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K. Hebeler,1,2 S. K. Bogner,3 R. J. Furnstahl,2 A. Nogga,4 and A. Schwenk5,6

1TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
2Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

3National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University,
East Lansing, Michigan 48844, USA

4Institute for Advanced Simulations, Institut für Kernphysik and Jülich Centre for Hadron Physics, Forschungszentrum Jülich,
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We present nuclear matter calculations based on low-momentum interactions derived from chiral effective
field theory potentials. The current calculations use an improved treatment of the three-nucleon force (3NF)
contribution that includes a corrected combinatorial factor beyond Hartree-Fock that was omitted in previous
nuclear matter calculations. We find realistic saturation properties using parameters fit only to few-body data,
but with larger uncertainty estimates from cutoff dependence and the 3NF parametrization than in previous
calculations.
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Major advances in nuclear structure theory over the past
decade have been made by expanding the reach of few-
body calculations that use microscopic interactions between
nucleons. This progress has unambiguously established the
quantitative role of three-nucleon forces (3NF) for the ground
state and spectra of light nuclei (A � 12) [1,2]. Pioneering
extensions to larger nuclei reveal new facets of the 3NF, such as
its role in determining the location of the neutron dripline [3,4]
and in elucidating the doubly magic nature of 48Ca [5]. Pushing
these successes to still heavier nuclei, which includes most of
the table of nuclides, is a fundamental challenge for low-energy
nuclear physics.

The historical route to heavy nuclei is through infinite
nuclear matter, a theoretical uniform limit that first turns
off the Coulomb interaction, which otherwise drives heav-
ier stable nuclei toward an imbalance of neutrons over
protons and eventually, instability. However, predicting nu-
clear matter based on microscopic internucleon forces has
proved to be an elusive target. In particular, few-body fits
have not sufficiently constrained 3NF contributions around
saturation density such that nuclear matter calculations are
predictive. Nuclear matter saturation is very delicate, with
the binding energy resulting from cancellations of much
larger potential and kinetic energy contributions. When a
quantitative reproduction of empirical saturation properties
was obtained, it was imposed by hand through the adjust-
ment of short-range three-body forces (see, for example,
Refs. [6,7]).

The lack of progress toward controlled nuclear matter
calculations has long been hindered by the difficulty of
the nuclear many-body problem when conventional nuclear
potentials are used. The present calculations continue an
alternative approach to nuclear matter using soft Hamiltonians
derived from interactions fit only to few-body (A � 4) data.
We find realistic saturation properties within our theoretical
uncertainty bounds without adjustment of parameters. This

progress follows by applying several recent developments:
systematic starting Hamiltonians based on chiral effective
field theory (EFT) [8], renormalization group (RG) meth-
ods [9] to soften the short-range repulsion and short-range
tensor components of the initial chiral interactions so that
convergence of many-body calculations is vastly accelerated
[10–12], and a new 3NF fitting procedure to the 4He radius
rather than the binding energy [2]. (Alternative expansions
using chiral interactions are described in Refs. [8,13,14]). The
calculations here also employ an improved treatment of the
3NF contribution in many-body perturbation theory compared
to Refs. [10,15], which includes the full treatment of 3NF
double-exchange diagrams and corrected 3NF combinatorial
factors beyond Hartree-Fock. Note that previous calculations
of neutron matter [16,17] and finite nuclei [3,5] are not
affected.

Our results are summarized in Fig. 1, which shows the
energy per particle of symmetric matter as a function of
Fermi momentum kF, or the density ρ = 2k3

F/(3π2). A gray
square representing the empirical saturation point is shown
in each of the nuclear matter figures. Its boundaries reflect
the ranges of nuclear matter saturation properties predicted
by phenomenological Skyrme energy functionals that most
accurately reproduce properties of finite nuclei [18]. Although
this determination cannot be completely model independent,
the value is generally accepted for benchmarking infinite
matter. In the future, calculations of the properties of finite
nuclei will allow one to compare directly to experimental
data.

The calculations of Fig. 1 start from the N3LO nucleon-
nucleon (NN) potential (EM 500 MeV) of Ref. [19]. This NN
potential is RG-evolved to low-momentum interactions Vlow k

with a smooth nexp = 4 regulator [20]. For each cutoff �, two
couplings that determine the shorter-range parts of the N2LO
3NF [21] are fit to the 3H binding energy and the 4He matter
radius using exact Faddeev and Faddeev-Yakubovsky methods
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FIG. 1. (Color online) Nuclear matter energy per particle versus Fermi momentum kF at the Hartree-Fock level (left) and including
second-order (middle) and third-order particle-particle/hole-hole contributions (right), based on evolved N3LO NN potentials and 3NF fit to
E3H and r4He. Theoretical uncertainties are estimated by the NN (lines)/3N (band) cutoff variations.

as in Ref. [22]. Our 3NF central fit values are given in Table I;
we estimate that cD has an uncertainty of approximately 0.4
due to the uncertainties of the charge radius in 4He. We use
a 3NF regulator of the form exp{−[(p2 + 3/4q2)/�2

3NF]nexp}
with nexp = 4, where the 3N cutoff �3NF is allowed to vary
independently of the NN cutoff, which probes the sensitivity to
short-range three-body physics. The shaded regions in Fig. 1
show the range of results for 2.0 fm−1 < �3NF < 2.5 fm−1

at fixed � = 2.0 fm−1.
Nuclear matter is calculated in three approximations:

Hartree-Fock (left), Hartree-Fock plus second-order contribu-
tions (middle), and additionally summing third-order particle-
particle and hole-hole contributions (right). The technical
details regarding the treatment of the 3NF and the many-body
calculation are as for neutron matter in Ref. [16]. We first
construct a density-dependent two-body interaction from the
3NF by summing one particle over occupied states in the Fermi
sea (see also Ref. [23]). This conversion simplifies the many-
body calculation significantly and allows the inclusion of
all 3NF double-exchange terms beyond Hartree-Fock, which
were only approximated in Refs. [10,15]. Furthermore, we
have corrected the combinatorial factors at the normal-ordered

TABLE I. Results for the cD and cE couplings fit to E3H =
−8.482 MeV and to the point charge radius r4He = 1.464 fm (based
on Ref. [26]) for the NN/3N cutoffs and different EM/EGM/PWA
ci values used. For Vlow k (SRG) interactions, the 3NF fits lead to
E4He = −28.22 . . . − 28.45 MeV (−28.53 . . . − 28.71 MeV).

Vlow k SRG

� or λ/�3NF (fm) cD cE cD cE

1.8/2.0 (EM ci’s) +1.621 −0.143 +1.264 −0.120
2.0/2.0 (EM ci’s) +1.705 −0.109 +1.271 −0.131
2.0/2.5 (EM ci’s) +0.230 −0.538 −0.292 −0.592
2.2/2.0 (EM ci’s) +1.575 −0.102 +1.214 −0.137
2.8/2.0 (EM ci’s) +1.463 −0.029 +1.278 −0.078
2.0/2.0 (EGM ci’s) −4.381 −1.126 −4.828 −1.152
2.0/2.0 (PWA ci’s) −2.632 −0.677 −3.007 −0.686

two-body level of the 3NF from 1/6 to 1/2 in diagrams
beyond Hartree-Fock used in these references (see Refs. [9,16]
for detailed discussions of these factors, which are correctly
included in Refs. [3,5,16,17]). To our knowledge, previous
calculations in the literature of nuclear matter using normal-
ordered 3NF contributions need the same correction.

The dashed lines in the left panel of Fig. 1 (for � =
1.8 and 2.8 MeV) show the exact Hartree-Fock energy in
comparison with the results obtained using the effective
two-body interaction (solid lines). The excellent agreement
supports the use of this density-dependent two-body ap-
proximation for symmetric nuclear matter. For the results
beyond the Hartree-Fock level we use full momentum-
dependent single-particle Hartree-Fock propagators. We have
checked that the energies obtained using a self-consistent
second-order spectrum overlap with the band of curves
in Fig. 1.

The Hartree-Fock results show that nuclear matter is
bound even at this simplest level. A calculation without
approximations should be independent of the cutoffs, so
the spread in Fig. 1 sets the scale for omitted many-body
contributions. The second-order results show a significant
narrowing of this spread over a large density region. It is
encouraging that our results agree with the empirical saturation
point within the uncertainty in the many-body calculation and
omitted higher-order many-body forces implied by the cutoff
variation (the greater spread compared to Ref. [15] is mostly
attributable to the corrected combinatorial factor). We stress
that the cutoff dependence of order 3 MeV around saturation
density is small compared to the total size of the kinetic energy
(≈23 MeV) and potential energy (≈−38 MeV) at this density.
Moreover, the cutoff dependence is smaller at kF ≈ 1.1 fm−1,
which more resembles the typical densities in medium-mass
to heavy nuclei (ρ = 0.11 fm−3). For all cases in the right
panel of Fig. 1, the compressibility K = 175–210 MeV is in
the empirical range.

The inclusion of third-order contributions gives only small
changes from second order except at the lowest densi-
ties shown. This is consistent with nuclear matter being
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perturbative for low-momentum interactions, at least in the
particle-particle channel [10]. The difference at small densities
is not surprising: the presence of a two-body bound state
necessitates a nonperturbative summation in the dilute limit.
We note that below saturation density, the ground state is not
a uniform system, but breaks into clusters (see, for example,
Ref. [24]).

In chiral EFT without explicit deltas, 3N interactions start at
N2LO [21] and their contributions are given diagrammatically
by

π π π

c1, c3, c4 cD cE

We assume that the ci coefficients of the long-range
two-pion-exchange part are not modified by the RG. At
present, we rely on the N2LO 3NF as a truncated “basis”
for low-momentum 3N interactions and determine the cD and
cE couplings by a fit to data for all cutoffs [22]. In the future,
fully evolved three- and four-body forces in momentum space
starting from chiral EFT will be available (see Ref. [25] for
an application of evolved 3NF in a harmonic-oscillator basis).
The fit values of Table I are natural and the predicted 4He
binding energies are very reasonable. We have also verified
that the resulting 3NF becomes perturbative in A = 3, 4 (see
also Refs. [10,15,22]), i.e., the calculated individual 3NF
contributions are largely unchanged if evaluated for wave
functions using NN forces only.

The evolution of the cutoff � to smaller values is accompa-
nied by a shift of physics. In particular, effects due to iterated
tensor interactions are replaced by three-body contributions.
The role of the 3NF for saturation is demonstrated in Fig. 2. The
two pairs of curves show the difference between the nuclear
matter results for NN-only and NN plus 3N interactions. It is
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FIG. 2. (Color online) Nuclear matter energy of Fig. 1 at the
third-order level compared to NN-only results for two representative
NN cutoffs and a fixed 3N cutoff.

evident that saturation is driven by the 3NF [10,15]. Even for
� = 2.8 fm−1, which is similar to the lower cutoffs in chiral
EFT potentials, saturation is at too high a density without
the 3NF. Nevertheless, as in previous results [10,15], the 3N
contributions and the cD, cE fits are natural, and the same is
expected for the ratio of three- to four-body contributions.

The smooth RG evolution used in the results so far is
not the only choice for low-momentum interactions. A recent
development is the use of flow equations to evolve Hamiltoni-
ans, which we refer to as the similarity renormalization group
(SRG) [27–29]. The flow parameter λ, which has dimensions
of a momentum, is a measure of the degree of decoupling
in momentum space. Few-body results for roughly the same
value of SRG λ and smooth Vlow k � have been remarkably
similar (see, for example, Ref. [11]). With either RG method,
we can also change the initial interaction. The results presented
so far all start from a chiral EFT potential at a single order
with one choice of EFT regulator implementation and values.
There are several alternatives available [8,19,30], which are
almost phase-shift equivalent (but the χ2 is not equally
good up to Elab ≈ 300 MeV). Universality for phase-shift
equivalent chiral EFT potentials as � decreases was shown for
smooth-cutoff Vlow k interactions in Refs. [9,20] in the form of
the collapse of different initial potentials to the same matrix
elements in each partial wave channel. An analogous collapse
has been found for N3LO potentials evolved by the SRG to
smaller λ [9].

Based on this universal collapse for low-momentum inter-
action matrix elements, it is natural to expect a similar collapse
for the energy per particle in nuclear matter. We consider
four different chiral NN potentials: the N3LO potential by
Entem and Machleidt [19] for two different cutoffs 500 and
600 MeV, and the N3LO NN potential by Epelbaum et al. [30]
(EGM) for two different cutoff combinations 550/600 MeV
and 600/700 MeV. The results for the energy are presented in
Fig. 3. The upper panel shows the energies for Vlow k NN-only
interactions derived from different chiral NN potentials (solid
lines) in comparison to Brueckner-Hartree-Fock (BHF) (which
means resummed particle-particle ladder) results based on
unevolved chiral potentials (dashed lines). For clarity, we
only display the two extreme BHF results. As shown in the
lower panel we find a model dependence of about 13 MeV for
the unevolved N3LO potentials around saturation density and
approximately 2 MeV for the Vlow k and SRG low-momentum
interactions, comparable to the cutoff variation in Fig. 1. The
latter spread reflects the residual RG/SRG dependence on the
initial interactions.

By supplementing the low-momentum NN interactions
with corresponding 3NFs we can probe the sensitivity of
the energy to uncertainties in the ci coefficients (see also
Refs. [16,31,32]). We consider three different cases: first, we
take low-momentum interactions evolved from the N3LO NN
potential EM 500 MeV (EM ci’s: c1 = −0.81 GeV−1, c3 =
−3.2 GeV−1, c4 = 5.4 GeV−1); second, low-momentum
interactions from the EGM 550/600 MeV potential (EGM ci’s:
c1 = −0.81 GeV−1, c3 = −3.4 GeV−1, c4 = 3.4 GeV−1);
and third, low-momentum interactions from the EM
500 MeV potential combined with the central ci values
obtained from the NN partial wave analysis [33] (PWA ci’s:
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FIG. 3. (Color online) Nuclear matter NN-only results for dif-
ferent chiral N3LO potentials (EM [19] and EGM [30]). The upper
panel shows the third-order results for Vlow k-evolved interactions at
� = 2.0 fm−1 (solid lines) and Brueckner-Hartree-Fock results for
the two unevolved chiral potentials that provide the lowest and highest
energies (dashed lines), EGM 600/700 MeV and EM 600 MeV. The
lower panel shows the maximal spread of the energy results at these
two cutoff scales � for Vlow k and λ for SRG-evolved NN interactions.

c1 = −0.76 GeV−1, c3 = −4.78 GeV−1, c4 = 3.96 GeV−1).
The fit values for cD and cE are given in Table I.

The resulting nuclear matter energies are shown in Fig. 4.
For all three cases we find realistic saturation properties within
the theoretical uncertainties implied by the cutoff dependence
shown in Fig. 1 and the NN interaction dependence shown
in Fig. 3. The difference between Vlow k and SRG results for
a given set of ci is similar to the NN-only case (see Fig. 1),
which helps support the general nature of the 3NF fit. However,
the present sensitivity study can clearly only provide a first
estimate for the energy spread due to uncertainties of the ci

couplings. A more systematic study will require a correlation
analysis based on a larger set of results.

The theoretical errors of our nuclear matter results arise
from truncations in the initial chiral EFT Hamiltonian, the
approximation of the 3NF, and the many-body approximations.
Corrections to the present calculation include higher-order
many-body terms, in particular, particle-hole corrections, and
contributions from higher-order many-body forces and from
3NF contributions that cannot be expressed in terms of density-
dependent two-body interactions. While the improvements
in the cutoff dependence suggest that these corrections are
relatively small, an approach such as coupled cluster theory
that can perform a high-level resummation is ultimately
necessary for a robust validation.

While nuclear matter has lost to light nuclei its status as the
first step to nuclear structure, it is still key as a step to heavier
nuclei and astrophysical applications like the structure of
neutron stars [17]. Our results can help with efforts to develop
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FIG. 4. (Color online) Nuclear matter energy at the third-order
level comparing low-momentum Vlow k with SRG-evolved chiral NN
interactions for 3NF with different EM/PWA/EGM ci values used
(see text).

ab initio density functional theory (DFT) based on expanding
about nuclear matter [34]. This is analogous to the application
of DFT in quantum chemistry and condensed matter starting
with the uniform electron gas in local-density approximations
and adding constrained derivative corrections. Phenomeno-
logical energy functionals (such as Skyrme) for nuclei have
impressive successes but lack a (quantitative) microscopic
foundation based on nuclear forces and seem to have reached
the limits of improvement with the current form of functionals
[35,36]. At present, the theoretical errors of our results, while
small on the scale of the potential energy per particle, are too
large to be quantitatively competitive with existing functionals.
The implementation of higher-order chiral Hamiltonians and
their RG evolution can be expected to provide more accurate
and reliable predictions. However, there is also the possibility
of fine tuning to heavy nuclei, of using EFT/RG to guide next-
generation functional forms [37,38], and of benchmarking
with ab initio methods for low-momentum interactions. Work
in these directions is in progress.

In summary, we have presented new results for nuclear
matter based on chiral NN and 3N interactions with RG
evolution. The chiral EFT framework provides a systematic
improvable Hamiltonian while the softening of nuclear forces
by RG evolution enhances the convergence and control of
the many-body calculation. The empirical saturation point is
reproduced within our estimates of uncertainties despite input
only from few-body data. Because of the fine cancellations,
however, significant reduction of these uncertainties will
be needed before direct DFT calculations of nuclei are
competitive. Nevertheless, these results are very promising
for a unified description of all nuclei and nuclear matter.
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