (more negative) as measured by the predictions of
Nmax = 10 points in the NN-only curve. This feature has also
been confirmed as we systematically added to the data set for
the λ’s with the largest error bars; the extrapolated points rose
with better values of h̄�, flattening the curve and reducing the
apparent λ dependence.

The hierarchy of induced many-body forces can be assessed
in Fig. 11 by comparing the spread in the NN-only curve to that
of the NN + NNN curves. To do so, note that the NN-only curve
must coincide with the LS result at λ = ∞. The spread in λ

has been reduced from 4 to <1 MeV. The majority of induced
many-body forces missing from the NN-only curve is due to
three-body forces subsequently included in the other curves.
Note that the shape of the evolution curve is very similar to
those of 4He from any of the initial potentials used—a gentle
rise to 1.8 and a slightly steeper slope down through 1.0. We
interpret this to indicate that the majority of many-body (A �
4) forces induced are for A = 4 and that five- and six-body
forces are significantly smaller. This is consistent with the
expected hierarchical flow of induced many-body forces [13].
The spread here is roughly 1 MeV, compared to the 30–60 keV
found in 4He calculations.

Our NN-only curve is almost identical in shape to pre-
vious momentum space studies, despite the difference in
initial Hamiltonians used. The previous study used only the
neutron-proton interaction for all NN interactions while we
have used the full isospin-breaking potential. The results

are systematically shifted up (in the previous study 6Li was
overbound by �1 MeV) in relation to the NNN-inclusive
curves. The error bars for the same Nmax are roughly the same
as the previous work, confirming that NN-only calculations are
good predictors of appropriate h̄� values.

Note that the many-body forces do not explode as previ-
ously feared and that evolution to lower λ may not be un-
reasonable. While previous NN-only studies showed induced
three-nucleon forces growing uncontrolled below λ = 1.5, we
see that inclusion of these matrix elements produces a more
gentle λ dependence. So evolving to lower λ to improve
convergence may be useful in future calculations. Recent
results [25] suggest that, for the choice of SRG generator in
Eq. (2), the many-body forces may grow with A, so monitoring
in the rest of the p shell (with adequate codes) is vital.
Alternative choices for the SRG generator and sophisticated
extrapolation techniques may play a central role.

V. HIERARCHY

In order to more fully understand the SRG evolution we can
trace the individual parts of the Hamiltonian. Figure 12 shows
the 3H and 4He ground-state expectation values of individual
components of the evolving Hamiltonian as a function of λ.
The insets show an increased scale for closer inspection of
three- and four-body expectation values. Here a hierarchy
of induced many-body forces is evident. The magnitude of
variation in λ for each curve differs by approximately an order
of magnitude. Cancellations between Trel and VNN are reduced
significantly over the course of the evolution. The strength
of matrix elements at large momenta is being reorganized
into (shifted to) lower-momentum matrix elements. Hence the
absolute values of the expectation values 〈Trel〉 and 〈VNN 〉 are
reduced.

Also, note the correspondence between the 〈V3N 〉 curve and
NN-only evolution curves such as in Figs. 8 and 9. The size
of the three-body force reaches a minimum corresponding to
the point (λ � 1.8 fm−1) of maximum binding achieved by
the NN-only calculations. This is simply the explicit plotting
of the many-body forces that is implied by the approximately
unitary curves shown in Sec. IV. In this case, the induced
three-body forces effectively cancel out the initial three-body
terms; the expectation value, 〈V3N 〉, drops almost to zero
(Table IV).

To make a connection between the individual terms in
the three-body interaction evolution and the running of the
ground-state energy, we need the evolution equations for
the expectation value of V (3)

s in the ground state. Denoting
the ground-state wave function for the A-particle system by
|ψA

s 〉, it evolves according to (it is convenient here to use the
flow parameter s = 1/λ4)

∣∣ψA
s

〉 = Us

∣∣ψA
s=0

〉
,

d

ds

∣∣ψA
s

〉 = ηs

∣∣ψA
s

〉
, (9)

where Us is the SRG unitary transformation at s and

ηs = dUs

ds
U †

s = −η†
s . (10)
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FIG. 12. (Color online) Expectation value of the components of the nuclear interaction in the (a) 3H and (b) 4He ground states as a function
of the SRG parameter λ. The initial interaction was N3LO NN [29] and N2LO NNN at h̄� = 20 and 28 MeV (left and right) and NA3max = 32
with the 4He final truncation at Nmax = 18. The insets show expanded details for the three- and four-body forces.

Then the matrix element of an operator Os evolves
according to

d

ds

〈
ψA

s

∣∣Os

∣∣ψA
s

〉 = 〈
ψA

s

∣∣dOs

ds
− [ηs,Os]

∣∣ψA
s

〉
. (11)

If the operator Os is transformed as Os = UsOs=0U
†
s ,

then the matrix element on the right-hand side of Eq. ((11))
vanishes, as when Os = Hs .

However, if we wish to see how one part of Hs evolves,
such as the expectation value of V (3), we obtain

d

ds

〈
ψA

s

∣∣V (3)
s

∣∣ψA
s

〉 = 〈
ψA

s

∣∣dV (3)
s

ds
− [

ηs, V
(3)
s

]∣∣ψA
s

〉
, (12)

which does not give zero in general because V (3)
s �= UsV

(3)
s=0U

†
s .

In the two-particle case, the analog of Eq. (12) gives
d〈V (2)〉/ds = 〈[ηs, Trel]〉. In the three-particle case, we can

TABLE IV. Results for extrapolated binding energy of 6Li at
various values of λ and including error bars from the extrapolation.
The analogous results from Lee-Suzuki calculations are −28.5 ± 0.5
MeV for NN-only and NN + NNN-induced and −32.5 ± 0.5 MeV
for NN + NNN. The experimental value is −31.99 MeV. The h̄� and
range in Nmax used for each extrapolation is also quoted.

λ Best h̄� NN-only NN + NNN-induced NN + NNN
(Nmax 4–10) (Nmax 4–8) (Nmax 4–8)

2.5 24 −31.3 ± 0.5 −28.5 ± 1.0 −32.9 ± 1.0
2.2 20a −31.6 ± 0.3 −28.3 ± 0.6 −32.4 ± 0.6
2.0 20 −32.0 ± 0.2 −28.1 ± 0.3 −32.2 ± 0.3
1.8 16 −32.8 ± 0.1 −28.0 ± 0.2 −32.2 ± 0.2
1.5 16 −33.00 ± 0.05 −28.1 ± 0.1 −32.3 ± 0.1
1.2 16 −31.85 ± 0.05 −28.4 ± 0.1 −32.75 ± 0.1
1.0 16 −29.75 ± 0.02 −28.8 ± 0.1 −33.2 ± 0.1

aThis one point has a different optimal h̄� for NN-only at h̄� = 24.

expand Eq. (12) as

d

ds

〈
ψA

s

∣∣V (3)
s

∣∣ψA
s

〉
= 〈

ψA
s

∣∣[ηs,Hs]3 − [
ηs, V

(3)
s

]∣∣ψA
s

〉
= 〈

ψA
s

∣∣[ V
(3)
s , Trel

] + [
V

(2)
s , V (2)

s

]
c
+ [

V
(2)
s , V (3)

s

]
+ [

V
(3)
s , V (2)

s

] + [
V

(3)
s , V (3)

s

] − [
V

(2)
s , V (3)

s

]
− [

V
(3)
s , V (3)

s

]∣∣ψA
s

〉
= 〈

ψA
s

∣∣[ V
(3)
s , Hs

] + [
V

(2)
s , V (2)

s

]
c
− [

V
(3)
s , V (3)

s

]∣∣ψA
s

〉
= 〈

ψA
s

∣∣[ V
(2)
s , V (2)

s

]
c
− [

V
(3)
s , V (3)

s

]∣∣ψA
s

〉
, (13)

where V
(2)
s and V

(3)
s are the commutators V

(2)
s ≡ [Trel, V

(2)
s ]

and V
(3)
s ≡ [Trel, V

(3)
s ]. In the third line, the expectation value

of the commutator, [V
(3)
s , Hs], vanishes identically.

The subscript “c” in the first term indicates that only
connected parts of this commutator have been kept and
refers to a diagrammatic formalism developed in Ref. [19].

Computing [V
(2)
s , V (2)] in the three-particle space involves all

nucleons democratically. However, commutators which leave
one nucleon as a spectator cancel out in the A = 2 sector. So,

we must compute [V
(2)
s , V (2)] for the A = 2 sector and embed

it in A = 3 so we can isolate the piece that affects the evolution
of V (3). In general, this subtraction is required at all sectors
in A, and the “c” here indicates that this procedure has been
done.

In Fig. 13 we show the ground-state expectation values of
the terms in Eq. (13) for the triton. The left panel shows the
calculations with just-induced NNN interactions and the right
panel with an initial three-body force. It is most useful for
our analysis to convert from derivatives with respect to s to
derivatives with respect to λ using d

ds
= − λ5

4
d
dλ

. The dominant
contribution to the evolution of the three-body potential matrix
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FIG. 13. (Color online) Contributions from individual terms to d〈V (3)
λ 〉/dλ; the flow of the triton ground-state expectation value of the

three-body potential. The calculation is done (a) without and (b) with an initial three-body interaction.

element is the two-body connected part, [V
(2)
s , V (2)

s ]c. This
dominance is stronger here than seen in a one-dimensional
analog [13], perhaps due to a stronger initial hierarchy in
the EFT compared to the initial conditions chosen in one
dimension. Again, the evolution of three-body matrix elements
depends on the interplay between long- and short-range,
attractive and repulsive, parts, which lead to scale-dependent
inflection points and slopes.

We can repeat the above analysis for A = 4 and obtain

d

ds

〈
ψ (4)

s

∣∣V (4)
s

∣∣ψ (4)
s

〉 = 〈
ψ (4)

s

∣∣[V
(2)
s , V (3)

s

]
c
+ [

V
(3)
s , V (2)

s

]
c

+ [
V

(3)
s , V (3)

s

]
c
− [

V
(4)
s , V (4)

s

]∣∣ψ (4)
s

〉
,

(14)

where we find no fully connected terms with only two-
body forces. Again, disconnected terms involving two- and

three-body potentials cancel out in the lower sectors. The
leading terms are commutators with one V (2)

s and one V (3)
s ,

followed by connected terms quadratic in V (3)
s and one

term quadratic in V (4)
s . All terms are small and additional

cancellations among them may further suppress the four-body
contribution. Thus, the initial hierarchy of many-body forces
suggests that induced four-body (and higher-body) forces will
be small.

In Fig. 14 we plot these contributions to the evolution
of the four-body expectation value. The left panel shows
the calculations with just-induced NNN interactions and the
right panel includes initial three-body forces. Again, it is
more useful to convert the derivatives in s to derivatives in
λ. The interplay of contributions is much more complicated
than for A = 3. We can see cancellations between one
commutator involving V (2)

s and V (3)
s (blue diamonds) and

the term quadratic in V (3)
s (green triangles). This is in slight

contrast to the analogous case in one dimension where all
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FIG. 14. (Color online) Contributions of the terms in Eq. (14) to d〈V (4)
λ 〉/dλ, the evolving 4He ground-state expectation value of the

four-body force. The calculation is done (a) without and (b) with an initial three-body interaction.
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four terms were involved in less straightforward cancellations.
No terms quadratic in V (2)

s appear because no connected
diagrams can be constructed for the four-particle evolution.
The total derivative of V (4)

s is small until below λ = 2. Again
the dominant contribution to the flow is the lowest-order
commutator, and no feedback in V (4)

s is present.
There is room here for dependence of the induced many-

body forces on the strength of the initial three-body potential
and Fig. 14 supports this as far as A = 4. Forthcoming results
[25] provide evidence of such dependence increasing with A.
Other forms of SRG, such as one with the replacement Trel →
Trel + V2π , may be useful in controlling the renormalization of
the long-range parts of the initial potential.

We also note that any complete analysis of the growth
of induced many-body forces must involve converged or
extrapolated results at the optimal h̄� for each λ. The analysis
tool shown here is only meaningful when viewed at a single
h̄� over the course of evolution in λ and direct comparison to
plots of the type shown in Fig. 14 is difficult.

VI. OBSERVABLES

While accurate reproduction of nuclear binding energies
is the first step in nuclear structure calculations, other ob-
servables can offer additional information about the effects
of renormalizing high-energy degrees of freedom, short-range
correlations, and other details of a properly fit initial Hamilto-
nian. While we know that the harmonic oscillator basis is not
an ideal environment for certain long-ranged observables, such

as the rms radius, we have existing Lee-Suzuki renormalized
benchmarks with which to compare. And electromagnetic
transitions, such as B(E2)’s and B(M1)’s, are notoriously
difficult both to calculate and to measure, making this an
important area of prediction for theory. All such observables
are an important next test in understanding the quality of
the many-body wave functions resulting from SRG-evolved
interactions. Here we present a small sampling of results,
focusing on convergence patterns.

Here we are plotting the unevolved operator expectation
value in the evolved wave function. This is a reasonable way to
visualize the effect of evolution on the structure with respect to
particular operator. However, consistent renormalization of the
operators themselves is an important part of a robust nuclear
structure program. Work along these lines is proceeding and
is partly presented in Ref. [14]. Extending beyond A = 2 will
be covered in a forthcoming article.

Shown in Figs. 15(a)–15(e) are selected observables for
6Li as a function of Nmax up to Nmax = 8. Included are simple
extrapolation curves shown by the dotted lines extending from
the data points. Table V shows the values for Nmax = 8 at select
values of λ. In all cases the extrapolated values compare well
to the established Lee-Suzuki–based results but show room for
improvement with respect to the experimental values. Note the
small scales on some of the plots, especially the quadrupole
moment and B(M1;2+1 → 1+0).

Some of these observables exhibit a nonvariational pattern
in Nmax, such as the quadrupole moment and the B(M1) shown
here. These operators have strong coupling between shells of
Nmax and Nmax + 2 that result in complex cancellations from
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FIG. 15. (Color online) Various observables (a)–(e) in 6Li as a function of Nmax for select λ’s. These results are with included initial NNN
forces and NA2max = 300 and NA3max = 40 and h̄� = 20 MeV. The arrow shows the experimental value and the dotted line shows the best LS
result.
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TABLE V. Results for selected properties of 6Li. Here we choose
λ = 1.0 and 1.2 fm−1 due to their convergence properties. These
results were obtained in a basis space with Nmax = 8 and h̄� = 20.
All results have included initial 3N forces at N2LO. The LS results
were obtained at Nmax = 8 with h̄� = 13 MeV [36]. Note that h̄�

values for LS and SRG procedures do not necessarily correspond to
one another.

Observable λ = 1.0 λ = 1.2 Expt. LS

rp (fm) 2.2841 2.1913 2.32(3) 2.110
Q(1+

1 0) (e fm2) −0.0132 −0.0199 −0.082(2) −0.085
B(E2;3+

1 0 → 1+
1 0) 4.0663 3.8087 10.69(84) 3.5725

B(M1;0+
1 1 → 1+

1 0) 16.1499 15.8706 15.43(32) 15.0717
B(M1;2+

1 1 → 1+
1 0) 0.0622 0.0784 0.149(27) 0.0936

one truncation to another. However, SRG evolution seems to
improve the variational properties of these observables. Access
to larger Nmax model spaces will facilitate further study of these
quantities.

VII. CONCLUSIONS

We have presented ab initio calculations of several light nu-
clei using SRG-evolved three-nucleon forces. The results have
smooth convergence qualities with respect to basis size, which
enable reliable extrapolations. The extrapolated (and con-
verged where available) values are within the error bars of the
best existing Lee-Suzuki–based calculations. Investigating
the λ dependence of induced many-body forces, we find
that they do not grow substantially as λ is lowered and the
range of these effects is within the established LS error
bars. Analyzing the mechanism of flow for many-body terms
reveals that the SRG is driven by the natural hierarchy of the
initial Hamiltonian and that it preserves this hierarchy during
evolution. This is qualitatively consistent with studies of the

same in one dimension. Finally, we present some first results
of various observables using SRG evolved many-body wave
functions.

Our results here have focused mainly on 6Li observables
and analysis in the A = 3 and 4 sectors. However, the input
Hamiltonian files produced for this work are universally valid
for further calculations in the p-shell nuclei. Here, we were
limited in basis size (to Nmax = 8 in 6Li) but plan to apply the
evolved potentials at larger A using codes capable of larger
basis sizes. We are first interested in studies of 8Be, 10B, and
12C, but this list will undoubtedly expand. Also, we hope these
potentials will be applied using coupled-cluster methods for
even larger A [38] and look forward to applications of SRG
evolution to external operators. Our work here provides no
indications of problems as high as 6Li with Trel as the SRG
generator. Other forms of the SRG generator may be useful in
controlling the growth of many-body forces in other nuclei.

In addition to the above ongoing work, we will ap-
ply the evolved three-body interactions developed here to
NCSM/RGM calculations [39] of light nuclear reactions.
The NN-only evolved interactions have so far produced good
scattering and reaction results for s- and light p-shell nuclei.
Adding the evolved three-body interaction to the NCSM/RGM
formalism will further improve accuracy and allow us to extend
its applicability to heavier p-shell and light sd-shell nuclei.

ACKNOWLEDGMENTS

We thank E. Anderson, E. Ormand, R. Perry, and
S. Quaglioni for useful comments. This work was supported
in part by the National Science Foundation under Grant No.
PHY–0653312 and the UNEDF SciDAC Collaboration under
DOE Grant DE-FC02-07ER41457. This work was performed
under the auspices of the U.S. Department of Energy by
Lawrence Livermore Laboratory under Contract DE-AC52-
07NA27344.

[1] S. K. Bogner, R. J. Furnstahl, S. Ramanan, and A. Schwenk,
Nucl. Phys. A 784, 79 (2007).

[2] S. K. Bogner et al., Nucl. Phys. A 801, 21 (2008).
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