
PHYSICAL REVIEW C 83, 034004 (2011)

The nn quasifree nd breakup cross section: Discrepancies with theory
and implications for the 1 S0 nn force
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Large discrepancies between quasifree neutron-neutron (nn) cross section data from neutron-deuteron (nd)
breakup and theoretical predictions based on standard nucleon-nucleon (NN) and three-nucleon (3N) forces are
pointed out. The nn 1S0 interaction is shown to be dominant in that configuration and has to be increased to bring
theory and data into agreement. Using the next-to-leading order 1S0 interaction of chiral perturbation theory, we
demonstrate that the nn quasifree scattering cross section depends only slightly on changes of the nn scattering
length but is very sensitive to variations of the effective range parameter. In order to account for the reported
discrepancies one must decrease the nn effective range parameter by ≈12% from its value implied by charge
symmetry and charge independence of nuclear forces.
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I. INTRODUCTION

The knowledge of the nucleon-nucleon (NN) interaction
is fundamental for interpreting nuclear phenomena. Proton-
proton (pp) experiments provide a solid data basis [1,2], which
restricts theoretical assumptions about the strong part of the
pp force. In the case of the neutron-proton (np) system this
is true only to a smaller extent. The partial wave analysis
of the np data [2] relies on the assumption that the isospin
t = 1 piece can be taken over from the pp system and only the
t = 0 part is free in the adjustment to the data. The lack of a
free neutron target forbids neutron-neutron (nn) experiments,
therefore information on the nn interaction can be deduced
only in an indirect way. To that aim the best tool seems to be
the study of the three-nucleon (3N) system composed of two
neutrons and the proton. It is simple enough to allow a rigorous
theoretical treatment, e.g., in the framework of Faddeev
equations [3]. The neutron-deuteron elastic scattering together
with the neutron-induced deuteron breakup, supplemented
with the triton properties, offer a data basis that can be
used to test properties of the nn force. In particular, the nd
breakup process with its rich set of configurations for three
free outgoing nucleons seems to be a powerful tool to test the
nuclear Hamiltonian. By comparing theoretical predictions to
the nd breakup data in different configurations not only can
the present-day models of two-nucleon (2N) interactions be
tested, but also the effects of three-nucleon forces (3NF’s) can
be studied.

nn quasifree scattering (QFS) refers to a situation where
the outgoing proton is at rest in the laboratory system. In nd
breakup np QFS is also possible. Here one of the neutrons is at
rest while the second neutron together with the proton forms
a quasifreely scattered pair.

The reported nn QFS cross sections taken at Elab
n = 26

[4] and 25 MeV [5] overestimate the nd theory by ≈18%.
Surprisingly, when instead of the nn pair the np pair is
quasifreely scattered, the theory follows nicely the np QFS

cross section data taken in the Elab
n = 26 MeV nd breakup

measurement [4]. That good description of the np QFS cross
section contrasts with the drastic discrepancy between the
theory and the nn QFS cross section data taken in the same
experiment [4].

We do not expect surprises in the case of the pp QFS data
[6–8], since the information from the rich set of pp data has
been incorporated into the pp forces. In fact a recent analysis
[9] including the Coulomb force in the pp QFS data led to a
nice agreement, while in previous analyses [6–8] the Coulomb
force was not yet included. Additional theoretical efforts to
include all effects of the Coulomb force beyond the ones in [9]
are under way.

In Sec. II we exemplify the stability of the QFS cross
sections against changes of modern nuclear forces. We also
demonstrate that below ≈30 MeV the 1S0 and 3S1-3D1 NN
force components dominate the QFS cross sections. In Sec. III
we analyze the np as well as the nn QFS data from [4] in
terms of rigorous solutions of the 3N Faddeev equation and
discuss necessary changes in the 1S0 nn force component to
remove the discrepancies in the nn QFS cross section. There a
detailed study is performed using the next-to-leading order
(NLO) chiral NN force, composed of contact interactions
and the one- and two-pion exchange terms. It reveals that
the effective range parameter is decisive to reconcile theory
and data. The outcome is discussed in Sec. IV and further
experimental insights into the nn force are proposed. Finally
we summarize in Sec. V.

II. STABILITY AND SENSITIVITY STUDIES

It is known that nd scattering theory provides QFS cross
sections that are highly independent of the realistic NN
potential used in the calculations and that they essentially do
not change when any of the present day 3NF’s is included
[3,10,11]. We exemplify this in Fig. 1 for the nn and np
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FIG. 1. (Color online) The cross section d5σ/d�1d�2dS for the
Elab

n = 26 MeV nd breakup reactions 2H(n,nn)1H (a) and 2H(n,np)n
(b) as a function of the S-curve length for two complete configurations
of Ref. [4]. QFS nn refers to the angles of the two neutrons,
θ1 = θ2 = 42◦, and QFS np refers to the angle θ1 = 39◦ of the detected
neutron and θ2 = 42◦ for the proton. In both cases φ12 = 180◦. The
(practically overlapping) lines correspond to different underlying dy-
namics: CD Bonn [13], dashed (blue); Nijm I, dotted (black); Nijm II
[14], dash-dotted (green); CD Bonn + TM99, solid (red); Nijm I +
TM99 [15,16], dash-double-dotted (orange); Nijm II + TM99,
double-dash-dotted (maroon). All partial waves with 2N total angular
momenta up to jmax = 5 have been included.

QFS geometries of Ref. [4]. There the results of 3N Faddeev
calculations [3] based on different-high precision NN forces
(CD Bonn [13], Nijm I and Nijm II [14]) alone or combined
with the TM99 3NF [15,16] are shown.

The sensitivity study performed in [10] revealed that at
energies below ≈30 MeV the 1S0 and 3S1-3D1 NN force
components provide the most dominant contribution to the
QFS cross sections with much smaller contributions of higher
partial waves. Specifically, in the np QFS geometries the
3S1-3D1 is the dominant force component while for nn QFS
it is the 1S0 force that contributes decisively. Again we
exemplify it for the nn and np QFS geometries of Ref. [4] in
Fig. 2. Such a dominance for the QFS peak is understandable
since the QFS cross sections are almost insensitive to the
action of the presently available 3NF. Then at low energy
the largest contribution should be provided by the S-wave
components of the NN potential. In the cases of free np
and nn scattering these are the 1S0(np) +3S1-3D1 and 1S0(nn)
contributions, respectively. In the simple-minded spirit that
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FIG. 2. (Color online) The cross section d5σ/d�1d�2dS for the
Elab

n = 26 MeV nd breakup reactions 2H(n,nn)1H (a) and 2H(n,np)n
(b) as a function of the S-curve length for two complete configurations
of Ref. [4] specified in Fig. 1. The different lines show contributions
from different NN force components. The solid (red) line is the full
result based on the CD Bonn potential [13] and all partial waves
with 2N total angular momenta up to jmax = 5 included. The dotted
(black), dash-dotted (green), and dashed (blue) lines result when
only contributions from 1S0, 3S1-3D1, and 1S0 + 3S1-3D1 are kept in
calculating the cross sections. The dash-double-dotted (brown) line
presents the contribution of all partial waves with the exception of
1S0 and 3S1-3D1.

under QFS conditions one of the three nucleons (at rest in the
laboratory system) is just a spectator, such a dominance of a
two-nucleon encounter is to be expected. In reality, however,
the projectile nucleon also interacts with that “spectator”
particle and the three nucleons at low energies undergo higher-
order rescatterings [3,12]. Thus the scattering to the final nn
(np) QFS configuration also receives contributions from the
np 3S1-3D1 (nn 1S0) interaction. Despite all that, the numerical
results clearly reveal that for the np QFS configuration the
3S1-3D1 force is the most dominant contribution and for the
nn QFS it is the 1S0 force (for free nn scattering there is no
3S1-3D1 interaction possible). This implies that the nn QFS is
a powerful tool to study the 1S0 nn force component.

That extreme sensitivity of the nn QFS cross section
to the 1S0 nn force component is demonstrated in Fig. 3 for
the QFS geometries of Ref. [4]. With that aim we multiplied
the 1S0 nn matrix element of the CD Bonn potential by a
factor of λ. The result is that the nn QFS cross section
undergoes significant variations while the np QFS cross section
is practically unchanged. The displayed λ parameters include
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FIG. 3. (Color online) The cross section d5σ/d�1d�2dS for the
Elab

n = 26 MeV nd breakup reactions 2H(n,nn)1H (a) and 2H(n,np)n
(b) as a function of the S-curve length for two complete configurations
of Ref. [4] specified in Fig. 1. The lines show sensitivity of the QFS
cross sections to the changes of the nn 1S0 force component. Those
changes were induced by multiplying the 1S0 nn matrix element of the
CD Bonn potential by a factor λ. The solid (red) line is the full result
based on the original CD Bonn potential [13] (ann = −18.8 fm, reff =
2.79 fm) and all partial waves with 2N total angular momenta up to
jmax = 5 included. The dashed (blue), dotted (black), and dash-dotted
(green) lines correspond to λ = 0.9 (ann = −8.3 fm, reff = 3.12 fm),
0.95 (ann = −11.7 fm, reff = 2.96 fm), and 1.05 (ann = −42.0 fm,
reff = 2.66 fm), respectively. The double-dash-dotted (violet) line
shows cross sections obtained with λ = 1.08 (ann = −134.7 fm,
reff = 2.61 fm), which factor is required to get agreement with nn
QFS data of Ref. [4].

also the value λ = 1.08 which is necessary to get agreement
with the nn QFS data of Ref. [4].

While both 1S0 and 3S1-3D1 np forces are well determined
by np scattering data (with the restrictions mentioned above)
and by the deuteron properties, the 1S0 nn force is determined
up to now only indirectly owing to lack of free nn data. The
disagreement between data and theory in the nn QFS peak
points to the possibility of a flaw in the nn 1S0 force. It was
shown in [10] that removal of the ≈18% discrepancy found
in [4] for the nn QFS cross section required an increased
strength of the 1S0 nn interaction which when given in terms
of a factor λ amounts to λ ≈ 1.08. In Fig. 4 we show the effect
of the λ modification for the nn scattering length ann and for
the effective range parameter reff , and in Fig. 5 for the binding
energy of two neutrons in the 1S0 state. It is seen that taking
λ = 1.08 leads to a nearly bound state of two neutrons.
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FIG. 4. (Color online) The changes of the nn scattering length ann

(a) and the effective range parameter reff (b) with factor λ by which
the 1S0 nn matrix element of the CD Bonn potential is multiplied:
Vnn(1S0) = λVCDBonn(1S0).

III. IMPLICATIONS FOR THE 1 S0 NN EFFECTIVE
RANGE PARAMETER

Since the multiplication of the 1S0 potential matrix element
by a factor λ induces changes in the effective range as well
as in the scattering length, the question arises as to which
of the two effects is more important for the nn QFS cross
section variations. To answer that question we performed 3N
Faddeev calculations based on the next-to-leading order ciral
perturbation theory (χPT) potential [17,18] including all np
and nn forces up to the total angular momentum jmax = 3 in the
two-nucleon subsystem. The 1S0 component of that interaction
is composed of the one- and two-pion exchange terms and
contact interactions parametrized by two parameters C̃1S0 and
C1S0 ,

V (1S0) = C̃1S0 + C1S0 (p2 + p′2). (1)

Standard values are C̃1S0 = −0.155 737 4 × 10 000 GeV−2

and C1S0 = 1.507 522 0 × 10 000 GeV−4 for cutoff combina-
tions {�, �̃} = {450 MeV, 500 MeV} [18].

By multiplying C̃1S0 by a factor C2(1S0) and C1S0 by a factor
C1(1S0), one can induce changes of the nn 1S0 interaction. The
requirement that either the value of the scattering length ann
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FIG. 5. (Color online) The range of λ values by which the 1S0 nn
matrix element of the CD Bonn potential is multiplied [Vnn(1S0) =
λVCDBonn(1S0)], for which the two neutrons form a bound state with
the binding energy Eb.
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FIG. 6. (Color online) Changes of the effective range parameter
reff in the 1S0 partial wave (a) and (b) caused by a correlated change
of the factors C1(1S0) and C2(1S0) shown in (c). This correlation
between the factors C1(1S0) and C2(1S0) corresponds to a constant
value of the scattering length ann = −17.6 fm.

or the value of the effective range parameter reff be constant
correlates the C1(1S0) and C2(1S0) factors.

Changing C1(1S0) and C2(1S0) in such a way that the
scattering length is kept constant and equal to ann = −17.6 fm
leads to changes of the effective range reff shown in Fig. 6. The
resulting changes of the nn and np QFS cross sections for the
geometries of Ref. [4] are shown in Fig. 7 for five sets of
C1(1S0) and C2(1S0) factors with different nn 1S0 effective
range parameters ranging from reff = 2.03 to 3.07 fm; one of
them corresponds to the value required by the data.

Similarily, changing C1(1S0) and C2(1S0) while keeping the
effective range constant to reff = 2.75 fm leads to changes of
the nn 1S0 scattering length ann shown in Fig. 8. The resulting
changes of the nn and np QFS cross sections are presented in
Fig. 9 for four values of the nn 1S0 scattering length ranging
from ann = −10.9 to −75.9 fm. It is clearly seen that the
nn QFS cross sections depend only slightly on a change of
the scattering length. The variation of the QFS cross section
maximum stays below ≈±4%. In contrast, much stronger
variations of the nn QFS cross sections result from changes of
the effective range (see Fig. 7).

Thus we can conclude that the λ enhancement mechanism
for the 1S0 nn force studied in [10] acts mainly through the
change of the effective range parameter. Thus in order to
remove the discrepancies found in [4] and [5] for the nn QFS
cross section, a change of the nn 1S0 effective range parameter
is required. Its value taken under the assumption of charge
symmetry and charge independence of nuclear forces is reff =
2.75 fm and it has to be changed to reff ≈ 2.41 fm. That implies
a large charge-symmetry- and charge-independence-breaking
effect of about ≈12% for that parameter.
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FIG. 7. (Color online) Changes of QFS cross sections for config-
urations specified in Fig. 1 caused by correlated change of factors
C1(1S0) and C2(1S0) shown in Fig. 6. All lines show results of
Faddeev calculations based on NLO χPT potential and all partial
waves with 2N total angular momenta up to jmax = 3 included. They
differ in the nn 1S0 force which was obtained keeping constant
the scattering length ann = −17.6 fm and changing the constants
C1(1S0) and C2(1S0) to get different effective ranges as follows:
solid (red line), C1(1S0) = 1.0, C2(1S0) = 1.0, reff = 2.75 fm; dashed
(blue line), C1(1S0) = 1.5, C2(1S0) = 1.0615, reff = 3.07 fm; dotted
(black line), C1(1S0) = 0.8, C2(1S0) = 0.9275, reff = 2.54 fm; dash-
dotted (green line), C1(1S0) = 0.5, C2(1S0) = 0.7675, reff = 2.03 fm.
The double-dash-dotted (violet) line shows cross sections obtained
with C1(1S0) = 0.7064, C2(1S0) = 0.8842, reff = 2.41 fm, which are
required to get agreement with nn QFS data of Ref. [4].

We would like to add that the discussed changes of reff

did not affect the elastic nd cross section nor the vector
or tensor analyzing powers to a measurable extent. Only
more complicated spin observables in elastic nd scattering
are affected but the present-day experimental errors are much
larger than those changes. Of special interest for the nd
breakup reaction is a region of phase space around a final-state-
interaction (FSI) geometry, where two of the three outgoing
nucleons have equal and parallel momenta. Because of their
their large sensitivity to the 1S0 scattering length, FSI cross
sections were always considered as a useful tool to extract that
quantity. Therefore the question arises as to what extent a large
change of the nn 1S0 effective range, required to bring theory
into agreement with the QFS nn cross section data, influences
the FSI cross sections? It turns out that for such large changes
of the effective range parameter the FSI cross sections depend
not only on the scattering length but also on the effective range.
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FIG. 8. (Color online) Changes of the nn scattering length ann in
the 1S0 partial wave (a) and (b) caused by a correlated change of the
factors C1(1S0) and C2(1S0) as shown in (c). This correlation between
the factors C1(1S0) and C2(1S0) corresponds to a constant value of the
effective range parameter reff = 2.75 fm.

The above change of reff leads, depending on the outgoing
angle of the final-state interacting nn pair, to changes of the nn
FSI cross sections up to about ≈25%. However, it leads to a
much smaller variations of the np FSI cross sections, which for
the outgoing angles of the np final-state interacting pair in the
range 30◦ � θlab � 50◦ are under 5%. In view of that, it seems
that in order to provide a reliable value of the nn scattering
length, any analysis of the nn FSI cross sections should be
based on a reliable value of the nn effective range parameter.

Since the 1S0 NN force component contributes to the
binding energy of the triton, the changes of that force in the nn
subsystem will lead to variations of the triton binding energy.
Specifically, the above change of the effective range leads to
an increase of the 3H binding by 0.7 MeV. Such a variation of
the binding energy can be easily compensated by the effects
of three-nucleon forces.

IV. DISCUSSION AND FURTHER EXPERIMENTAL
INFORMATION

Is such a large isospin breaking effect at all possible in
view of the present understanding of nuclear forces? First,
it seems improbable that only the effective range will reveal
large isospin breaking and the scattering length will be left
unaffected. In χPT the leading isospin breaking contribution
is provided by the isospin breaking contact interaction without
derivatives [19]. It turns out that the effective range parameter
is quite insensitive to that isospin breaking contact force,
and typical isospin breaking effects for reff are small, under
≈1% [19].
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FIG. 9. (Color online) Changes of QFS cross sections for configu-
rations specified in Fig. 1 caused by a correlated change of the factors
C1(1S0) and C2(1S0) shown in Fig. 8. All lines show results of Faddeev
calculations based on the NLO χPT potential and all partial waves
with 2N total angular momenta up to jmax = 3 included. They differ
in the nn 1S0 force which was obtained keeping the effective range
parameter reff = 2.75 fm constant and changing the constants C1(1S0)
and C2(1S0) to get different scattering lengths as follows: solid (red
line), C1(1S0) = 1.0, C2(1S0) = 1.0, ann = −17.6 fm; dashed (blue
line), C1(1S0) = 0.8, C2(1S0) = 0.8953, ann = −10.9 fm; dotted
(black line), C1(1S0) = 1.3, C2(1S0) = 1.1139, ann = −45.3 fm;
dash-dotted (green line), C1(1S0) = 1.4, C2(1S0) = 1.1410, ann =
−76.0 fm.

The reported discrepancies for nn QFS require, however, a
much larger effect for reff , of the order of ≈12%. Only when the
contact terms in next orders would be unnaturally large could
one expect larger isospin breaking effects for reff . Assuming
naturalness, this seems rather improbable.

Since it seems unlikely that isospin breaking effects will
show up, if at all, in the effective range parameter alone
without affecting simultaneously the nn scattering length,
the question of the possible existence of a bound state of
two neutrons reappears. Present-day NN interactions allow
only one bound state of two nucleons, namely, the deuteron,
where the neutron and the proton are interacting in a state
with angular momentum l = 0 or 2, total spin s = 1, and
total angular momentum j = 1. When the neutron and proton
are interacting with the 1S0 force no bound state exists and
only a virtual resonant state occurs, as documented by the
negative scattering length anp = −21.73 fm. The data for
the proton-proton system also exclude a 1S0 pp bound state;
however, in this case the nuclear force is overpowered by

034004-5
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FIG. 10. (Color online) The spectra of the outgoing proton from
the reaction 3H(γ,p)nn with Eγ = 10 MeV at different laboratory
angles of the proton. They have been calculated using the AV18 [25]
NN interaction and a current composed of single nucleon and meson
exchange currents [26]. The solid (red) line is based on the AV18
potential (ann = −18.8 fm, reff = 2.83 fm). The dotted (black) and
dashed (blue) lines show sensitivity of the spectra to changes of
the nn 1S0 force component used in the 3N continuum part of the
calculations. Those changes were induced by multiplying the 1S0 nn
matrix element of the AV18 potential by a factor λ. For the dotted
and dashed lines λ = 1.05 (ann = −54.3 fm, reff = 2.67 fm) and 0.95
(ann = −10.9 fm, reff = 3.02 fm), respectively.

the strong pp Coulomb repulsion. Also, assuming charge
independence and charge symmetry of strong interactions the
two neutrons should not bind in the 1S0 state.

It also seems that modern nuclear forces do not allow for
the 3n and 4n systems to be bound [20]. However, in view
of the strong discrepancies between theory and data found
in the nd breakup measurements for the nn QFS geometry,
which cannot be explained by present-day nuclear forces, it
appears reasonable to check experimentally the possibility of
two neutrons being bound.

There are reactions that provide conditions advantageous
for a hypothetical dineutron bound state. Such conditions can
be found, e.g., when two neutrons are moving with equal
momenta and with relative energy close to zero. That occurs
in the so-called final-state-interaction geometry of nd breakup.
Incomplete nd breakup measurements have been performed
in the past to study properties of the 1S0 nn force [21]. A
dedicated experiment was even performed in order to look for
a hypothetical 1S0 nn bound state [22] in which the spectrum

0

20

40

60

80

0

20

40

60

80

d2 σ/
dΩ

pdE
p [

µb
 s

r-1
 M

eV
-1

]

E
p
 [MeV]

0

15

30

45

60

0

10

20

30

40

0

5

10

15

20

E
p
 [MeV]

0

5

θ
p
=90

o

θ
p
=105

o

θ
p
=120

o
θ

p
=179.99

o

θ
p
=150

o

θ
p
=135

o

(a)

(b)

(c)

(d)

(e)

(f)

0 0.5 1 0 0.5 1

FIG. 11. (Color online) The spectra of the outgoing proton from
the reaction 3H(γ,p)nn with Eγ = 10 MeV at different laboratory
angles of the proton. They have been calculated using the AV18 [25]
NN interaction and a current composed of single nucleon and meson
exchange currents [26]. For explanation of lines, see Fig. 10.

of the proton going in the forward direction was measured with
the aim of a precise determination of its high-energy region.
The negative result of [22] showed that the nd reaction is not
suitable for such a study.

It seems that much more appropriate would be reactions in
which from the beginning two neutrons occupy a configuration
advantageous for their binding. It is known [23,24] that
3He is predominantly a spatially symmetric S state with its
two protons mainly in opposite spin states. This component
amounts for ≈90% of the 3He wave function. Similarly, the
two neutrons in 3H are restricted to be in a spin-singlet state.
That makes the triton target a very suitable tool to look for
a nn bound state in γ -induced breakup of 3H. The idea is to
measure the spectra of the outgoing protons in such a reaction.
The two-neutron bound state, if it exists, should reveal itself
as a peak above the highest available proton energy from the
three-body decay of 3H. We show in Figs. 10 and 11 the
outgoing proton spectra from the γ (3H,p)nn reaction for a
number of γ energies and angles of the outgoing protons.
These spectra have been calculated using the AV18 [25] NN
interaction and a current composed of single nucleon and
meson exchange currents [26]. We demonstrate in Figs. 10 and
11 the large sensitivity of the high-energy part of these spectra
to changes of the 1S0 nn interaction. That is, the dashed and
dotted lines resulted when we multiplied the 1S0 nn matrix
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element of the AV18 potential by a factor λ and used it in
the 3N continuum part of the calculations. Such modifications
of the 1S0 nn interaction lead to significant changes of the
higher-energy part of the spectra. The big advantage of that
reaction is that the γ interacts predominantly with the proton.

Other reactions, such as, e.g., 3H(n,d)nn and 3H(d,3He)nn,
also provide conditions advantageous for the binding of two
neutrons. They are complementary to and independent of the
3H(γ ,p)nn reaction, and the data from all three processes
should provide an answer to the question of whether two
neutrons can form a bound state. The reaction 3H(d,3He)nn
cannot presently be treated in a theoretically rigorous manner,
but with the rapid increase in computer power such a treatment
based on Fadeev-Yakubovsky equations can be expected in the
near future.

V. SUMMARY

The strong discrepancy in the nn QFS nd breakup con-
figuration found in [4,5] is reconsidered. It is documented
again that at low energies (below ≈30 MeV) the nn (np)
QFS cross section depends predominantly only on the 1S0

(3S1-3D1) NN force component and higher-partial-wave con-
tributions are quite small. Furthermore the theoretical results
are quite stable under exchange of the standard nuclear forces.
Also the presently available 3N forces have negligible effect
on the QFS configurations. Since no direct measurement of
the nn force is available, there is the possibility that the
properties of the nn force are still unsettled. Thus by simply
multiplying the nn 1S0 force matrix element by a factor
λ = 1.08 one can perfectly well reconcile theory and data.
In addition we performed a more detailed study using the
NLO chiral potential, which is composed of the one- and
two-pion exchange and contact interactions depending on two
parameters. That dependence allowed us to study separately
variations in the scattering length ann, leaving the effective
range parameter reff constant, and vice versa. Thereby it turned
out that the nn QFS peak height is very sensitive to reff and

hardly sensitive to ann. The outcome for an agreement with the
data is the requirement that reff decreases from the value reff =
2.75 fm to a significantly smaller one, reff = 2.41 fm. That
strongly breaks charge symmetry and charge independence
and is not supported by present-day chiral potential theory. In
that context, however, the charge-independence- and charge-
symmetry-breaking 2πγ long-range NN interactions [27]
might be of interest, too.

So, what might be a solution to remove the discrepancy?
If the data are taken for granted there remains the possibility
that a di-neutron exists. We propose additional experimental
investigations, of, for instance, the 3H (γ,p)nn process, and
evaluatation of the proton spectra at various emission angles
emphasizing the high-energy region.

The direct inclusion of 
 degrees of freedom into χPT
allows for a rich set of additional NN and 3N force diagrams
which are presently under investigation [28]. This might
reconcile theory and data also for the space-star discrepancy
[3] in the nd breakup process. Right now the situation is
unsettled.
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