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Strange hadronic stars in relativistic mean-field theory with the FSUGold parameter set
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Relativistic mean-field theory with parameter set FSUGold that includes the isoscalar-isovector cross
interaction term is extended to study the properties of neutron star matter in β equilibrium by including hyperons.
The influence of the attractive and repulsive � potential on the properties of neutron star matter and the maximum
mass of neutron stars is examined. We also investigate the equations of state for pure neutron matter and for
nonstrange hadronic matter for comparison. For a pure neutron star, the maximum mass is about 1.8Msun, while
for a strange (nonstrange) hadronic star in β equilibrium, the maximum mass is around 1.35Msun (1.7Msun).
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I. INTRODUCTION

Hadronic matter under extreme conditions has attracted
a lot of interest for many years. On the one hand, many
theoretical and experimental efforts have been devoted to
the study of heavy ion collision. Modern high-energy ion
collisions accelerators enable to produce nuclei with high
isospin asymmetry and nuclear densities higher than those
in normal nuclei. On the other hand, the nuclear physics of
neutron stars has become a hot topic that connects astrophysics
with extreme high-density nuclear physics. The equation of
state (EOS) of nuclear matter under a high density condition
is one of the main objects of nuclear physics with direct
astrophysical implications. With the progress of astronomical
observation and nuclear experiment, astrophysics phenomena
and nuclear physics are combined more and more tightly. In
this article, we will concentrate our investigation on the neutron
star matter and neutron stars.

Neutron stars are born as a result of supernova explosions.
These stars are highly condensed since their masses are of the
order of the solar mass, but their radii are only 10–12 km [1].
Neutron star matter is charge neutral and in the β-equilibrium
condition. Since the matter density in the neutron star interior
can exceed several times the nuclear saturation density, neutron
star matter provides an interesting possibility to study the
strong interaction effects that are poorly understood at high
density. In fact, the structure and composition of a neutron
star is determined by the EOS of the strongly interacting
constituents. The classical view of normal nuclear matter
consisting of neutrons, protons, and leptons is insufficient for
neutron star matter and a more realistic composition is needed.
At high density, kaon condensation, quark deconfinement,
and/or hyperons are possible to appear and much attention
has been paid to these issues (see Refs. [2–20]).

Owing to the nonperturbative nature of quantum chromo-
dynamics (QCD) in low-energy regions, it is very difficult to
study a nuclear system by using QCD directly. Phenomeno-
logical models reflecting the characteristic of the strong
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interaction are widely used in the studying of the properties of
hadrons and nuclear matter. The relativistic mean field (RMF)
is a pioneering framework to describe the nuclear system as a
relativistic many-body system of baryons and mesons [21].
Along this direction, many important extensions of RMF
theory have been made, for example, adding a nonlinear scalar
field to improve the compressibility value of nuclear matter,
adding pions to investigate the chiral symmetry and partial
conservation of the axial current, considering the quark degrees
of freedom within baryons [quark-meson coupling (QMC)
model [22] and improved quark mass density dependent model
[23]], and so on.

Recently, RMF theory with the parameter set FSUGold
was proposed by Todd-Rutel and Piekarewicz [24]. In this
parameter set, the additional isoscalar-isovector coupling (�v)
term was introduced to soften the symmetry energy of nuclear
matter at high densities. Consequently, the neutron skin
thickness in 208Pb is reduced to be 0.21 fm. This new parameter
set can successfully reproduce the properties of nuclear matter
and the ground-state properties of some spherical nuclei [25].

In Refs. [25,26], the FSUGold model is applied to investi-
gate the properties of neutron stars successfully. However, the
composition of the baryons considered in Refs. [25,26] is only
protons and neutrons. To discuss the properties of neutron stars
more realistically, one usually should take into account not
only nucleons but also hyperons. The main aim of this article
is then to extend the FSUGold model to include all baryon
octets and then calculate the properties of the neutron star
matter and the neutron stars. As for hyperons, the experimental
effort has resulted in some significant data. The recent
Nagara event [27] provided a definite identification of 6

��He
production with the precise �� binding energy value B�� =
7.25 ± 1.19+0.18

−0.11 MeV, which suggests that the effective ��

interaction should be considerably weaker (�B�� � 1 MeV)
than that deduced from the earlier measurement (�B�� �
5 MeV) [28]. However, we still lack accurate knowledge about
the �-N interaction, even though there have been some hints
of a high-density repulsion of the �-N interaction as indicated
by some experiments [29–31]. As for hyperon-meson coupling
constants, they are usually derived from the SU(6) quark
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model or constrained by reasonable hyperon potentials. The
nucleon-meson coupling constants are generally determined
by fitting the properties of nuclear matter at the saturation
point and ground-state properties of finite nuclei.

In this article, we will take both the attractive and the repul-
sive forms of the � potential in our calculation and examine the
effect of the � potential on the properties of neutron star matter
and neutron stars. The organization of this article is as follows.
In the next section, we give the main formulas of the extended
FSUGold model. The main formulas of neutron stars are also
included. In the third section, some numerical results are pre-
sented. The last section contains a summary and discussions.

II. THE MODEL

To describe the properties of hadronic matter, the RMF
theory is usually implemented, in which baryons interact
via the exchange of mesons. The baryons considered here
include nucleons (N :p and n) and hyperons (�, �, and
�) investigated for the first time by Glendenning [32]. The
exchanged mesons include the isoscalar scalar meson (σ ), the
isoscalar vector meson (ω), the isovector vector meson (ρ),
and the cross-interaction term ω2ρ2 introduced in Ref. [24].
For neutron star matter in the β equilibrium, the effective
Lagrangian can be written as

L =
∑
B

ψ̄B

[
iγ µ∂µ − mB + gσBσ − gωBγ µωµ − gρB

2
γ µ�τ · �ρµ

]
ψB + 1

2
∂µσ∂µσ

− 1

2
m2

σ σ 2 − κ

3!
(gσNσ )3 − λ

4!
(gσNσ )4 − 1

4
FµνF

µν + 1

2
m2

ωωµωµ + ζ

4!

(
g2

ωNωµωµ
)2

+ 1

2
m2

ρ �ρµ · �ρµ − 1

4
�Gµν

�Gµν + �v

(
g2

ρN �ρµ · �ρµ
)(

g2
ωNωµωµ

) +
∑

l

ψ̄l[iγ
µ∂µ − ml]ψl, (1)

where the symbol B includes the entire baryon octet (p, n,
�,�+, �0, �−, �0, �−) and l represents e− and µ−; mB

denotes the baryon free mass. mσ , mω, and mρ are the masses
of σ , ω, and ρ mesons, respectively. The antisymmetric
tensors of vector mesons take the forms Fµν = ∂µων − ∂νωµ,−→
G µν = ∂µ

−→ρ ν − ∂ν
−→ρ µ. The isoscalar meson self-interactions

(via κ, λ, and ζ terms) are necessary for the appropriate
EOS of symmetric nuclear matter [33]. The new additional
isoscalar-isovector coupling (�v) term is used to modify the
density dependence of the symmetry energy and the neutron
skin thicknesses of heavy nuclei [24]. gσB , gωB , and gρB are
the coupling constants between the baryon and σ meson,
baryon and ω meson, and baryon and ρ meson, respectively.

With the mean-field approximation by which the operators
of meson fields are replaced by their expectation values, we
obtain the meson field equations as

m2
σ σ + 1

2
κg3

σNσ 2 + 1

6
λg4

σNσ 3 =
∑
B

gσBρS
B, (2)

m2
ωω + ζ

6
g4

ωNω3 + 2�vg
2
ρNg2

ωNρ2ω =
∑
B

gωBρB, (3)

m2
ρρ + 2�vg

2
ρNg2

ωNω2ρ =
∑
B

gρBτ3BρB, (4)

where ρB and ρS
B are baryon density and scalar density,

respectively, with

ρB = 2

(2π )3

∫ kB
F

0
d3k, (5)

ρS
B = 2

(2π )3

∫ kB
F

0
d3k

m∗
B√

k2 + m∗
B

2
. (6)

In the last two equations, kB
F is the Fermi momentum

and m∗
B is the effective mass of baryon B, which can be

related to the scalar meson field as m∗
B = mB − gσBσ . With

the requirement of translational invariance and rotational
symmetry of static, homogenous, infinite nuclear matter, only
zero components (ω0 and ρ03) of the vector fields survive
and they are still denoted as ω and ρ in the above meson
equations.

For the neutron star matter with baryons and charged
leptons, the β-equilibrium conditions are guaranteed with
the following relations of chemical potentials for different
particles:

µp = µ�+ = µn − µe, (7)

µ� = µ�0 = µ�0 = µn, (8)

µ�− = µ�− = µn + µe, (9)

µµ = µe, (10)

and the charge neutrality condition is fulfilled by

np + n�+ = ne + nµ− + n�− + n�− , (11)

where ni is the number density of particle i. The chemical
potentials of baryons and leptons read

µB =
√

KB
F

2 + m∗
B

2 + gωBω + gρBτ3Bρ, (12)

µl =
√

Kl
F

2 + m2
l , (13)

where Kl
F is the Fermi momentum of the lepton l(e, µ). Once

the solution has been found, the EOS of the neutron star matter
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can be calculated from

ε =
∑
B

γB

(2π )3

∫ KB
F

0

√
m∗

B
2 + k2d3k + 1

2
m2

ωω2 + ζ

8
g4

ωNω4 + 1

2
m2

σ σ 2 + κ

6
g3

σNσ 3

+ λ

24
g4

σNσ 4 + 1

2
m2

ρρ
2 + 3�vg

2
ρNg2

ωNω2ρ2 + 1

π2

∑
l

∫ kl
F

0

√
k2 + m2

l k
2dk, (14)

p =
∑
B

1

3

γB

(2π )3

∫ KB
F

0

k2√
m∗

B
2 + k2

dk3 + 1

2
m2

ωω2 + ζ

24
g4

ωNω4 − 1

2
m2

σ σ 2 − κ

6
g3

σNσ 3

− λ

24
g4

σNσ 4 + 1

2
m2

ρρ
2 + �vg

2
ρNg2

ωNω2ρ2 + + 1

3π2

∑
l

∫ kl
F

0

k4√
k2 + m2

l

dk. (15)

With the obtained EOS, the mass-radius relation and other
relevant quantities of the neutron star can be derived by solving
the Oppenheimer and Volkoff equation [1]

dp(r)

dr
= −Gm(r)ε

r2

(
1 + p

εC2

)(
1 + 4πr3p

m(r)C2

)

×
(

1 − 2Gm(r)

rC2

)−1

, (16)

dM(r) = 4πr2ε(r) dr, (17)

where G is the gravitational constant and C is the velocity of
light, and the EOS for neutron matter is given by Eqs. (14) and
(15), we can study the physical behavior of neutron stars for
the extended model.

In Table I, we list the parameters of the original FSUGold
model. This parameter set can reproduce that nuclear matter
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FIG. 1. Binding energy per nucleon in symmetric nuclear matter
(left panel) and symmetry energy (right panel) in the FSUGold model.
The compression modulus of nuclear matter for the FSUGold model
is 230 MeV [24]. The asymmetry energy of saturated matter is about
32.5 MeV in the calculation.

saturates at a Fermi momentum of kF = 1.3 fm−1 (i.e.,
saturation density at ρ0 = 0.148 fm−3) with a binding energy
per particle E/A = −16.3 MeV at zero temperature, and the
compression constant to be about K(ρ0) = 230 MeV. The
mixed isoscalar-isovector coupling (�v) modifies the density
dependence of the symmetry energy and the neutron skin
thickness of heavy nuclei.

For the meson-hyperon couplings, we take those in the
SU(6) quark model for the vector coupling constants

gρ� = 0, gρ� = 2gρ� = 2gρN, (18)

gω� = gω� = 2gω� = 2
3gωN . (19)

The scalar couplings are usually fixed by fitting hyperon
potentials with U

(N)
Y = gωY ω0 − gσY σ0, where σ0 and ω0 are
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FIG. 2. Equation of state for four cases: only neutrons (dash-
dotted line); n + p nucleons in β equilibrium with leptons (dotted
line); and n + p + hyperons with U

(N)
� = −30 MeV (solid line); and

n + p + hyperons with U
(N)
� = 30 MeV (dashed line).
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TABLE I. The parameter set GSUGold.

mσ (MeV) mω (MeV) mρ (MeV) g2
σN g2

ωN g2
ρN κ λ ζ �v

491.5 783 763 112.2 204.5 138.5 1.42 0.0238 0.06 0.03

the values of the scalar and vector meson strengths at saturation
density [34]. The �-N interaction has been well studied and
U

(N)
� = −28 MeV was obtained with bound � hypernuclear
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FIG. 3. Populations in neutron star matter without hyperons as a
function of density.

states [35]. One of the unsettled issues in hypernuclear physics
is the �-N interaction in nuclear matter. An attractive potential
was generally used in the past for � to be bounded in nuclear
matter [36]. However, a detailed scan for � hypernuclear
states turned out to give negative results [30,31]. The study of
�− atoms also showed strong evidence for a sizable repulsive
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FIG. 4. Field amplitudes and chemical potentials in the case of
full β equilibrium among all octet baryons for U

(N)
� = −30 MeV.
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TABLE II. Calculated results of the maximum masses of
neutron stars including hyperons. The upper row is the
result with UN

� = −30 MeV, and the lower row is that with UN
� =

30 MeV.

�V 0 0 (with σ ∗, φ) 0.03 0.03 (with σ ∗, φ)

Mmax(Msun) 1.36 1.33 1.34 1.32
Mmax(Msun) 1.32 1.30 1.31 1.29

potential in the nuclear core at ρ = ρ0 [37–39]. A recent
review again confirmed the repulsive nature of the �− potential
with a new geometric analysis of the �− atom data [40].
Therefore, for the �-N interaction, we consider two cases:
U

(N)
� = −30 MeV, as used in Ref. [36], and U

(N)
� = 30 MeV,

as used in Ref. [41]. Besides, the �-N interaction in nuclear
matter is attractive with the potential U

(N)
� = −18 MeV [41].

We take then such a value in our calculation.

III. NUMERICAL RESULT

Before taking into account the neutron star matter, in Fig. 1
we draw the curve of binding energy per nucleon versus
baryon number density for symmetric nuclear matter (left
panel) and symmetry energy of nuclear matter (right panel)
in the FSUGold model. From this figure, we can find that
the FSUGold model can reproduce the saturation curve of
symmetric nuclear matter.

Then we first investigate the most simple neutron star whose
baryon composition includes only neutrons and protons. For
the description of such simple neutron stars, the discussion in
the second section still works with the exclusion of hyperons
from the Lagrangian and the meson field equations. The EOS
is given by Eqs. (14) and (15) for the FSUGold model when
the neutron star matter reaches β equilibrium. The curve of the
EOS of such simple neutron stars is shown by the dotted line
in Fig. 2. In addition, we show the EOS for a pure neutron star
(dash-dotted line). We find that the EOS of the pure neutron
star is slightly stiffer than that of the neutron star composed of
protons and neutrons.

In Fig. 3, we show the particle population including n, p,
e, and µ for different densities by solid (n), dashed (p), dotted
(e), and dash-dotted (µ) curves, respectively. The upper graph
is for �v = 0.03 and the lower graph is for �v = 0.

Now we are in a position to show the results of the neutron
star matter including hyperons in the FSUGold model. In our
calculation, we take U

(N)
� = −28 MeV and U

(N)
� = −18 MeV

to determine the scalar coupling constants gσ� and gσ�.
As for the � potential, we consider the attractive potential
U

(N)
� = −30 MeV and the repulsive potential U (N)

� = 30 MeV,
respectively. To explain the above data, to supplement Table I,
the relevant scalar coupling constants are gσ� = 6.31, gσ� =
3.27, and gσ� = 6.36(4.60) derived for the attractive (repul-
sive) � potential. In Fig. 4, we show the meson field amplitudes
and chemical potentials of the neutron and electron for the
case of U

(N)
� = −30 MeV. One finds that the neutron chemical

potential and the ω mean field increase monotonically as a
function of density. The electron chemical and −ρ03 mean
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FIG. 5. Calculated variation behavior of the relative populations
of the compositions of neutron stars including hyperons in the case
of attractive � potential with respect to the total baryon density. ρc

denotes the baryon density at the center of the neutron star.

field increase at low baryon density and then decrease when
the baryon density becomes too high. Meanwhile, the effective
mass of the nucleon decreases monotonically as a function
of density. In Fig. 2, the results of the EOS of the neutron
star matter, including hyperons for the attractive and repulsive
� potential, are displayed by the solid and dashed lines,
respectively. It was shown that the appearance of hyperon
degrees of freedom has a significant effect on the global
properties of hadron matter and neutron stars, lowering the
total pressure of the system and softening the EOS because it
suppresses the overall Fermi energy and momentum of baryons
and leptons [1].
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TABLE III. The masses of strange mesons and strange meson-
hyperon coupling constants.

mσ∗ (MeV) mφ (MeV) gσ∗� gσ∗� gσ∗� gφ� gφ� gφ�

975 1020 4.75 4.75 9.12 −6.73 −6.73 −13.4

The calculated results of the variation behavior of the
relative populations of all compositions with respect to the
total baryon density are demonstrated in Figs. 5 and 6 for the
attractive and repulsive � potentials, respectively. Figure 5
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FIG. 6. Calculated variation behavior of the relative populations
of the compositions of neutron stars including hyperons in the case
of the repulsive � potential with respect to the total baryon density.
ρc denotes the baryon density at the center of the neutron star.
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FIG. 7. Neutron star mass as a function of the central density
for three cases: only neutrons (dashed line); n + p nucleons in β

equilibrium with leptons (dotted line); and n + p + hyperons with
U

(N)
� = −30 MeV (solid line).

shows that, for the attractive � potential U
(N)
� = −30 MeV,

hyperons �− and � appear at 2–3ρ0. The figure also indicates
that the �− hyperons with negative charge also appear at
a lower baryon density. Then �0, �+, �0 appears in turn
at high density. As for leptons, their relative populations
increase with the ascent of the density in the low density
region. Then they decrease with the increase of the baryon
density and disappear at some critical density. Figure 6
presents the relative populations with the repulsive � potential.
Compared with Fig. 5 for the attractive � potential, the
main difference is that � hyperons do not appear up to the
maximum density considered here, ∼10ρ0, beyond the central
density of the neutron star. Because � hyperons do not appear
in the reasonable range of baryon density for neutron star
matter, �− hyperons emerge at the relatively lower baryon
density region to keep the charge neutrality of the whole
system.

Given a central density εc of the neutron star, we find
the corresponding central pressure density Pc from the EOS
(14) and (15). We substitute Eqs. (14) and (15) into the
Oppenheimer-Volkoff Eq. (16) and integrate from Pc to zero
because the pressure at the surface of the neutron star is zero,
P (R) = 0. Then we obtain the mass M (in units of sun mass) of
the neutron star. the outcome is shown in Fig. 7 and Table II.
We show the mass of the neutron star in units of sun mass
M/Msun as a function of the central density εc in Fig. 7 for
three cases. The maximum mass of pure neutron stars is about
1.8Msun with a central density 1.2 fm−3. The maximum mass
changes to 1.7Msun and 1.35Msun when proton and hyperons
are included, respectively.

Since the strange mesons (σ ∗ and φ) play an important
role in describing the interaction between hyperons, we also
take the contribution of strange mesons into account in the
calculation by fitting the coupling constants between strange
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mesons and hyperons according to a weak Y -Y interaction
[20]. The coupling constants between strange mesons and
hyperons and the masses of strange mesons are listed in
Table III. The calculated results of the maximum masses of
neutron stars are summarized in Table II. We find that adding
the strange mesons in the calculation can soften the EOS of
neutron star matter and make the maximum masses slightly
smaller.

IV. SUMMARY AND DISCUSSION

In this article, RMF theory with parameter set FSUGold
that includes the isoscalar-isovector cross-interaction term is
extended to study the properties of neutron star matter in
β equilibrium by including hyperons. The calculated results
of the variation behavior of the relative populations of all
compositions with respect to the total baryon density are
demonstrated. The influence of the attractive and repulsive
� potential on the properties of neutron star matter and
the maximum mass of neutron stars is examined. We also
investigate the EOS’s for pure neutron matter and for non-
strange hadronic matter for comparison. For a pure neutron
star, the maximum mass is about 1.8Msun, while for a strange
(nonstrange) hadronic star in β equilibrium, the maximum
mass is around 1.35Msun (1.7Msun). We should indicate that
the maximum masses of strange hadronic stars are clearly too
low, which means the parametrization in this framework may
not be very appealing.

The Bose-Einstein condensate of negatively charged kaons
is not taken into account in this work. The reasons are twofold
as follows. On the one hand, the kaon-nucleon interaction
has not been very clear recently. Waas and Weise found
an attractive potential for the K− at the saturation nuclear

density of about UK (ρ0) = −120 MeV [42]. Coupled channel
calculations at finite density have yielded a value of UK (ρ0) =
−100 MeV [43]. More recent, self-consistent calculations with
a chiral Lagrangian [44] and coupled channel calculations
including a modified self-energy of the kaon [45] indicated that
the kaon may experience an attractive potential with potential
depths of −80 even −50 MeV at the saturation density. On
the other hand, augmenting the calculation by including the
kaon condensate will reduce the maximum masses of stars
even more, which may be excluded in our work.

For more complex consideration, the interactions by
exchanging the δ meson should be taken into account in the
calculation since the δ meson plays a very important role in
describing the neutron star matter. In addition, the hadron
quark phase transition at high density is also important for the
further study of neutron star properties. Related investigations
are in progress.
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