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Pions are neither perturbative nor nonperturbative: Wilsonian renormalization-group analysis
of nuclear effective field theory including pions
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Nuclear effective field theory (NEFT) including pions in the two-nucleon sector is examined from the
Wilsonian renormalization group point of view. The pion exchange is cut off at the floating cutoff scale, �,
with the short-distance part being represented as contact interactions in accordance with the general principle
of renormalization. We derive the nonperturbative renormalization group equations in the leading order of the
nonrelativistic approximation in the operator space up to including O(p2), and find the nontrivial fixed points
in the 1S0 and 3S1-3D1 channels which are identified with those in the pionless NEFT. The scaling dimensions,
which determine the power counting, of the contact interactions at the nontrivial fixed points are also identified
with those in the pionless NEFT. We emphasize the importance of the separation of the pion exchange into
the short-distance and the long-distance parts, since a part of the former is nonperturbative while the latter is
perturbative.
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I. INTRODUCTION

Nuclear effective field theory (NEFT) is the low-energy
effective field theory [1] of nucleons based on symmetries of
QCD and is expected to give a model-independent description
of nuclear phenomena at low energies. Since the seminal
articles of Weinberg [2–4], a lot of applications have been done
with success for more than two decades. See Refs. [5–9] for
reviews. It still has a wide range of phenomena to be explored.

In spite of these successes, however, there are unsettled is-
sues at the fundamental level, even in the simplest two-nucleon
sector, specifically regarding whether the pions should be
treated perturbatively and how to treat the contact interactions.
Because the understanding of the two-nucleon scattering is
essential also for other phenomena, this issue is of central
importance in NEFT.

The original power counting due to Weinberg [2–4] for the
“effective potential” is nothing but the naive dimensional anal-
ysis. The “effective potential” is plugged into the Lippmann-
Schwinger equation and the scattering amplitude is calculated,
so the pion exchange is iterated infinite times. In this
Weinberg scheme the pions are thus treated nonperturbatively.
Kaplan, Savage, and Wise (KSW) [10] pointed out that the
Weinberg power counting scheme is inconsistent in the sense
that the higher-order counterterms are required to cancel the
divergences at the given order. They (and, independently,
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van Kolck) proposed an alternative power counting scheme
in which only the nonderivative contact interaction, the C0

term, is treated nonperturbatively so the pions are treated
perturbatively [11–13]. This scheme (widely known as KSW
scheme) is free from the inconsistency, but Fleming, Mehen,
and Stewart [14] showed that the KSW scheme does not lead
to the converging results in the channels in which the singular
tensor part of the pion exchange contributes. Beane, Bedaque,
Savage, and van Kolck [15] proposed a remedy, known as the
hybrid approach, in which the amplitudes are expanded around
the chiral limit so the 1/r3 part (which survives in the limit)
is treated nonperturbatively. The treatment of the tensor part
of the one-pion exchange (OPE) is the source of controversy.
See also Refs. [16–21] for more details.

Recently, Beane, Kaplan, and Vuorinen (BKV) [22] consid-
ered Pauli-Villars–type regularization for the OPE in order to
separate the short-distance part of the tensor interaction from
the long-distance part. The short-distance part is represented
by contact interactions. They employed the power divergence
subtraction (PDS) renormalization and obtained the conver-
gent results. Note that not all the 1/r3 part of the OPE is
singular. It is the short-distance part that is singular and spoils
the convergence of the amplitude as found in Ref. [14]. It
means that all the 1/r3 part of the OPE does not need to be
iterated.

The idea of separating the singular short-distance part of the
tensor interaction from the long-distance part and representing
the former by contact interactions (BKV prescription) is
essentially the Wilsonian renormalization group (RG) idea of
effective interactions [23,24]. The separation scale in Ref. [22]
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may be viewed as an analog of the floating cutoff in the
Wilsonian RG.

The Wilsonian RG is a useful tool to investigate the effects
of the short-distance physics on the long-distance physics.
When the quantum fluctuations with momenta higher than the
floating cutoff � are integrated out, their effects are simulated
by a series of local operators, which serve as low-momentum
effective interactions. The coupling constants thus depend on
the cutoff �, while the physical quantities such as scattering
amplitudes do not.

The Wilsonian RG has been applied to NEFT in order
to examine the power counting issue [19,25–30]. (See also
Refs. [31–33] for other use of the Wilsonian RG in NEFT.)
The existence of the nontrivial fixed points of the RG equations
(RGEs) in the S waves explains unnaturally large scattering
lengths. The power counting can be determined by the scaling
dimensions of operators around the fixed points. In particular,
it is relevant operators that should be resummed to all orders.

Birse [19] examines the NEFT with pions by using
the “distorted-wave RG [26]” and claims that the scaling
dimensions are shifted from those of the pionless theory due
to the singularity of the tensor force in the spin-triplet channel.
Also, his results imply that the effects of pions do not decouple
even at very low momenta.

It sounds strange, however, that pions do not decouple at
the momenta where the pionless NEFT is valid. The effects
should be eventually represented by contact interactions at
very low momenta. One should expect that the transition from
the NEFT including pions to the pionless NEFT is smooth. A
formulation of the Wilsonian RG which permits the smooth
transition is desired.

In this article, we perform the Wilsonian RG analysis of the
NEFT including pions in the two-nucleon sector and examine
the effects of pions. In the Wilsonian RG approach, there is a
single scale � which separates the long-distance physics from
the short-distance physics so one does not need to implement
an additional regularization for the short-distance part of the
OPE, as does in the BKV prescription.

The key idea here is the separation of the short-distance part
from the long-distance part. NEFT, as a low-energy effective
theory, has a finite range of applicability, specified by the
physical cutoff �0. It is a general principle of EFT that the
physics with the momentum scale larger than �0 is repre-
sented as local operators. The short-distance part of the OPE
(S-OPE) should also be represented as local operators (contact
interactions). (In the Wilsonian RG analysis, the floating cutoff
� plays the role of �0, after integrating the modes with
momenta between � and �0.)

Note that, although the contact interactions are attributed
to the effects of the heavy particles in the usual EFT lore, this
is not precise. They arise also from the short-distance physics
of light particles, such as pion exchanges. Note also that the
representation of short-distance physics by local interactions
is a general treatment and has nothing to do with how singular
the S-OPE is.

We find nontrivial fixed points in the 1S0 and 3S1-3D1

channels, which are responsible for the large scattering
lengths. Importantly these fixed points are identified with
those found in the Wilsonian RG analysis in the pionless

NEFT. Thus the scaling dimensions at the fixed points
are also the same. There is one relevant operator in each
channel. That is, the pion interactions do not alter the scaling
dimensions.

We emphasize that the question of whether the pions are
perturbative or nonperturbative is not well posed. Since the
S-OPE is represented as contact interactions in the Wilsonian
analysis, only the long-distance part of the OPE (L-OPE)
is the proper interactions due to OPE. On the other hand,
the S-OPE cannot be distinguished from other contributions,
such as heavier meson (ρ, ω, etc.) exchanges. (Because of
the cutoff, we do not have enough resolution.) The RGEs
tell us that, at the nontrivial fixed point, the L-OPE should
be treated perturbatively, while there is a relevant operator
(a part of which is the S-OPE) that should be resummed
to all orders, i.e., nonperturbatively. The existence of the
relevant operator at the nontrivial fixed point sharpens the
distinction between the S-OPE and the L-OPE. If there were
no relevant operator, the separation would not make much
difference.

Our Wilsonian RG permits the smooth transition from the
NEFT including pions to the pionless NEFT. The nontrivial
fixed points do not change nor the scaling dimensions. The
L-OPE transmutes into contact interactions which represent
the S-OPE as the cutoff is lowered. At the value of � lower
than the pion mass, the most of the L-OPE has been changed
into contact interactions, thus the system is well described by
the pionless NEFT.

The structure of the article is as follows. In Sec. II we
recapitulate the main points of the previous articles in order to
introduce the notations and the main concepts in our analysis.
In Sec. III we discuss the nonrelativistic approximation.
Starting with the nonrelativistic nucleons and the relativistic
pions, we estimate the order of magnitude of a various kind of
diagrams contributing to the RGEs and determine the leading
terms. In Sec. IV we present the RGEs and examine the
structure of the flows in the 1S0 and 3S1-3D1 channels. The
nontrivial fixed points are found to be identified with those of
the pionless theory. Section V is devoted to the summary and
the comments on the related works. In Appendix A the RGEs
for the case of � < mπ are presented and compared with the
pionless case. In Appendix B we discuss the similarity and the
difference between the NEFT with pions and QED.

II. WILSONIAN RG ANALYSIS OF PIONLESS NEFT
IN TWO-NUCLEON SECTOR

In previous articles [28–30], we have explained the basic
concepts of the Wilsonian RG and its relevance to the power
counting in the NEFT. Here, we briefly recapitulate it, give
some remarks, and introduce the notations used in later
sections.

A. What is the use of the Wilsonian RG in NEFT?

The most basic idea behind the power counting is the order
of magnitude estimate based on dimensional analysis. In an
EFT with the physical cutoff �0, the dimensional analysis
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is usually based on this scale. At the classical level, the
(canonical) mass dimension of an operator is determined with
respect to the kinetic term. For example, a Dirac field ψ with
a kinetic term Lkin = ψ̄i∂/ψ has mass dimension three halves,
[ψ] = 3/2. The dimensions of other operators are determined
accordingly. The operator (ψ̄ψ)2 has dimension six, so it enters
in the Lagrangian as (c/�2

0)(ψ̄ψ)2, where c is a dimensionless
constant. The coupling constant c/�2

0 associated with the
operator (ψ̄ψ)2 has dimension −2, which counts the power
of �0.

Quantum fluctuations may, in general, change the clas-
sical dimensional analysis. The quantum counterpart of the
(canonical) dimension is called the scaling dimension, which
can be obtained by the RG analysis. Wilsonian RG is a
nonperturbative tool to handle the quantum fluctuations.

An operator whose coupling has a negative (scaling) di-
mension is called irrelevant because it becomes less important
at lower energies. An operator whose coupling has a positive
(scaling) dimension is called relevant because it becomes more
important at lower energies. An operator whose coupling is
dimensionless is called marginal. The scaling dimension of an
operator is the measure of how important it is. It is therefore
natural to consider the power counting on the basis of the
scaling dimensions.

In the S-wave scattering of two nucleons, the scattering
lengths are known to be much larger than the “natural” size,
1/�0. [In the case of the pionless NEFT, the physical cutoff is
of order of the pion mass, �0 ∼ O(mπ ).] From the RG point of
view, the “fine-tuning” is related to the existence of a nontrivial
fixed point (and a critical surface) of the RG flow.

Around the nontrivial fixed points the scaling dimensions
differ drastically from the canonical dimensions. It has been
shown [25,29,30] that the coupling which corresponds to the
scattering length becomes relevant, although it is irrelevant at
the classical level.

There are values of coupling constants with which the
scattering length is infinite. This set of coupling constants
forms a critical surface. It separates the weak- and strong-
coupling phases. For the two-nucleon system, the spin-singlet
channel is considered to be in the weak-coupling phase,
while the spin-triplet channel is considered to be in the
strong-coupling phase, because of the (non-)existence of a
bound state in these channels.

To summarize: the two-nucleon system with large S-
wave scattering lengths is governed by the existence of
nontrivial fixed points, and the Wilsonian RG is a sys-
tematic tool to study the scaling dimensions on which the
power counting should be based, around the nontrivial fixed
points.

B. Remarks on Wilsonian RGEs with Galilean invariance

There are several formulations for the Wilsonian RG
analysis [34–39], which are, however, essentially equivalent.
The most popular one is the functional RG method. (See
Refs. [40,41] for reviews.) In this formulation, a cutoff
function is introduced for each propagator to suppress the low-
frequency fluctuations. The effective averaged action ��[�],
which interpolates the bare classical action S[�] (� = �0)

and the effective action �[�] (� = 0), depends on the floating
cutoff scale, �, as

d��

d�
= 1

2
Tr

[
dR�

d�
(�(2) + R�)−1

]
, (2.1)

where � is the classical field, �(2) stands for the second
derivative of the averaged action �� with respect to �, and
R� is the cutoff function which suppresses the fluctuations
with p � �. Note that, although it is an “one-loop” equation,
it contains all the nonperturbative information.

A straightforward application of this formulation to a
nonrelativistic system, however, encounters difficulties. In
the usual formulation for a relativistic system, one consid-
ers the theory in Euclidean space. The cutoff is imposed
on the magnitude of the four-momentum of the propagator.
On the other hand, in a nonrelativistic system, space and
time should be treated differently, and thus the Euclidean
formulation cannot be used. One might rather like to consider
a cutoff imposed on the three-momentum in the propagator.
But such a cutoff necessarily breaks Galilean invariance of
the nonrelativistic system. There is no obvious way to impose
a Galilean invariant cutoff at the averaged action level. This
is a general feature independent of the choice of the cutoff
function. Furthermore, if the cutoff function is not smooth
enough, nonanalytic terms in momenta arise.1 See Ref. [27]
for an example in a similar context.

In a system of two nonrelativistic particles, there is a simple
and physically sensible way out of this problem: it is to impose
a cutoff on the relative three-momentum of the two particles,
which is Galilean invariant. In addition, the results are very
insensitive to the choice of the cutoff function. See Appendices
of Refs. [29,30]. In particular, the results with a sharp cutoff
are the same as those with a smooth one. It is a technical
advantage that a sharp cutoff can be used because it simplifies
the calculations considerably.

C. Pionless NEFT up to O( p2) in the 1 S0 and 3 S1-3 D1 channels

In Ref. [29], we consider the pionless NEFT without isospin
breaking. The relevant degrees of freedom are nonrelativistic
nucleons, which interact with themselves only through contact
interactions. In the two-nucleon sector, they are four-nucleon
operators with an arbitrary number of derivatives. An operator
with more derivatives has higher canonical dimensions than
the ones with less derivatives.

Since there are infinitely many operators involved in the
flow equation, one needs to introduce a truncation of the space
of operators in the averaged action in order to solve it. We retain
only the operators with derivatives up to a certain order. We
simply count the number of spatial derivatives (∇ ∼ p) and a
time derivative is counted as two spatial derivatives (∂t ∼ p2).
We consider the following ansatz for the averaged action up to
O(p2),

1If one considers only a few leading order terms in the derivative
expansion, typically in the local potential approximation, nonsmooth
cutoff does not cause the problem. It is the reason why the problem
of nonanalyticity is not revealed in many applications.
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�
(π/)
� =

∫
d4x

[
N †

(
i∂t + ∇2

2M

)
N

⎧⎪⎪⎨
⎪⎪⎩

−C
(S)
0 O(S)

0 + C
(S)
2 O(S)

2 + 2B(S)O(SB)
2

]
, (1S0 channel)

−C
(T )
0 O(T )

0 + C
(T )
2 O(T )

2 + 2B(T )O(TB)
2 + C

(SD)
2 O(SD)

2

]
, (3S1-3D1 channel)

(2.2)

where the operators in the 1S0 are given by

O(S)
0 = (

NT P (S)
a N

)†(
NT P (S)

a N
)
, (2.3a)

O(S)
2 = [(

NT P (S)
a N

)†(
NT P (S)

a

↔
∇2N

) + H.c.
]
, (2.3b)

O(SB)
2 =

[{
NT P (S)

a

(
i∂t + ∇2

2M

)
N

}†(
NT P (S)

a N
)+H.c.

]
,

(2.3c)

and in the 3S1-3D1 channel,

O(T )
0 = (

NT P
(T )
i N

)†(
NT P

(T )
i N

)
, (2.4a)

O(T )
2 = [(

NT P
(T )
i N

)†(
NT P

(T )
i

↔
∇2N

) + H.c.
]
, (2.4b)

O(SD)
2 = [(

NT P
(T )
i N

)†{
NT

(↔
∇ i

↔
∇j − 1

3δij

↔
∇2

)
P

(T )
j N

}
+ H.c.

]
, (2.4c)

O(TB)
2 =

[{
NT P

(T )
i

(
i∂t + ∇2

2M

)
N

}†(
NT P

(T )
i N

)+H.c.

]
,

(2.4d)

where we have introduced the notation
↔
∇2 ≡ ←

∇2 + →
∇2 − 2

←
∇ ·→

∇ and the projection operators [14],

P (S)
a ≡ 1√

8
σ 2τ 2τ a, P

(T )
k ≡ 1√

8
σ 2σ kτ 2, (2.5)

for the 1S0 (spin singlet) channel and the 3S1 (spin triplet)
channel, respectively. The nucleon field N (x) with mass M is
an isospin doublet nonrelativistic two-component spinor. Pauli
matrices σ i and τ a act on spin indices and isospin indices,
respectively. The two channels are completely decoupled, and
thus we can consider each channel separately. Note that the
possible forms of the operators are restricted by Galilean
invariance. Note also that we have included “redundant
operators,” O(SB)

2 and O(TB)
2 , because they are necessary in

a consistent Wilsonian RG analysis [28].
We introduce the following dimensionless coupling con-

stants,

x ≡ M�

2π2
C

(S)
0 , y ≡ M�3

2π2
4C

(S)
2 , z ≡ �3

2π2
B(S), (2.6)

for the spin-singlet channel and

x ′ ≡ M�

2π2
C

(T )
0 , y ′ ≡ M�3

2π2
4C

(T )
2 ,

(2.7)

z′ ≡ �3

2π2
B(T ), w′ ≡ M�3

2π2

4

3
C

(SD)
2 ,

for the spin-triplet channel. With the sharp cutoff on the relative
momenta, the flow equations that determine the dependence on
t = ln(�0/�) of the coupling constants can be written as [30]

dxC

dt
+ dCxC =

∑
A,B

xAxB

M�

2π2

FA(pi,�)FB(�,pf )

1 − Ã(pi)

∣∣∣∣∣
C

,

(2.8)

where xC stands for one of the dimensionless coupling
constants and dC is the power of � in the definition of the
dimensionless coupling constant. In the following, we call −dC

the canonical dimension2 of the coupling. Ã(P ) is defined as

A(P ) = P 0 − P2

4M
, Ã(P ) = MA(P )/�2, (2.9)

where P = (P 0, P) is the total momentum of the system.
FA(pi, pf ) is the momentum-dependent factor associated with
the coupling xA:

Fx = −2π2

M�
, Fy = −2π2

4M�3
(r12 + r34),

Fz = 2π2

�3

4∑
i=1

Si, (2.10)

for the spin-singlet channel and

Fx ′ = −2π2

M�
, Fy ′ = −2π2

4M�3
(r12 + r34),

Fz′ = 2π2

�3

4∑
i=1

Si, (2.11)

F
ij

w′ = 3

4

(−2π2

M�3

) [
pi

12 p
j

12 + pi
34 p

j

34 − 1

3
δij (r12 + r34)

]
,

for the spin-triplet channel, with

Si = p0
i − p2

i

2M
, pij = pi − pj , rij = ( pi − pj )2, (2.12)

where p1 and p2 are the incoming momenta of the nucleons
to the vertex and p3 and p4 are the outgoing momenta from
the vertex. The notation |C stands for the operation of taking
the coefficient of FC(pi, pf ) in the sum.

By using the formula Eq. (2.8) the RGEs are obtained. The
explicit expressions are not presented here but can be read
easily from the RGEs [Eqs. (4.6) and Eqs. (4.12)] for the
theory with pions discussed in Sec. IV.

2This definition of the canonical dimension reflects the nonrelativis-
tic scaling property. See Ref. [42].
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There is a nontrivial fixed point in each channel, which is
relevant to the physical two-nucleon system:

(x�, y�, z�) = (−1,− 1
2 , 1

2

)
, (2.13)

in the spin-singlet channel, and

(x ′�, y ′�, z′�, w′�) = (−1,− 1
2 , 1

2 , 0
)
, (2.14)

in the spin-triplet channel. At the nontrivial fixed point, the
operators get large anomalous dimensions and there is one
operator that becomes relevant with the scaling dimension of
the coupling constant being one in each channel.

III. NONRELATIVISTIC APPROXIMATION, IR
ENHANCEMENT, AND THE LEADING

ORDER IN �/M

In this section, we consider the inclusion of pions as
dynamical degrees of freedom. It extends the range of
applicability of NEFT to higher momenta beyond the pion
mass scale. The contact interactions in the pionless theory
resolve into the effects by pion propagation and the rest. The
physical cutoff �0 is now larger than mπ , and we suppose that
�0 is of order 400 MeV.

A. Chiral symmetry and nonrelativistic nucleons

The most important feature of the theory is chiral sym-
metry, SU(2)L × SU(2)R spontaneously broken to SU(2)V .
It is convenient to introduce the field , which transforms
linearly as

(x) → L(x)R†, (3.1)

where L and R are the elements of SU(2)L and SU(2)R ,
respectively. The pion field πa(x) may be defined through

(x) = exp[iπa(x)τ a/f ], (3.2)

where f is the pion decay constant in the chiral limit. The
nucleon field transforms as

N (x) → U (x)N (x), (3.3)

where U (x) is a function of L, R, and (x) and defined through

ξ (x) → Lξ (x)U (x)† = U (x)ξ (x)R†, (3.4)

where ξ 2(x) = (x), i.e., ξ (x) = exp[iπa(x)τ a/2f ].
The chiral invariant Lagrangian for the nonrelativistic

nucleon interacting with pions is given as

LNR = N †
[
iD0 + (σ · D)2

2M

]
N + gAN †σ · AN

−C
(c)
0 O(c)

0 + C
(c)
2 O(c)

2 + 2B(c)O(cB)
2

−D
(c)
2

m2
π

2
Tr( + †)O(c)

0 + · · · , (3.5)

where the chiral covariant derivative Dµ is defined as

DµN = (∂µ + Vµ)N, (3.6)

and Vµ and Aµ are defined as

Vµ ≡ 1
2 (ξ †∂µξ + ξ∂µξ †), (3.7)

Aµ ≡ i
2 (ξ †∂µξ − ξ∂µξ †). (3.8)

The superscript (c) denotes the channel to be specified, and the
summation is also implied, i.e., the term C

(c)
2 O(c)

2 for the spin-
triplet channel contains C

(T )
2 O(T )

2 and C
(SD)
2 O(SD)

2 . Note that the
derivatives in the four-nucleon operators should be replaced
by the covariant derivatives, though we do not explicitly show
them here.

The ellipsis in Eq. (3.5) denotes other terms, e.g., the
higher-order operators, including six-nucleon operators, four-
nucleon operators with more than two derivatives, etc. It also
contains the counterterms of the form N †N and N †∇2N , which
play an important role in the renormalization of the nucleon
mass. Chiral symmetry does not prevent the appearance of the
operators that contain more than one A, such as N † A2N . But
it is not generated by nonrelativistic reduction from the simple
(chiral invariant) Dirac action. It implies that the operators have
smaller coefficients than 1/M . Furthermore, we will see that
it either does not contribute to the RGEs for the four-nucleon
operators or gives only suppressed contributions to the order
we are working.

The Lagrangian for the pions is given by

Lπ = f 2

4

[
Tr(∂µ†∂µ) + m2

πTr(† + )
] + · · · . (3.9)

B. Order of magnitude estimation of the contributions
to the Wilsonian RGEs

In order to perform the Wilsonian RG analysis, one usually
needs to use a cutoff function that preserves all the symmetries
of the theory. Unfortunately, there does not seem to exist a
manifestly chiral invariant cutoff function which controls all
the fluctuations, because of the nonlinearity of the transfor-
mation [43]. Furthermore, it is known that perturbation theory
generates apparently noninvariant terms (ANTs), even with
the lattice and the dimensional regularization, which preserve
chiral symmetry [44,45]. ANTs are also expected to appear
in the Wilsonian RG analysis, but it is not obvious how to
treat them. In addition, the inclusion of pions makes the notion
of relative momentum obscure. Furthermore, because pions
are relativistic, Galilean invariance does not make good sense
as a constraint. Fortunately, however, it turns out that these
problems do not interfere with the leading-order calculations
in the nonrelativistic approximation. The argument is based
on the order of magnitude estimate of the contribution of each
diagram to the Wilsonian RGEs.

We are going to obtain the RGEs for the two-nucleon
sector in the next-to-leading order in momentum expansion
[to O(p2)] of the averaged action in the nonrelativistic
formulation. Let us first note the following things:

(i) The contributions to the Wilsonian RGEs only come
from one-loop diagrams.

(ii) Because of the nonrelativistic feature, diagrams with
antinucleon lines are absent. Thus, the diagrams are
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divided into sectors, each of them is specified by the
nucleon number. The n-nucleon sector has n nucleons
at each time slice.

(iii) The contributions to the two-nucleon sector do not
come from n-nucleon operators with n � 6.

(iv) Our primary concern is the renormalization of the
four-nucleon operators with no pion emission and
absorption. Chiral symmetry constrains the renormal-
ization of the operators in which the pion fields appear
through covariant derivatives.

(v) Supplementarily, one needs to consider the self-energy
diagram of the nucleon and the diagrams for the
nucleon-pion vertex that contribute to the RGEs for
the four-nucleon operators.

Note also that there is no contributions to the pion self-
energy to this order.

1. Four-nucleon operators

According to the above-mentioned remarks, we need to
consider the diagrams given in Fig. 1 for the four-nucleon
operators.

In order to obtain the RGEs, we need to evaluate the contri-
butions from the so-called “shell-mode,” the loop contributions
with the magnitude of the loop (relative) three-momentum
k = |k| is between � − d� and �. The argument is similar
to the “power counting” with the scale Q found in the
literature, but here, (i) we do not consider the amplitude but

(b)(a) (c) (d)

(e)

(l)(j) (k)

(g) (h)

(i)

(f)

FIG. 1. Contributions to the four-nucleon operators. The four-
nucleon vertices represent contact interactions collectively. The
dotted lines represent the pion propagators. For the diagrams (e),
(f), (g), (h), and (l), there are also mirrored diagrams with the left and
the right interchanged.

the contribution to the RGEs and (ii) the magnitude of the
momentum in the loop is actually �, while in the “Q-counting”
it is assumed that the dominant contributions come from the
loop momentum of order Q.

To see how the dominant contributions to the RGEs emerge
in certain diagrams, let us consider Fig. 1(b) as an illustrative
example. At the moment, we assume that the floating cutoff
� is larger than mπ for simplicity. The diagram contains the
loop integral∫

shell

d4k

(2π )4

ik2

k2 − m2
π + iε

i

(p0 + k0) − ( p + k)2/2M + iε

× i

(p′0 − k0) − ( p′ − k)2/2M + iε
, (3.10)

where
∫

shell denotes the shell mode integral with the restriction
on the magnitude of the relative three-momentum. There are
four poles in the complex k0 plane, one nucleon pole and one
pion pole in both the upper and the lower half-planes. One
can evaluate the integral by the residues of the poles in either
half-plane and find that the nucleon pole gives a dominant
contributions,∫

shell

d3k

(2π )3

−k2

[−p0 + ( p + k)2/2M]2 − ω2
k

× 1

(p0+p′0) − ( p+k)2/2M − ( p′−k)2/2M

∼
∫

shell

d3k

(2π )3

−(k − ( p − p′)/2)2

[−p0 + (k + P/2)2/2M]2 − ω2
k−(p−p′)/2

× 1

E − P2/4M − k2/M
, (3.11)

where ωk ≡ √
k + m2

π , and E ≡ p0 + p′0 and P ≡ p + p′
are the total energy and the total three-momentum of the
two nucleons, respectively. In going to the second line, we
have made a shift of the integration momentum so k is now
the relative momentum. Since M 	 |k| = � 	 |P |, p0, and
E − P2/4M 
 �2/M , one may estimate the loop integral as

∼ −1

2π2
Md�. (3.12)

The pion pole gives ∼�d�/4π2, which is smaller than the
dominant contribution by a factor of �/M .

On the other hand, the diagram in Fig. 1(e) contains∫
shell

d4k

(2π )4

ik2

k2 − m2
π + iε

i

(p0 − k0) − ( p − k)2/2M + iε

× i

(p′0 − k0) − ( p′ − k)2/2M + iε
, (3.13)

which is similar to Eq. (3.10), but there is a crucial difference.
No nucleon pole appears in the lower half-plane. Thus the
contribution can be evaluated by the residue of the pion pole
in the lower half-plane and gives ∼ −�d�/4π2. This is
suppressed by a factor of �/M compared with the diagram in
Fig. 1(b).

It is a general feature that the two-nucleon reducible
(2NR) diagram acquires the “IR enhancement,” first noted
by Weinberg [3], where the residue of the nucleon pole gets
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(a) (b)

(c) (d)

FIG. 2. Contributions to the gA vertex.

an enhancement factor M/�. Note that the IR enhancement is
a consequence of the nonrelativistic kinematics. In addition,
with the residue of the nucleon pole, the pion propagator

i

[−p0 + ( p + k)2/2M]2 − ω2
k

. (3.14)

Noting p0 − p2/2M 
 �2/M 
 �, it is approximated by

∼ −i

k2 + m2
π

(3.15)

for k ∼ �. That is, the effects of the pion can be represented
as the instantaneous potential.

Although we have shown that the mechanism of “IR
enhancement” works in the case of mπ < �, it is actually
independent of this assumption, and it also works in the case
of � < mπ .

2. Vertex corrections and the nucleon self-energy

We also need to consider the renormalization of the gA

term. The relevant diagrams are depicted in Fig. 2. There are
contributions to the self-energy of the nucleon, shown in Fig. 3.
These are potentially important to the renormalization of the
four-nucleon operators.

The examples in the previous subsection imply that the
nucleon self-energy diagram and the contributions to the
nucleon-pion vertex do not have IR enhancement. We will see
shortly that these contributions can be neglected in our leading-
order calculations. The key point is that the appropriate dimen-
sionless coupling constant for the nucleon-pion coupling is, as

FIG. 3. Contributions to the self-energy of nucleon.

we will explain in the next section (Sec. IV A), given by γ ,

γ ≡ M�

2π2

(
gA

2f

)2

. (3.16)

The contributions from the nucleon-pion vertex to γ should
be written in terms of γ .

There are four diagrams contributing to the nucleon-pion
vertex shown in Sec. III B. The tadpole diagram [Fig. 2(b)]
can be absorbed in the redefinition of the coupling constant
gA. Each of the diagrams in Figs. 2(c) and 2(d) has an extra
1/M factor because the two-pion vertex comes from the kinetic
term D2/2M so they are suppressed compared to the diagram
in Fig. 2(a). Figure 2(a) gives rise to the second term of the
right-hand side of the following RGE expressed in terms of γ ,

dγ

dt
= −γ − 3

(
�

M

)
γ 2. (3.17)

(The contributions from the nucleon wave-function renormal-
ization is not considered here.) Note that the last term has an
explicit � dependence. In Eq. (4.7) the last term has been
neglected because �/M is much smaller than 1.

The self-energy diagram (p) shown in Fig. 3 gives
contributions

�
d(p)

d�
= A + Bp0 + C p2 + O(�2/M2), (3.18)

where A, B, and C are the constants that depend on the
couplings and the cutoff �. The constants A and C are canceled
by the counterterms, leaving the pole of the nucleon propagator
intact. After doing so, the propagator with this shell-mode
contribution becomes(

1 − B
d�

�

)−1
i

p0 − p2

2M
+ iε

, (3.19)

so the contributions to the wave-function renormalization
constant for the nucleon field, ZN , can be written as

dZN

dt
= B. (3.20)

The order of magnitude estimate of B gives

B ∼
(

�

M

)
γ, (3.21)

so the inclusion of the effect of wave-function renormalization
does not alter the results of the leading-order calculations.

C. Averaged action with L-OPE

We have seen that the leading contributions to the RGEs
consist of the one-loop 2NR diagrams with contact interactions
and/or the instantaneous pion exchanges. Actually these
contributions can be generated by a much simpler action than
that in Eq. (3.5). Thus we start with the following ansatz for
the averaged action ��,

�� = �
(π� )
� +

∫
d4x

{ − D
(c)
2 m2

πO
(c)
0

} + g2
A

4f 2

∫
dt

∫
d3x d3y

×
[
O(S)(x, y)∇2

x + O(T )
ii (x, y)∇2

x

− 6O(T )
ij (x, y)

(
∂x
i ∂x

j − 1

3
δij∇2

x

) ]
Y (|x − y|), (3.22)
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where we have introduced

O(S)(x, y) = [
NT (x)P (S)

a N (y)
]†[

NT (y)P (S)
a N (x)

]
, (3.23)

O(T )
ij (x, y) = [

NT (x)P (T )
i N (y)

]†[
NT (y)P (T )

j N (x)
]
, (3.24)

and

Y (r) = 1

4π

e−mπ r

r
. (3.25)

Note that all the derivatives are now the usual ones, not the
covariant derivatives. It means that chiral symmetry is broken
explicitly, but the breaking is of higher order in �/M , as is seen
from the derivation. Note also that the operator corresponds to
D

(c)
2 is the same as that to C

(c)
0 , but the former is a part of the

operator that emits/absorbs pions and is of higher order in the
p expansion than the latter.

The effects of pions are represented as one-pion-exchange
interactions. It is L-OPE because the averaged action is defined
with the cutoff �, so the S-OPE (with the momenta larger than
�) is included in the contact interactions. The last term in
Eq. (3.22) represents the tensor force of L-OPE in the spin-
triplet channel.

IV. WILSONIAN RGEs FOR THE NEFT WITH PIONS TO
O( p2) IN THE 1 S0 AND 3 S1-3 D1 CHANNELS

We are now ready to calculate the RGEs for the two-nucleon
system in the S waves. The formula Eq. (2.8) can be used with
slight modification.

(i) We introduce the dimensionless coupling constants γ

defined in Eq. (3.16) for L-OPE, and u and u′ for D
(c)
2 ,

defined by

u ≡ M�3

2π2
D

(S)
2 , u′ ≡ M�3

2π2
D

(T )
2 . (4.1)

Note that gA and f appear in Eq. (3.22) only through
the combination of (gA/f )2.

(ii) The momentum-dependent factors associated with γ ,
u, and u′ are given by

FγS(pf , pi) =
(−2π2

M�

)
1

2

[
r13

r13+m2
π

+ r14

r14+m2
π

]
,

(4.2)

F
ij

γ T (pf , pi) =
(−6π2

M�

)
1

2

[
δij r13 − 2pi

13p
j

13

r13 + m2
π

+ δij r14 − 2pi
14p

j

14

r14 + m2
π

]
, (4.3)

Fu = Fu′ = −2π2m2
π

M�3
. (4.4)

(iii) Since the FγS and F
ij

γ T have a bit more complicated
momentum dependence than those in the pionless
theory, the formula contains nontrivial integrations over
angular variables. The part FA(pi,�)FB(�,pf ) in
Eq. (2.8) is replaced by 〈FA(pi,�)FB(�,pf )〉,where

〈· · ·〉 is defined as

〈· · ·〉 = 1

4π

∫
d�k̂(· · ·), (4.5)

where �k̂ stands for the angular variables of k. See the
original derivation of the formula for the details [30].

In the following, we assume that mπ < � and expand
in powers of mπ/�. The case of � < mπ is discussed in
Appendix A.

A. Spin-singlet channel

In the spin-singlet channel, we have the following RGEs:

dx

dt
= −x − [x2 + 2xy + y2 + 2xz + 2yz + z2]

− 2(x + y + z)γ − γ 2, (4.6a)

dy

dt
= −3y −

[
1

2
x2 + 2xy + 3

2
y2 + yz − 1

2
z2

]

− (x + 2y)γ − 1

2
γ 2, (4.6b)

dz

dt
= −3z +

[
1

2
x2 + xy + 1

2
y2 − xz − yz − 3

2
z2

]

+ (x + y − z)γ + 1

2
γ 2, (4.6c)

du

dt
= −3u − 2(x + y + z)(u − γ ) − 2uγ + 2γ 2, (4.6d)

and for γ ,

dγ

dt
= −γ. (4.7)

The first lines of Eqs. (4.6)–(4.6c) are the same as those in
the pionless calculations obtained in Ref. [29]. The terms in
the second lines express how the L-OPE is rearranged into the
S-OPE when the floating cutoff is lowered.

We emphasize the choice made here of the dimensionless
coupling constant γ . There are several ways to make a
dimensionless quantity from the combination (gA/f )2, M , and
�. Our choice is the one for which the RGEs for the coupling
constants of the contact interactions do not have explicit �

dependence. If the explicit � dependence were present in the
RGEs, the iterative property (self-similarity) would be lost and
the concept of fixed points would become obscure. Since the
unnaturally large scattering lengths in the S-wave scattering are
believed to be related to the nontrivial fixed points, one needs
to use such dimensionless variables that allow fixed points.

The nontrivial fixed point of the RGEs (4.6) and Eq. (4.7)
relevant to the real two-nucleon system is found to be

(x�, y�, z�, u�, γ �) = (−1,− 1
2 , 1

2 , 0, 0
)
, (4.8)

which is identified with that found in the pionless NEFT, given
in Eq. (2.13).

We linearize the RGEs around the fixed point and find
the following eigenvalues (scaling dimensions) and the
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corresponding eigenvectors:

ν1 = +1 : u1 =

⎛
⎜⎜⎜⎜⎜⎝

1
1

−1
0
0

⎞
⎟⎟⎟⎟⎟⎠ , ν2 = −1 : u2 =

⎛
⎜⎜⎜⎜⎜⎝

0
−1
1
0
0

⎞
⎟⎟⎟⎟⎟⎠ ,

(4.9)

ν3 = −2 : u3 =

⎛
⎜⎜⎜⎜⎜⎝

2
−1
−2
0
0

⎞
⎟⎟⎟⎟⎟⎠ , ν4 = −1 : u4 =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎠ .

The eigenvalues ν1, ν2, and ν3 and corresponding eigenvectors
u1, u2, and u3 can be identified with those found in the pionless
theory. Therefore, the power counting is not modified by the
inclusion of the pions; only the one relevant operator (u1)
should be resummed to all orders.

Note that the eigenvalue problem is five dimensional and
one thus expects five pairs of eigenvalues and eigenvectors. It is
easily seen that the eigenvalue −1 is triply degenerate. Two of
the (nonzero) eigenvectors are u2 and u4, but the third one does
not exist. This is not a mathematical inconsistency, however.
Although we do not understand very well the reason why the
third eigenvector is missing, it clearly has something to do with
the γ direction, because the vector in the γ direction cannot
be expressed as a linear combination of ui’s (i = 1, . . . , 4).

Equation (4.7) shows that the L-OPE is irrelevant. It implies
that the L-OPE should be treated as a perturbation. Note that
there is a typical scale in the NEFT with pions, �NN ,

�NN = 4π

M

(
2f

gA

)2

, (4.10)

and our γ is related to it as

γ (�) = 2

π

(
�

�NN

)
. (4.11)

Kaplan, Savage, and Wise [11,12] regard p/�NN as an
expansion parameter. Our finding is consistent with their
approach.

B. Spin-triplet channel

In the spin-triplet channel, we have the following RGEs:

dx ′

dt
= −x ′ − [x ′2+2x ′y ′+y ′2+2x ′z′+2y ′z′+z′2+2w′2]

− 2(x ′ + y ′ + z′ − 4w′)γ − 9γ 2, (4.12a)

dy ′

dt
= −3y ′ −

[
1

2
x ′2 + 2x ′y ′ + 3

2
y ′2 + y ′z′ − 1

2
z′2 + w′2

]

− (x ′ + 2y ′)γ + 7

2
γ 2, (4.12b)

dz′

dt
= −3z′+

[
1

2
x ′2+x ′y ′+1

2
y ′2−x ′z′ − y ′z′−3

2
z′2+w′2

]

+ (x ′ + y ′ − z′ − 4w′)γ + 9

2
γ 2, (4.12c)

dw′

dt
= −3w′ − [x ′w′ + y ′w′ + z′w′]

+ 1

5
(2x ′ + 2y ′ + 2z′ − 9w′)γ + 2γ 2, (4.12d)

du′

dt
= −3u′ − 2(x ′ + y ′ + z′)u′ + 2(x ′ + y ′ + z′ − 4w′)γ

− 2u′γ + 18γ 2. (4.12e)

Here, again, the first lines of Eqs (4.12a)–(4.12d) are the
same as those in the pionless calculations, obtained in
Ref. [29], while the second lines are the contributions from
L-OPE.

Note that the magnitude of the coefficients of γ 2 is large
compared to those for the spin-singlet channel. This is the
effect of the tensor part of L-OPE.

The nontrivial fixed point of the RGEs (4.12) and Eq. (4.7)
relevant to the real two-nucleon system is found to be

(x�, y�, z�, w�, u�, γ �) = (−1,− 1
2 , 1

2 , 0, 0, 0
)
, (4.13)

which is the same as that found in the pionless NEFT, given in
Eq. (2.14).

The RGEs linearized around the fixed point lead to the
following set of eigenvalues and the eigenvectors:

ν1 = +1 : u1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
1

−1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, ν2 = −1 : u2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
−1
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

ν3 = −2 : u3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2
−1
−2
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, ν4 = −2 : u4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.14)

ν5 = −1 : u5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Here, again, the eigenvalues ν1, ν2, ν3, and ν4 and cor-
responding eigenvectors u1, u2, u3, and u4 can be iden-
tified with those found in the pionless theory. Therefore,
in spite of the presence of the tensor force in this chan-
nel, the power counting is not modified. As in the spin-
singlet channel, only the one relevant (u1) should be re-
summed to all orders. As in the spin-singlet channel, the
eigenvalue −1 is triply degenerate, but one eigenvector is
missing.
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C. The effects of pions

In this section, we discuss the effects of pions to the RGEs
and thus to the power counting.

As we discussed in Sec. II C, the scaling dimensions at
the nontrivial fixed point determine the power counting of
NEFT in the S waves in the two-nucleon sector. In the previous
sections, we have seen that the nontrivial fixed points as well
as the scaling dimensions at them in both 1S0 and 3S1-3D1

channels remain the same even when pions are included as
explicit degrees of freedom. Therefore the power counting for
the contact operators in the theory including pions is the same
as that of the pionless theory.

The L-OPE does not affect the location of the fixed points
and the scaling dimensions there, but the details of the flows.
The “strong” tensor force in the spin-triplet channel does not
change the properties of the nontrivial fixed point but gives rise
to the strong γ dependence [because of the large factor “6” in
Eq. (3.22)] in the channel and modifies the flow considerably
compared to the spin-singlet channel.

The effects can be read off from the γ dependence of the
RGEs. To see the effects in more detail, let us introduce new
variables,

X = x + y + z, Y = y + z, Z = y − z, (4.15)

and rewrite the RGEs in Eq. (4.6) for the spin-singlet channel
as follows:

dX

dt
= −X− 2Y − XY − X2− (2X + Y )γ − γ 2, (4.16a)

dY

dt
= −(3 + X + γ )Y, (4.16b)

dZ

dt
= −3Z − X(X − Y + 2Z) − (2X − Y + 2Z)γ − γ 2,

(4.16c)
du

dt
= −3u − 2Xu − 2(X + u)γ + 2γ 2. (4.16d)

0.2

0.4

0.6

0.8
1

1.2

1.4

0
-4 -2

0
2

4X, X'

γ

-0.5

0

-1

0.5

1

Y,Y'

FIG. 4. (Color online) The surfaces which separate the initial
values into those from which the flows go to the strong-coupling
phase (the left side) and those to the weak-coupling phase (the right
side). The surface on the right is for the spin-triplet channel and the
other on the left for the spin-singlet channel. All the points have the
initial values with w′ = 0 for the spin-triplet channel.
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γ
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FIG. 5. (Color online) Typical RG flow lines in the spin-singlet
channel. The intervals between points indicate how fast they flow.

We see that the RGEs for (X, Y, γ ) form a closed subset and
can be solved without knowing the flow for Z and u. In these
variables, the nontrivial fixed point is given by (X�, Y �, γ �) =
(−1, 0, 0).

Similarly, we introduce

X′ = x ′ + y ′ + z′, Y ′ = y ′ + z′, Z′ = y ′ − z′, (4.17)

in the spin-triplet channel, and the RGEs can be rewritten as

dX′

dt
= −X′ − 2Y ′ − X′Y ′ − X′2 − 2w′2

− (2X′ + Y ′ − 4w′)γ − γ 2, (4.18a)
dY ′

dt
= −(3 + X′)Y ′ − (Y ′ + 4w′)γ + 8γ 2, (4.18b)

dZ′

dt
= −3Z′ − X′(X′ − Y ′ + 2Z′) − 2w′2

− (2X′ − Y ′ + 2Z′ − 4w′)γ − γ 2, (4.18c)
dw′

dt
= −3w′ − X′w′ + 1

5
(2X′ − 9w′)γ + 2γ 2, (4.18d)

du′

dt
= −3u′ − 2Xu′+2(X′−u′−4w′)γ+18γ 2. (4.18e)

-4
-2
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-1-0.5
0

0.5
11.5
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0.4

0.6

0.8

1

1.2

γ

Y' X'

FIG. 6. (Color online) Typical RG flow lines in the spin-triplet
channel with the initial value of w′ set equal to zero. The intervals
between points indicate how fast they flow. Note the strong “dragging
force” in the Y ′ direction.
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The RGEs for (X′, Y ′, w′, γ ) form a closed subset, and
the nontrivial fixed point is given by (X′�, Y ′�, w′�, γ �) =
(−1, 0, 0, 0).

Thanks to the similarity of the RGEs in both channels, we
can project the flows onto the (X, Y, γ ) and (X′, Y ′, γ ) space
and compare them in the single plot. In Fig. 4, we have drawn
the surfaces which separate the initial values into two regions:
the region from which the flows go to the strong-coupling
phase and the other to the weak-coupling phase. It is evident
that the region of initial values to the strong-coupling phase
is larger in the spin-triplet channel than in the spin-singlet
channel.

In Figs. 5 and 6, we show some typical flows. Note that the
large coefficient of the γ 2 term of Eq. (4.18b), in comparison
with Eq. (4.17), results in the large bending of the flow lines
in the Y ′ direction.

V. SUMMARY AND DISCUSSIONS

A. Summary

In this article, we consider the NEFT including pions in
the two-nucleon sector in the S waves in the leading order of
the nonrelativistic approximation in order to study the power
counting issue from the Wilsonian RG point of view. We show
that the leading-order contributions to the RGEs come from
the two-nucleon-reducible diagrams, and the pion propagators
are dominated by the instantaneous Yukawa potential.

The separation of the pion-exchange contributions into the
L-OPE and the S-OPE is emphasized on the basis of the general
effective field theory philosophy. The L-OPE is expressed as
the Yukawa potential in the averaged action, while the S-OPE
is included in the contact interactions along with the other
short-distance effects.

We derive the RGEs for the spin-singlet and spin-triplet
channels from the effective averaged action ansatz up to
including the O(p2) in the expansion of momenta and the
pion mass. The nontrivial fixed point of physical importance
is found to be the same as that in the pionless NEFT in
each channel. The eigenvalues (scaling dimensions) and the
corresponding eigenoperator of the linearized RGEs around
the fixed point are also shown to be the same. That is, there
is one relevant contact operator to be resummed. The other
operators should be treated as perturbations. The L-OPE is
also treated as a perturbation. A part of the S-OPE contained
in the relevant operator is resummed to all orders.

We emphasize that the effects of pions do not alter the
scaling dimensions and hence the power counting. The pions
affect the details of the RG flows. We show that in the spin-
triplet channel the flow is more affected by the pions and the
region of the initial values that flow to the strong-coupling
phase is larger than in the spin-singlet channel.

We believe that the difference between these channels
eventually leads to the existence of the bound state (the
deuteron) in the spin-triplet channel, and the nonexistence in
the spin-singlet channel.

B. Comments on the related works

In the following, we discuss the relation of the present
article to the relevant works in the literature.

As stated in the Introduction, our work is very closely
related to the work by Beane, Kaplan, and Vuorinen [22],
who, working with the PDS renormalization scheme, introduce
a regularization mass scale λ to separate the pion exchange
into its long-distance and short-distance parts, and the short-
distance part is represented as contact interactions. The
separation of the pion exchange into two parts is essential
to improve the convergence of the EFT expansion in the spin-
triplet channel and is similar to our Wilsonian RG analysis,
with the regularization scale λ corresponding to our floating
cutoff �.

There are, however, several points to be addressed: (i) Even
though they regard � as a low-energy scale, they actually con-
sider high-momentum values in their numerical calculation,
ranging from 600 to 1000 MeV. (ii) They employ the PDS
renormalization scheme simply assuming the modification
does not affect the power counting. (iii) The renormalization
scale µ and the regularization scale � seem to play a similar
role in reordering the EFT expansion but they are treated
independently. As a result, � becomes just a new parameter.
(iv) They consider the regularization only for the spin-triplet
channel because of the singular 1/r3 potential but not for the
spin-singlet channel.

From our point of view, these may be seen as follows: (i)
Our separation scale � is smaller than the physical cutoff �0 ≈
400 MeV, so it can be consistently regarded as a low-energy
scale. (ii) We show in this article that the nontrivial fixed
points as well as the scaling dimensions are the same as
those in the pionless theory. We have shown that the scaling
dimensions near the nontrivial fixed points in the pionless
theory correspond to those of the PDS ones [30]. (iii) In
our Wilsonian RG analysis, there is only one scale �, which
plays the role of µ, renormalization scale, in the RGEs, and
simultaneously the role of λ, the separation scale. (iv) We
think that one should consider such a regularization for both
channels from a general EFT point of view.

The effects of pions in the Wilsonian RG context have
been studied by Birse [19,46]. He shows that the range of
momenta in which the expansion converges is very small in the
spin-triplet channel and claims that the pion exchanges should
be resummed. He then employs the distorted-wave RG [26]
and finds that the scaling dimensions shift by −1/2 (in our
convention) in the spin-triplet channel at the nontrivial fixed
point. Even at the trivial fixed point, the scaling dimensions
are found to shift from the canonical values. He also notes
that the scale λπ [which is the same as �NN in Eq. (4.10)] is
numerically small (∼2mπ ) so the resummation is justified.

We note that he does not introduce the separation scale �

for the pion exchange consistently with the contact interactions
but introduces an additional regularization scale (R) and keeps
it fixed when studying the RG flows. Thus his distorted-wave
RGE does not take into account the contributions from the
OPE to the contact interactions [Figs. 1(b) to 1(d)] at all. As
a result, his RGE does not have a smooth transition to that
of the pionless theory, where all the pion-exchange effects are
represented as contact interactions. That is, the pion exchanges
never decouple. In contrast, our RGEs have a smooth transition
to those of the pionless theory, as shown in Appendix A,
and the pions decouple as they should. In addition, because
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of the iterative property of the RGEs, the definition of the
dimensionless coupling, γ , is uniquely determined, and it leads
to the perturbative treatment of L-OPE, as explained at the end
of Sec. IV A.

Fleming et al. [14] also report the nonconvergence of the
EFT expansion in the P waves (the 3P0 channel). Although
we have not explicitly calculated the RGEs in this channel, we
think that a similar machinery also works there. The difference
between the S waves and the P waves is that the physical NN

system is near the nontrivial fixed point in the S waves, while in
the P waves it seems to be near the trivial fixed point. Although
the scaling dimensions obtained in the PDS scheme with the
pole at D = 3 subtracted are shown to be the same as those
at the nontrivial fixed point in the S waves, they correspond
neither to those at the nontrivial fixed point nor to those at the
trivial fixed point in the P waves [30]. Thus the simple PDS
with the pole at D = 3 subtracted should not be used.

C. Prospects of future research

Finally we would like to make a comment on a possible
implementation of the findings of the present article into a more
tractable way of calculating the physical amplitudes to higher
orders. The Wilsonian RG method with the momentum cutoff
is theoretically transparent but practically too complicated to
do higher-order calculations. A simple but powerful scheme
that is also consistent with our results is desired. Such a
scheme would employ the dimensional regularization. Since
dimensional regularization does not have a natural separation
scale in itself, one should introduce it by hand. Thus it would
be very similar to the BKV prescription. It seems necessary,
however, to make a connection between the renormalization
scale µ and the separation scale λ so we have a consistent
RGEs with those obtained in the present article. Work in this
direction is now in progress.
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APPENDIX A: RGEs FOR THE CASE OF � < mπ

In Sec. IV, we have derived the RGEs for the case mπ < �

by expanding the contributions in powers of mπ/�. But the
NEFT with pions is valid also for the case � < mπ . In this
Appendix we present the RGEs for the case � < mπ . The
diagrams which contribute to the RGEs are the same. The
difference is that the contributions are now expanded in powers
of �/mπ .

In the spin-singlet channel, we have

dx

dt
= [first line of Eq. (4.6a)]

− 2(x + y + z + ũ)γ̃ − γ̃ 2, (A1a)

dy

dt
= [first line of Eq. (4.6b)]

− (2x + 3y + z + 2ũ)γ̃ − 3

2
γ̃ 2, (A1b)

dz

dt
= [first line of Eq (4.6c)]

+ (x + y − z + ũ)γ̃ + 1

2
γ̃ 2, (A1c)

dũ

dt
= −ũ − 2(x + y + z)ũ − 2ũγ̃ , (A1d)

where we have introduced new notations,

γ̃ = �2

m2
π

γ, ũ = m2
π

�2
u. (A2)

Now the RGE for γ̃ is given by

dγ̃

dt
= −3γ̃ . (A3)

Similarly, in the spin-triplet channel, we have

dx ′

dt
= [first line of Eq. (4.12a)]

− 2(x ′ + ũ′ + y ′ + z′ − 4w′)γ̃ − 9γ̃ 2, (A4a)
dy ′

dt
= [first line of Eq. (4.12b)]

− (2x ′+ 2ũ′+ 3y ′+ z′− 4w′)γ̃ − 11

2
γ̃ 2, (A4b)

dz′

dt
= [first line of Eq. (4.12c)]

+ (x ′ + ũ′ + y ′ − z′ − 4w′)γ̃ + 9

2
γ̃ 2, (A4c)

dw′

dt
= [first line of Eq. (4.12d)]

+ (2x ′ + 2ũ′ + 2y ′ + 2z′ − w′)γ̃ + 2γ̃ 2, (A4d)
dũ′

dt
= −ũ′ − 2(x ′ + y ′ + z′)ũ′ − 2ũ′γ̃ . (A4e)

In the case of � < mπ , the operator corresponding D
(c)
2

cannot be distinguished with the operator corresponding to
C

(c)
0 , because these operators are of the same form to this order

and the pion mass is not a small parameter to be expanded. Thus
they appear only though the combinations C

(c)
0 + m2

πD
(c)
2 , or

equivalently, χ ≡ x + ũ and χ ′ ≡ x ′ + ũ′. In terms of these
variables, the RGEs can be rewritten as

dχ

dt
= [first line of Eq. (4.6a) with x → χ ]

− 2(χ + y + z)γ̃ − γ̃ 2, (A5a)
dy

dt
= [first line of Eq. (4.6b) with x → χ ]

− (2χ + 3y + z)γ̃ − 3

2
γ̃ 2, (A5b)

dz

dt
= [first line of Eq. (4.6c) with x → χ ]

+ (χ + y − z)γ̃ + 1

2
γ̃ 2, (A5c)
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for the spin-singlet channel, and

dχ ′

dt
= [first line of Eq. (4.12a) with x ′ → χ ]

− 2(χ ′ + y ′ + z′ − 4w′)γ̃ − 9γ̃ 2, (A6a)
dy ′

dt
= [first line of Eq. (4.12b) with x ′ → χ ]

− (2χ ′ + 3y ′ + z′ − 4w′)γ̃ − 11

2
γ̃ 2, (A6b)

dz′

dt
= [first line of Eq. (4.12c) with x ′ → χ ]

+ (χ ′ + y ′ − z′ − 4w′)γ̃ + 9

2
γ̃ 2, (A6c)

dw′

dt
= [first line of Eq. (4.12d) with x ′ → χ ]

+ (2χ ′ + 2y ′ + 2z′ − w′)γ̃ + 2γ̃ 2, (A6d)

for the spin-triplet channel. Here we have now included the
other terms that we neglected in the ansatz to the order O(p2),
such as terms proportional to m4

π . In a similar way, we may
consider that χ and χ ′ contain the terms proportional to m2

π

but also terms of all order in the expansion in m2
π . These χ

and χ ′ should be compared to the couplings x and x ′ in the
pionless NEFT.

The new coupling γ̃ is a natural measure of the strength of
the pion exchange for � < mπ , as γ is for mπ < �. Note that
the RGE for the γ̃ , Eq. (A3), shows that the L-OPE is more
irrelevant and the effects of pions on the contact interactions
thus become negligible very rapidly in this region. This implies
that one may put γ̃ = 0 as a good approximation. In this
way, the RGEs of the NEFT with pions is smoothly connected
to those of the pionless NEFT.

APPENDIX B: THE CASE OF QED

In this Appendix, we briefly discuss the case of QED
in the nonrelativistic region (NRQED). As a concrete ex-
ample, we have a hydrogen atom (or electron-proton scat-
tering) in mind, and we are interested in the low-energy
region where even the electron behaves as a nonrelativistic
particle.

The system consists of a nonrelativistic proton and an
electron interacting by exchanging photons. The Lagrangian
is similar to that of NEFT with propagating pions, Eq. (3.5).
Note that we also include contact interactions of protons and
electrons. By a similar analysis, one easily finds that the IR
enhancement takes place for the proton-electron reducible
diagrams, giving the leading-order contributions to the RGEs.
There (the time-time component of) the photon propagator
is replaced with the instantaneous Coulomb potential. (It is
independent of the choice of the gauge.) Effectively, the RGEs
are generated by the averaged action consisting of the con-
tact interactions and the instantaneous Coulomb interaction,

such as

−e2

2

∫
dt

∫
d3x d3y[eT (t, x)σ2p(t, y)]†[eT (t, x)σ2p(t, y)]

×C(|x − y|), (B1)

where C(r) is the Coulomb potential,

C(r) = 1

4πr
, (B2)

similar to that of NEFT, Eq. (3.22). The Coulomb interaction
here should be considered as the long-distance part of the
Coulomb interaction (L-Coulomb), while the short-distance
part (S-Coulomb) is included in the contact interactions.

The difference between the NEFT with pions and the
NRQED comes from the following facts: (i) the photon
is massless while the pion is massive, (ii) the Coulomb
interaction is not a derivative coupling, while the NNπ is,
and (iii) the electromagnetic coupling e2 is dimensionless,
whereas the NNπ coupling (gA/2f )2 is not.

For the NRQED RGEs, we introduce the dimensionless
coupling constant γQED,

γQED ≡ e2 M

�
, (B3)

where M is the reduced mass of the proton and the electron.
This particular � dependence is required by the condition that
the RGEs for the contact interactions do not contain the explicit
� dependence, as in Sec. IV A for the NEFT with pions. The
RGE for γQED in the leading order is given by

dγQED

dt
= +γQED. (B4)

(Note that the usual β function contribution vanishes,
de2/dt = 0, because we are in a region where � is smaller than
the electron mass.) We see that the L-Coulomb interactions
become more important in the infrared, in strong contrast to
the L-OPE. Photons do not decouple as they should not. There
is no “photonless” QED.

The contact interactions lead to similar RGEs as to those
of the NEFT. There is a nontrivial fixed point similar to the
one found in the NEFT. Since there seems to be no fine-tuning
for NRQED, it is natural to consider that the physical system
is close to the trivial fixed point. Therefore, the S-Coulomb is
irrelevant and should be treated as a perturbation. In the NEFT
case, the L-OPE becomes rapidly irrelevant for � < mπ , as is
shown in Appendix A. On the other hand, NRQED does not
have such a region where the L-Coulomb becomes irrelevant
because the photon is massless.

Therefore, we conclude that the L-Coulomb interaction is
nonperturbative, and the contact interactions including the
S-Coulomb interaction are perturbative. It is interesting to
compare this with the case of the NEFT, where the L-OPE is
perturbative while (a part of) the S-OPE should be resummed
to all orders.
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