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Rigorous pion electromagnetic form factor behavior in the spacelike region
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Precise experimental information on σtot(e+e− → π+π−) is transferred into the spacelike region by taking
advantage of the analyticity. As a result, rigorous pion electromagnetic form factor behavior in spacelike region
is obtained. The latter is compared with some existing model predictions.
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The pion electromagnetic (EM) form factor (FF) Fπ (Q2)
with the squared four-momentum transfer Q2 = −t is one of
the most simple objects of investigations in strong interaction
physics. In spite of this fact, there is no theory able to explain
all its known features. Even in the spacelike region, where the
pion EM FF behavior is expected to be represented by a simple
smooth decreasing curve between the norm Fπ (0) = 1 and the
pQCD asymptotic behavior [1–3],

Fπ (Q2)Q2→∞ ∼ 64π2f 2
π

(11 − 2/3nf )Q2 ln Q2/�2
, (1)

all known attempts (see [4–8]) to reach experimentally
measurable region do not give uniform results.

In this paper, it is shown how pion EM FF can be
reconstructed in the spacelike region with the help of the
accurate data on the total cross section σtot(e+e− → π+π−) ≡
σtot(t) in the elastic 4m2

π � t � (mπ0 + mω)2 region, which
plays a dominant role in our prediction. On the basis of
the Phragmen-Lindelöf theorem, the assumption is made that
the asymptotically pion EM FF in the Minkowski region
has a form analogous to that in the Euclidean one. As a
result, the asymptotic form of the imaginary part of the
pion EM FF in the timelike region is found to be helpful to
specify correct parametrization of corrections from the interval
(mπ0 + mω)2 � t � +∞. All these ingredients are linked up
together via dispersion integrals, and as a result, a prediction
for the pion EM FF in the spacelike region can be achieved.

Really, the analytic properties of the pion EM FF, by means
of the Cauchy formula and assuming the validity of the pQCD
asymptotic behavior (1) in all directions of the complex t

plane, can be transformed into the dispersion relation without
any subtractions:

Fπ (Q2) = 1

π

∫ tπ0ω

4m2
π

ImE Fπ (t ′)
t ′ + Q2

dt ′ + 1

π

∫ ∞

tπ0ω

ImA Fπ (t ′)
t ′ + Q2

dt ′.

(2)

Using the normalization condition Fπ (0) = 1 for Q2 = 0
in Eq. (2), one gets the sum rule for the pion FF imaginary
parts

1 = 1

π

∫ tπ0ω

4m2
π

ImE Fπ (t ′)
t ′

dt ′ + 1

π

∫ ∞

t
π0ω

ImA Fπ (t ′)
t ′

dt ′. (3)

Another superconvergence sum rule for the same imaginary
parts, namely

0 = 1

π

∫ tπ0ω

4m2
π

ImE Fπ (t ′)dt ′ + 1

π

∫ ∞

tπ0ω

ImA Fπ (t ′)dt ′, (4)

can be derived by an application of the Cauchy theorem to
Fπ (t) in the complex t plane and its pQCD asymptotics (1).

In all previous three integral relations, we have automat-
ically separated the elastic region 4m2

π � t � (mπ0 + mω)2

contributions of ImE Fπ (t) (therefore superscript E) which
for Fπ (Q2) at Q2 = −t = 0 represents up to 90% of the
total Im Fπ (t) = ImE Fπ (t) + ImA Fπ (t), as one can see from
further considerations.

In order to evaluate the first integral in Eq. (2), one can
apply the following method of extracting ImE Fπ (t) from
σtot(e+e− → π+π−) ≡ σtot(t), which is the foremost quantity
for obtaining of experimental values of the pure isovector pion
EM FF in the timelike region.

As the electron-positron annihilation into two charged pions
is of the EM nature, one can treat it in the one-photon-exchange
approximation, and as a result, there are no model ingredients
in the extraction of |Fπ (t)| from the measured cross section.
Since two final-state pions with total orbital moment l = 1
(due to the spin of the photon) have the isospin I = 1 and
a positive G parity, the pion EM FF is of the pure isovector
nature and all resonances to be seen in the pion EM FF data
can be only isovectors (the ρ-meson family) with G = +1 and
with all other quantum numbers of the photon, like J = 1 and
negative intrinsic and charge parities.

Nevertheless, in [9] one finds also isoscalar vector meson
isospin-violating decays into two charged pions, ω (782) →
π+π− with fraction (�i/�) = 1.53% and �(1020) →
π+π− with fraction (�i/�) = 7.3 × 10−5%, which contribute
through higher order corrections to the e+e− → π+π− pro-
cess, and experimentalists are unable to eliminate them from
final results.

In order to obtain the pure isovector pion EM FF experi-
mental information from existing data on the e+e− → π+π−
process, we write its total cross section in the form

σtot(t) = πα2β3
π

3t
|Fπρ(t) + ξ · exp(iα)Fπω(t)|2,

(5)
βπ = [(

t − 4m2
π

)
/t

]1/2
,
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where Fπρ(t) and Fπω(t) represent ρ- and ω-meson con-
tributions to the e+e− → π+π− process, respectively, and
the �-meson contribution is neglected, as we are interested
only in σtot(e+e− → π+π−) in the elastic region 4m2

π � t �
(mπ0 + mω)2. The so-called ρ-ω interference amplitude ξ can
be expressed through the partial decay width �(ω → π+π−)
by the relation

ξ = 6

αmω

(
m2

ω

m2
ω − 4m2

π

)3/4

[�(ω → e+e−)

·�(ω → π+π−)]1/2, (6)

and the ρ-ω interference phase α is

α = arctan
mρ�ρ

m2
ρ − m2

ω

. (7)

Because the ω-vector meson is a very narrow resonance,
one can approximate the ω-meson contribution to the e+e− →
π+π− process in (5) by the Breit-Wigner form

Fπω(t) = m2
ω

m2
ω − t − imω�ω

. (8)

Further, first we exploit the pion FF phase representation
Fπρ(t) = |Fπ (t)| · exp(iδπ ) in Eq. (5) and subsequently the
pion FF phase identity δπ ≡ δ1

1 with the P-wave isovector ππ

scattering phase shift δ1
1(t) for 4m2

π � t � (mπ0 + mω)2. The
latter follows just from the elastic pion FF unitarity condi-
tion ImE Fπ (t) = |Fπ (t)|eiδπ (t)e−iδ1

1 (t)sin δ1
1(t). As a result, the

quadratic equation for the absolute value of pure isovector pion
FF data is obtained [10]:

|Fπρ(t)|2 + 2Z(t)|Fπρ(t)|

+
[

ξ 2m4
ω(

m2
ω − t

)2 + m2
ω�2

ω

− 3t

πα2β3
π

σtot(t)

]
= 0, (9)

with the physical solution

|Fπρ(t)|

= −Z(t)+
[
Z2(t)+ 3t

πα2β3
π

σtot(t)− ξ 2m4
ω(

m2
ω − t

)2 + m2
ω�2

ω

]1/2

(10)

and

Z(t) = ξm2
ω(

m2
ω − t

)2 + m2
ω�2

ω

[(
m2

ω − t
)

cos
(
α − δ1

1

)
−mω�ω sin

(
α − δ1

1

)]
. (11)

The data on ImEFπρ(t) with errors for 4m2
π � t � (mπ0 +

mω)2 are then determined by the relation

ImE Fπρ(t) = |Fπρ(t)| sin δ1
1, (12)

using experimental information on ξ , α, mω, and �ω, the data
recently measured by Frascati [11] for the radiative return and
by Novosibirsk [12,13] for improved experimental information
on σtot(e+e− → π+π−), and the suitable parametrization [10]
of δ1

1(t). Then the first integral of Eq. (2) as a function of Q2 is

a smoothly decreasing curve and the first integrals of Eqs. (3)
and (4) give

1

π

∫ tπ0ω

4m2
π

ImE Fπ (t ′)
t ′

dt ′ = 0.8995 (13)

and

1

π

∫ tπ0ω

4m2
π

ImE Fπ (t ′)dt ′ = 0.5023, (14)

respectively, where we have already identified ImEFπρ(t) with
ImEFπ (t).

In order to estimate the second integral in Eq. (2) as a
function of Q2, one has to know something about the asymp-
totic ImA Fπ (t) for (mπ0 + mω)2 � t < +∞. The analytic
continuation of Eq. (1) to the upper boundary of the pion
FF cut on the positive real axis of the t = −Q2 plane leads to
the pion FF imaginary part

Im Fπ (t)t→∞ ∼ −π

(
64π2f 2

π

)
(11 − 2/3nf )t ln2 t/�2

. (15)

The positivity of all data on ImE Fπ (t) following from Eq. (12)
for 4m2

π � t � (mπ0 + mω)2 and the asymptotic form (15) can
be satisfied simultaneously only if ImA Fπ (t) in Eqs. (2)–(4)
acquires at least one zero value at tz for t > (mπ0 + mω)2

and vanishes asymptotically from the negative values as
t → +∞. The simplest function reflecting all these required
properties is

ImA Fπ (t) = π
64π2f 2

π

(11 − 2/3nf )

tz − t

(t − C)2 ln2 t/�2
, (16)

with the parameter values

� = 0.7226 GeV, C = −9.7255 GeV2,
(17)

tz = 4.6975 GeV2, nf = 13.2517

to be determined from conditions

ImE Fπ (t)|t=t
π0ω

= ImA Fπ (t)|t=t
π0ω

,

d

dt
ImE Fπ (t)|t=t

π0ω
= d

dt
ImA Fπ (t)|t=t

π0ω
,

0.1005 = 64π2f 2
π

(11 − 2/3nf )
(18)

×
∫ ∞

tπ0ω

tz − t ′

t ′(t ′ − C)2 ln2 t ′/�2
dt ′,

−0.5023 = 64π2f 2
π

(11 − 2/3nf )

×
∫ ∞

tπ0ω

tz − t ′

(t ′ − C)2 ln2 t ′/�2
dt ′,

obtained by using also the values of the integrals (13) and (14),
respectively.

The pion EM FF spacelike region behavior calculated by
the dispersion relation (2) is displayed in Fig. 1 (solid line),
where also recent theoretical predictions [4–7] are presented
for comparison.
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FIG. 1. Theoretical predictions of the pion EM FF behavior in
the spacelike region and their comparison with existing data.

In Fig. 2, we draw the ratio of the second integral in Eq. (2)
to the first one as a function of Q2 in order to demonstrate
our approach to be more or less model independent. Really, as
one can clearly see from Fig. 2, the correction of the weakly
model dependent parametrization (16) of the ImAFπ (t) for
(mπ0 + mω)2 � t < +∞ becomes negligible with increased
values of Q2. As a result, our prediction of the pion EM FF
in Fig. 1 with increased values of Q2 is more and more model
independent.

We defend the reliability of our prediction for the pion
EM FF in the spacelike region, presented in Fig. 1, also by a
prediction of the complex pion EM FF on the upper boundary
of the cut in the timelike region and compare it with existing
data. In this region, predictions seem to be more sensitive to the
analytic approximations and the issues discussed previously
and their comparison with the accurate timelike data surely
will be a more self-consistent test of the whole elaborate
approach.
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FIG. 2. The ratio of the ImAFπ (t) contribution to the ImEFπ (t)
one in predicted pion EM FF behavior in the spacelike region.

We start with the dispersion relation

Fπ (t) = 1

π
lim
ε→0

{∫ tπ0ω

4m2
π

ImE Fπ (t ′ + iε)

t ′ − t − iε
dt ′

+
∫ ∞

tπ0ω

ImA Fπ (t ′ + iε)

t ′ − t − iε
dt ′

}
, (19)

where the first integral in brackets is singular if the interval
4m2

π � t � (mπ0 + mω)2 is considered and the second integral
in brackets is singular if the complex pion EM FF is calculated
within the interval tπ0ω < t < +∞.

For an evaluation of the singular integrals, one can use the
well-known symbolic so-called Sokhotsky-Plemelj formula
from the theory of functions of complex variables,

lim
ε→0

1

t ′ − t ∓ iε
= P

1

t ′ − t
± iπδ(t ′ − t). (20)

Then considering the first integral in Eq. (19) to be singular,
one practically obtains

1

π
lim
ε→0

∫ tπ0ω

4m2
π

ImE Fπ (t ′ + iε)

t ′ − t − iε
dt ′

= 1

π
P

∫ t
π0ω

4m2
π

ImE Fπ (t ′)
t ′−t

dt ′+i

∫ t
π0ω

4m2
π

ImE Fπ (t ′)δ(t ′−t)dt ′,

(21)

where P denotes that the Cauchy principal value

1

π
P

∫ tπ0ω

4m2
π

ImE Fπ (t ′)
t ′ − t

dt ′

= 1

π
lim
δ→0

{∫ t−δ

4m2
π

ImE Fπ (t ′)
t ′ − t

dt ′ +
∫ tπ0ω

t+δ

ImE Fπ (t ′)
t ′ − t

dt ′
}

≡ ReE Fπ (t) (22)

has to be taken and the second integral in (21) gives just
ImE Fπ (t), by means of which the dominant part of the pion
EM FF spacelike behavior is found.
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FIG. 3. Self-consistent reconstruction of the absolute value of
the pion EM FF behavior in the timelike region with the help of the
accurate experimental information on σtot(e+e− → π+π−).
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In a similar way, a contribution of the second singular
integral in Eq. (19) to the complex pion EM FF on the upper
boundary of the cut in the timelike region can be evaluated.

Numerical predictions for the absolute values of both
integrals in Eq. (19), as well as the absolute value of the whole
complex pion EM FF in the timelike region and its comparison
with existing data up to t = 3.5 GeV2, are presented in
Fig. 3.

Agreement (see Fig. 3) of the predicted absolute value of the
pion EM FF in the timelike region with existing data confirms
a reliability of our prediction of Fπ (t) in the spacelike region
as it is presented in Fig. 1.
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