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Stellar weak decay rates in neutron-deficient medium-mass nuclei
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Weak decay rates under stellar density and temperature conditions holding at the rapid proton-capture process
are studied in neutron-deficient medium-mass waiting-point nuclei extending from Ni up to Sn. Neighboring
isotopes to these waiting-point nuclei are also included in the analysis. The nuclear structure part of the problem
is described within a deformed Skyrme Hartree-Fock + BCS + quasiparticle random-phase-approximation
approach, which reproduces not only the β-decay half-lives but also the available Gamow-Teller strength
distributions, measured under terrestrial conditions. The various sensitivities of the decay rates to both density
and temperature are discussed. In particular, we study the impact of contributions coming from thermally
populated excited states in the parent nucleus and the competition between β decays and continuum electron
captures.
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I. INTRODUCTION

An accurate understanding of most astrophysical processes
necessarily requires information from nuclear physics, which
provides the input to deal with network calculations and astro-
physical simulations (see Refs. [1,2] and references therein).
Obviously, nuclear physics uncertainties will finally affect the
reliability of the description of those astrophysical processes.
This is especially relevant in the case of explosive phenomena,
which involves knowledge of the properties of exotic nuclei,
which are not well explored yet. Thus, most of the astrophysi-
cal simulations of these violent events must be built on nuclear-
model predictions of limited quality and accuracy. This is
particularly the case of the x-ray bursts (XRBs) [3–6], which
are generated by a thermonuclear runaway in the hydrogen-
rich environment of an accreting neutron star that is fed from
a red giant binary companion close enough to allow for mass
transfer.

Type I XRBs are typically characterized by a rapid increase
in luminosity generating burst energies of 1039–1040 ergs,
which are typically a factor 100 larger than the steady
luminosity. The luminosity suffers a sharp rise of about 1–10 s
followed by a gradual softening with time scales between
10 and 100 s. These bursts are recurrent with time scales
ranging from hours to days. The properties of XRBs are
particularly dependent on the accretion rate. Typical accretion
rates for type I XRBs are about 10−8–10−9M� yr−1. Lower
accretion rates lead to weaker flashes, while larger accretion
rates lead to stable burning on the surface of the neutron
star.

The ignition of XRBs takes place when the temperature
T and the density ρ in the accreted disk become high
enough to allow a breakout from the hot CNO cycle. Peak
conditions of T = 1 − 3 GK and ρ = 106 − 107 g cm−3 are
reached, and eventually, this scenario allows the development
of the nucleosynthesis rapid proton-capture (rp) process [5–8],
which is characterized by proton-capture reaction rates that are
orders of magnitude faster than any other competing process,
in particular β decay. It produces rapid nucleosynthesis on the
proton-rich side of stability toward heavier proton-rich nuclei,

reaching nuclei with A � 100, as shown in Ref. [9], where the
rp process ends in a closed SnSbTe cycle. It also explains the
energy and luminosity profiles observed in XRBs.

Nuclear reaction network calculations, which may involve
as much as several thousand nuclear processes, are performed
to follow the time evolution of the isotopic abundances, to
determine the amount of energy released by nuclear reactions,
and to find the reaction path for the rp process [3–10]. In
general, the reaction path follows a series of fast proton-capture
reactions until the drip line is reached and further proton
capture is inhibited by a strong reverse photodisintegration
reaction. At this point, the process may only proceed through
a β decay or a less probable double proton capture. Then
the reaction flow has to wait for a relatively slow β decay,
and the respective nucleus is called a waiting point (WP).
The short time scale of the rp process (around 100 s) makes
highly significant any mechanism that may affect the process
for several seconds, and the half-lives of the WP nuclei are of
this order. Therefore, the half-lives of the WP nuclei along the
reaction path determine the time scale of the nucleosynthesis
process and the produced isotopic abundances. In this respect,
the weak decay rates of neutron-deficient medium-mass nuclei
under stellar conditions play a relevant role in understanding
the rp process.

Although the products of the nucleosynthesis rp process
are not expected to be ejected from type I XRBs due to
the strength of the neutron star gravitational field, there are
other speculative sites for the occurrence of rp processes.
This is the case of core collapse supernovae, which might
supply suitable physical conditions for the rp process provided
neutrino-induced reactions are included in the nucleosynthesis
calculations [11]. These reactions have to be included to bypass
the slow β decays at the WP nuclei via capture reactions of
neutrons, which are created from the antielectron neutrino
absorption by free protons [12]. Contrary to the XRBs, these
scenarios will finally lead to the ejection of the nucleosyn-
thetic products and thus contribute to the galactic chemical
evolution.

Since the pioneering work of Fuller, Fowler, and
Newman [10], where the general formalism to calculate
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weak-interaction rates in stellar environments as a function
of density and temperature was introduced, improvements
have been focused on the description of the nuclear structure
aspect of the problem. Different approaches to describe the
nuclear structure involved in the stellar weak decay rates can
be found in the literature. They are basically divided into shell
model [13,14] and quasiparticle random-phase-approximation
(QRPA) [15–17] categories. Certainly, the nuclear structure
problem involved in the calculation of these rates must be
treated in a reliable way. In particular, this implies that
the nuclear models should be able to describe at least the
experimental information available on the decay properties
(Gamow-Teller strength distributions and β-decay half-lives)
measured under terrestrial conditions. Although these decay
properties may be different at the high ρ and T existing in rp

process scenarios, success in describing the decay properties in
terrestrial conditions is a requirement for a reliable calculation
of the weak decay rates in more general conditions. With this
aim in mind, we study here the dependence of the decay
rates on both ρ and T using a QRPA approach based on
a self-consistent deformed Hartree-Fock (HF) mean field.
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FIG. 1. (Color online) Potential energy curves for the even-even
isotopes considered in this work obtained from constrained HF +
BCS calculations with the Skyrme force SLy4.
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FIG. 2. (Color online) Calculated GT strength distributions for
Ni, Zn, Ge, Se, Kr, and Sr isotopes obtained from their ground
states and from the shape-coexisting states. The individual strengths
correspond to the ground states, whereas folded distributions are
shown for the various configurations considered in each isotope. QEC

values and proton separation energies Sp are shown by vertical lines.
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FIG. 3. (Color online) Same as in Fig. 2 but for Zr, Mo, Ru, Pd,
Cd, and Sn isotopes.

Deformation has to be taken into account because the reaction
path in the rp process crosses a region of highly deformed
nuclei around A = 70 − 80. This nuclear model has been
tested successfully (see Ref. [18] and references therein)
and reproduces very reasonably the experimental information
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FIG. 4. (Color online) Calculated QRPA half-lives compared to
experimental values.

available on both bulk and decay properties of medium-mass
nuclei. In this work we focus our attention on the even-even
WP Ni, Zn, Ge, Se, Kr, Sr, Zr, Mo, Ru, Pd, Cd, and Sn isotopes
and their closest even-even neighbors.

This paper is organized as follows. In Sec. II the weak decay
rates are introduced as functions of density and temperature,
and their nuclear structure and phase-space components are
studied. Section III contains the results. We study the decay
properties first under terrestrial conditions and second as
functions of both densities and temperatures of the rp process.
Section IV contains the conclusions of this work.

II. WEAK DECAY RATES

There are several distinctions between terrestrial and stellar
decay rates caused by the effects of high ρ and T . The main
effect of T is directly related to the thermal population of
excited states in the decaying nucleus, accompanied by the
corresponding depopulation of the ground states. The weak
decay rates of excited states can be significantly different from
those of the ground state, and a case-by-case consideration
is needed. Another effect related to the high ρ and T comes
from the fact that atoms in these scenarios are completely
ionized, and consequently, electrons are no longer bound to the
nuclei but form a degenerate plasma obeying a Fermi-Dirac
distribution. This opens the possibility for continuum electron
capture (CEC), in contrast to the orbital electron capture (OEC)
produced by bound electrons in an atom under terrestrial
conditions. These effects make weak interaction rates in the
stellar interior sensitive functions of T and ρ, with T = 1.5 GK
and ρ = 106 g cm−3 as the most significant conditions for the
rp process [5].

The decay rate of the parent nucleus is given by

λ =
∑

i

λi

2Ji + 1

G
e−Ei/(kT ), (1)

where G = ∑
i(2Ji + 1)e−Ei/(kT ) is the partition function,

Ji (Ei) is the angular momentum (excitation energy) of the
parent nucleus state i, and thermal equilibrium is assumed.
In principle, the sum extends over all populated states in the
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FIG. 5. (Color online) Decay rates (s−1)
of 50,52,54Ni isotopes as a function of the
temperature T (GK). (a) Decomposition of
the total rates into their contributions from the
decays of the ground and excited 2+ states.
(b) Decomposition of the rates into their β+

and CEC components evaluated at different
densities. (c) Total rates at various densities.
The label ρ stands for ρYe (mol/cm3) (see
text).

parent nucleus up to the proton separation energy. However,
since the range of temperatures for the rp process peaks at
T = 1.5 GK (kT ∼ 300 keV), only a few low-lying excited
states are expected to contribute significantly to the decay.
Specifically, we consider in this work all the collective low-
lying excited states below 1 MeV [19]. Two-quasiparticle
excitations in even-even nuclei will appear at an excitation
energy above 2 MeV, which is a typical energy to break
a Cooper pair in these isotopes. Hence, they can be safely
neglected at these temperatures. For example, the maximum
population appears for the lowest of these states (E2+ =
261 keV in 76Sr), which at T = 1.5 GK is 12%, while the
ground state still contributes 88%.

The decay rate for the parent state i is given by

λi =
∑
f

λif , (2)

where the sum extends over all the states in the final nucleus
reached in the decay process. The rate λif from the initial state
i to the final state f is given by

λif = ln 2

D
Bif �if (ρ, T ) , (3)

where D = 6146 s. This expression is decomposed into
a nuclear structure part Bif , which contains the transition
probabilities for allowed Fermi (F) and Gamow-Teller (GT)
transitions,

Bif = Bif (GT) + Bif (F), (4)

and a phase-space factor �if , which is a sensitive function of
ρ and T . The theoretical description of both Bif and �if are
explained next.
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FIG. 6. (Color online) Same as in Fig. 5
but for 56,58,60Zn isotopes.

A. Nuclear structure

The nuclear structure part of the problem is described
within the QRPA formalism. Various approaches have been
developed in the past to describe the spin-isospin nuclear
excitations in QRPA [20–31]. In this subsection we show
briefly the theoretical framework used in this paper to describe
the nuclear part of the decay rates in the neutron-deficient
nuclei considered in this work. More details of the formalism
can be found in Refs. [29–31].

The method starts with a self-consistent deformed Hartree-
Fock mean-field formalism obtained with Skyrme interactions,
including pairing correlations. The single-particle energies,
wave functions, and occupation probabilities are generated
from this mean field. In this work we have chosen the Skyrme
force SLy4 [32] as a representative of the Skyrme forces. This
particular force includes some selected properties of unstable
nuclei in the adjusting procedure of the parameters. It is one of

the most successful Skyrme forces and has been extensively
studied in recent years.

The solution of the HF equation is found by using the
formalism developed in Ref. [33], assuming time reversal
and axial symmetry. The single-particle wave functions are
expanded in terms of the eigenstates of an axially symmetric
harmonic oscillator in cylindrical coordinates, using 12 major
shells. The method also includes pairing between like nucleons
in BCS approximation with fixed gap parameters for protons
and neutrons, which are determined phenomenologically from
the odd-even mass differences involving the experimental
binding energies [34].

The potential energy curves are analyzed as a function of
the quadrupole deformation β,

β =
√

π

5

Q0

A〈r2〉 , (5)
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FIG. 7. (Color online) Same as in Fig. 5
but for 62,64,66Ge isotopes.

written in terms of the mass quadrupole moment Q0 and the
mean square radius 〈r2〉. For that purpose, constrained HF
calculations are performed with a quadratic constraint [35].
The HF energy is minimized under the constraint of keeping
fixed the nuclear deformation. Calculations for GT strengths
are performed subsequently for the various equilibrium shapes
of each nucleus, that is, for the solutions, which are generally
deformed, for which minima are obtained in the energy curves.
Since decays connecting different shapes are disfavored,
similar shapes are assumed for the ground state of the parent
nucleus and for all populated states in the daughter nucleus.
The validity of this assumption was discussed, for example, in
Refs. [20,24].

To describe GT transitions, a spin-isospin residual inter-
action is added to the mean field and treated in a deformed
proton-neutron QRPA. This interaction contains two parts, a
particle-hole (ph) part and a particle-particle (pp) part. The
interaction in the ph channel is responsible for the position

and structure of the GT resonance [24,36], and it can be
derived consistently from the same Skyrme interaction used
to generate the mean field, through the second derivatives of
the energy density functional with respect to the one-body
densities. The ph residual interaction is finally expressed in
a separable form by averaging the resulting contact force
over the nuclear volume [29]. The pp part is a neutron-proton
pairing force in the Jπ = 1+ coupling channel, which is also
introduced as a separable force [23,30]. The strength of the pp
residual interaction in this theoretical approach is not derived
self-consistently from the SLy4 force used to obtain the mean
field, but nevertheless, it has been fixed in accordance to it. This
strength is usually fitted to reproduce globally the experimental
half-lives. Various attempts have been made in the past to fix
this strength [24], arriving at expressions that depend on the
model used to describe the mean field, which is the Nilsson
model in Ref. [24]. In previous works [30,36–39] we have
studied the sensitivity of the GT strength distributions to the
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FIG. 8. (Color online) Same as in Fig. 5
but for 66,68,70Se isotopes.

various ingredients contributing to the deformed QRPA-like
calculations, namely, to the nucleon-nucleon effective force,
to pairing correlations, and to residual interactions. We found
different sensitivities to them. In this work, all of these
ingredients have been fixed to the most reasonable choices
found previously [18] and mentioned here. In particular,
we use the coupling strengths χ

ph
GT = 0.15 MeV and κ

pp
GT =

0.03 MeV.
The proton-neutron QRPA phonon operator for GT excita-

tions in even-even nuclei is written as

�+
ωK

=
∑
πν

[
XωK

πν α+
ν α+

π̄ + YωK

πν αν̄απ

]
, (6)

where α+ (α) are quasiparticle creation (annihilation) oper-
ators, ωK are the QRPA excitation energies, and XωK

πν and
YωK

πν are the forward and backward amplitudes, respectively.
For even-even nuclei the allowed GT transition amplitudes
in the intrinsic frame connecting the QRPA ground state

|0〉(�ωK |0〉 = 0) to one-phonon states |ωK〉(�+
ωK |0〉 = |ωK〉)

are given by〈
ωK |σKt±|0〉 = ∓M

ωK± , K = 0, 1, (7)

where

M
ωK− =

∑
πν

(
qπνX

ωK

πν + q̃πνY
ωK

πν

)
, (8)

M
ωK+ =

∑
πν

(
q̃πνX

ωK

πν + qπνY
ωK

πν

)
, (9)

with

q̃πν = uνvπ
νπ
K , qπν = vνuπ
νπ

K , (10)

v being occupation amplitudes (u2 = 1 − v2), and 
νπ
K being

spin matrix elements connecting neutron and proton states with
spin operators


νπ
K = 〈ν |σK | π〉 . (11)
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FIG. 9. (Color online) Same as in Fig. 5
but for 70,72,74Kr isotopes.

The GT strength for a transition from an initial state i to a
final state f is given by

Bif (GT±) = 1

2Ji + 1

(
gA

gV

)2

eff

〈
f ||

A∑
j

σj t
±
j ||i

〉2

, (12)

where (gA/gV )eff = 0.74(gA/gV )bare is an effective quenched
value. For the transition IiKi(0+0) → If Kf (1+K) in the
laboratory system, the energy distribution of the GT strength
Bω(GT±) is expressed in terms of the intrinsic amplitudes in
Eq. (7) as

Bω(GT±) =
(

gA

gV

)2

eff

∑
ωK

[〈ωK |σ0t
±|0〉2δK,0

+ 2〈ωK |σ1t
±|0〉2δK,1]. (13)

To obtain this expression, the initial and final states in the
laboratory frame have been expressed in terms of the intrinsic
states using the Bohr-Mottelson factorization [40].

Concerning Fermi transitions, the Fermi operator is the
isospin ladder operator T±, which commutes with the nu-
clear part of the Hamiltonian excluding the small Coulomb
component. Then, superallowed Fermi transitions (0+ → 0+)
only occur between members of an isospin multiplet. The
Fermi strength is narrowly concentrated in the isobaric analog
state (IAS) of the ground state of the decaying nucleus. Thus,
neglecting effects from isospin mixing, one has

Bif (F±) = 1

2Ji + 1

〈
f ||

A∑
j

t±j ||i
〉2

= T (T + 1) − Tzi
Tzf

,

(14)

where T is the nuclear isospin and Tz = (N − Z)/2 is its
third component. The Bif (F+) strength that we are concerned
with here reduces to B(F+) = (Z − N ) = 2 for the (T , Tz) =
(1,−1) isotopes in the decay (Z,N ) → (Z − 1, N + 1) with
Z = N + 2. For these transitions the excitation energy of the
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FIG. 10. (Color online) Same as in Fig. 5
but for 74,76,78Sr isotopes.

IAS in the daughter nucleus is given by [8,10]

EIAS = (ME)i − (ME)f + 0.7824 − �EC MeV, (15)

where ME is the atomic mass excess. The Coulomb displace-
ment energy �EC between pairs of isobaric analog levels is
given by

�EC = 1.4144Z̄/A1/3 − 0.9127 MeV , (16)

where Z̄ = (Zi + Zf )/2. This expression was obtained in
Ref. [41] from a fitting to data corresponding to levels with
isospin T = 1. In any case, Fermi transitions are only impor-
tant for the β+ decay of neutron-deficient light nuclei with
Z > N (Tz < 0), where the IAS can be reached energetically.
Thus, although they have been considered in the calculations
of the terrestrial half-lives, only the dominant GT transitions
are included in the stellar decay rates.

B. Phase-space factors

The phase-space factor contains two components, electron
capture (EC) and β+ decay:

�if = �EC
if + �

β+
if . (17)

In the case of β+/EC decay in the laboratory, EC arises
from orbital electrons in the atom, and the phase-space factor
is given by [42]

�OEC = π

2

∑
x

q2
xg

2
xBx , (18)

where x denotes the atomic subshell from which the electron
is captured, q is the neutrino energy, g is the radial component
of the bound-state electron wave function at the nucleus, and
B stands for other exchange and overlap corrections [42].
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FIG. 11. (Color online) Same as in Fig. 5
but for 80,82,84Zr isotopes.

In rp process stellar scenarios, the phase-space factor for
CEC is given by

�CEC
if =

∫ ∞

ω�

ωp(Qif + ω)2F (Z,ω)

× Se− (ω)[1 − Sν(Qif + ω)]dω. (19)

The phase-space factor for positron emission β+ process is
given by

�
β+
if =

∫ Qif

1
ωp(Qif − ω)2F (−Z + 1, ω)

× [1 − Se+ (ω)][1 − Sν(Qif − ω)]dω. (20)

In these expressions ω is the total energy of the positron in
mec

2 units, p = √
ω2 − 1 is the momentum in mec units, and

Qif is the total energy available in mec
2 units:

Qif = 1

mec2
(Mp − Md + Ei − Ef ), (21)

which is is written in terms of the nuclear masses of parent
(Mp) and daughter (Md ) nuclei and their excitation energies
Ei and Ef , respectively. F (Z,ω) is the Fermi function [42]
that takes into account the distortion of the β-particle wave
function due to the Coulomb interaction.

F (Z,ω) = 2(1 + γ )(2pR)−2(1−γ )eπy |�(γ + iy)|2
[�(2γ + 1)]2

, (22)

where γ =
√

1 − (αZ)2 , y = αZω/p , α is the fine structure
constant, and R is the nuclear radius. The lower integration
limit in the CEC expression is given by ω� = 1 if Qif > −1
or ω� = |Qif | if Qif < −1.

Se− , Se+ , and Sν are the electron, positron, and neutrino
distribution functions, respectively. Their presence inhibits
or enhances the phase space available. In rp scenarios the
commonly accepted assumptions [5] state that Sν = 0 since
neutrinos and antineutrinos can escape freely from the interior
of the star and then they do not block the emission of these
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FIG. 12. (Color online) Same as in Fig. 5
but for 84,86,88Mo isotopes.

particles in the capture or decay processes. Positron distri-
butions become important only at higher T (kT > 1 MeV)
when positrons appear via pair creation, but at the temperatures
considered here we take Se+ = 0. The electron distribution is
described as a Fermi-Dirac distribution:

Se = 1

exp [(ω − µe) /(kT )] + 1
, (23)

assuming that nuclei at these temperatures are fully ionized
and electrons are not bound to nuclei. The chemical potential
µe is determined from the expression

ρYe = 1

π2NA

(mec

h̄

)3
∫ ∞

0
(Se − Se+ )pdp, (24)

in mol/cm3. ρ is the baryon density (g/cm3), Ye is the electron-
to-baryon ratio (mol/g), and NA is Avogadro’s number
(mol−1).

Under the assumption Se+ = Sν = 0, the phase-space
factors for β+ decay in Eq. (20) are independent of the density
and temperature. The only dependence of the β+ decay rates
on T arises from the thermal population of excited parent
states. On the other hand, the phase-space factor for CEC in
Eq. (19) is a function of both ρYe and T , through the electron
distribution Se− .

The phase-space factors increase with Qif , and thus, the
decay rates are more sensitive to the strength Bif located at low
excitation energies of the daughter nucleus. It is also interesting
to note the relative importance of both β+ decay and electron-
capture phase-space factors (see Fig. 3 in Ref. [17]). In general,
the former dominates at sufficiently high Qif (low excitation
energies in the daughter nucleus), while the latter is always
dominant at sufficiently low Qif (high excitation energies in
the daughter nucleus).

The β-decay half-life in the laboratory is obtained by
summing all the allowed transition strengths to states in the
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FIG. 13. (Color online) Same as in Fig. 5
but for 88,90,92Ru isotopes.

daughter nucleus with excitation energies lying below the
corresponding QEC energy and weighted with the phase-space
factors,

T −1
1/2 = λ

ln 2
= 1

D

∑
0<Ef <QEC

[
Bif (GT) + Bif (F)

]
�

β+/OEC
if ,

(25)

where the QEC energy is given by

QEC = Mp − Md + me = Qβ+ + 2me . (26)

III. RESULTS FOR WEAK DECAY RATES

In this section we first present the results for the potential
energy curves. Then, we show the results for the decay
properties, GT strength distributions, and β-decay half-lives
under terrestrial conditions, comparing them with the available
experimental information. Finally, we present the results for

the stellar weak decay rates under the density and temperature
conditions implied in the rp process.

A. Potential energy curves

In Fig. 1 we can see the potential energy curves for the
even-even Ni, Zn, Ge, Se, Kr, Sr, Zr, Mo, Ru, Pd, Cd, and
Sn nuclei in the vicinity of the N = Z isotopes considered in
this work. We show the energies relative to that of the ground
state plotted as a function of the quadrupole deformation β

in Eq. (5). They are obtained from constrained HF + BCS
calculations with the Skyrme force SLy4 [32].

The nuclei studied here cover a whole proton shell ranging
from magic number Z = 28 (Ni isotopes) up to magic
number Z = 50 (Sn isotopes). The isotopes considered are
the predicted WP nuclei, which in most cases correspond to
N = Z, and their neighbor isotopes.
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FIG. 14. (Color online) Same as in Fig. 5
but for 92,94,96Pd isotopes.

Then, it is expected that the lighter and heavier nuclei close
to Z = 28 and Z = 50, respectively, have a tendency to be
spherical. The spherical shapes in these isotopes show sharply
peaked profiles that become shallow minima as one moves
away from Z = 28 or Z = 50, and finally, deformed shapes are
developed as one approaches midshell nuclei. The profiles of
the latter exhibit a rich structure giving ise to shape coexistence
when various minima at close energies are located at different
deformations.

It is also worth mentioning the correlations observed
between mirror nuclei interchanging the number of neu-
trons and protons. Thus, we see a remarkable similarity
between the profiles of 66Ge (Z = 32, N = 34) and 66Se (Z =
34, N = 32), between 70Se (Z = 34, N = 36) and 70Kr (Z =
36, N = 34), and between 74Kr (Z = 36, N = 38) and 74Sr
(Z = 38, N = 36).

These results are in qualitative agreement with similar
ones obtained in this mass region from different theoretical

approaches. Just to give some examples, shape transition and
shape coexistence were discussed in A ∼ 80 nuclei within a
configuration-dependent shell-correction approach based on a
deformed Woods-Saxon potential [43]. Relativistic mean-field
calculations in this mass region have also been reported in
Ref. [44]. Nonrelativistic calculations are also available from
both Skyrme [45–47] and Gogny [48] forces, as well as from
the complex VAMPIR approach [49].

Experimental evidence of shape coexistence in this mass
region has become available in recent years [50–65], and by
now this is a well-established characteristic feature in the
neutron-deficient A = 70–80 mass region.

B. Laboratory Gamow-Teller strength and half-lives

While the half-lives give only limited information about
the decay (different strength distributions may lead to the
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FIG. 15. (Color online) Same as in Fig. 5
but for 96,98,100Cd isotopes.

same half-life), the strength distribution contains all the
information. It is of great interest to study the decay rates
under stellar rp conditions using a nuclear structure model
that reproduces the strength distributions and half-lives under
terrestrial conditions.

In Figs. 2 and 3, we show the results obtained for the
energy distributions of the GT strength corresponding to
the equilibrium shapes for which we obtained minima in
the potential energy curves in Fig. 1. The GT strength is plotted
versus the excitation energy of the daughter nucleus Eex =
Ef (MeV).

Figure 2 (Fig. 3) contains the results for the isotopes Ni,
Zn, Ge, Se, Kr, and Sr (Zr, Mo, Ru, Pd, Cd, and Sn). We show
the energy distributions of the individual GT strengths in the
case of the ground-state shapes. We also show the continuous
distributions for both ground-state and possible shape isomers,
obtained by folding the strength with 1 MeV width Breit-
Wigner functions. The vertical arrows show the QEC energy

and the proton separation energy in the daughter nucleus, both
taken from experiment [34].

It is worth noting that, in general, both deformations pro-
duce quite similar GT strength distributions on a global scale.
The main exceptions correspond to the comparison between
spherical and deformed shapes, where clear differences can
be observed. In any case, the small differences among the
various shapes at the low-energy tails (below the QEC) of the
GT strength distributions lead to sizable effects in the β-decay
half-lives. These differences can be better seen because of the
logarithmic scale.

Experimental information on GT strength distributions
are mainly available for 72Kr [66], 74Kr [67], 76Sr [68],
and 102,104Sn [69] isotopes, where β+-decay experiments
have been performed with total absorption spectroscopy
techniques, allowing the extraction of the GT strength in
practically the whole Q-energy window. In Ref. [18] a
comparison between similar calculations to those in this
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FIG. 16. (Color online) Same as in Fig. 5
but for 100,102,104Sn isotopes.

work and the experimental data for Kr and Sr isotopes was
carried out. In general, good agreement with experiments
was found, and this was one of the reasons to extrapo-
late this type of calculation to stellar environments and to
other WP nuclei.

Measurements of the decay properties (mainly half-lives)
of nuclei in this mass region have been reported in recent
years [69–80]. The calculation of the half-lives in Eq. (25)
involves knowledge of the GT strength distribution and of the
QEC values. In this work, experimental values for QEC are
used. They are taken from Ref. [34] or from the Jyväskylä
mass database [79,81], when available. In Fig. 4 the measured
half-lives are compared to the QRPA results obtained from the
equilibrium deformations of the various isotopes. In general,
good agreement for the N = Z WP is obtained. Also, for the
more stable N = Z + 2, the agreement is very reasonable,
except for the heavier Cd and Sn isotopes, where the half-lives

are overestimated. The half-lives of the more exotic isotopes
are fairly well described by QRPA.

C. Stellar weak decay rates

Figures 5–16 show the decay rates as a function of
the temperature T . In Figs. 5(a)–16(a) one can see the
decomposition of the total rates into their contributions from
the decay of the the ground state 0+

gs → 1+ and from the decay
of the excited state 2+ → 1+, 2+, 3+ in the parent nucleus.
Figures 5(b)–16(b) show the decomposition of the rates into
their β+ and CEC components evaluated at various densities
(ρYe). Figures 5(c)–16(c) the total rates for various densities.
The gray area is the relevant range T = 1 − 3 GK for the rp

process. Each figure contains the results for three isotopes. The
results corresponding to the more exotic ones are displayed
in the top plots, whereas the results corresponding to the
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more stable isotopes appear in the bottom plots. In the middle
plots we give the intermediate isotopes, which, in most cases,
correspond to the WP nuclei.

The results decomposed into their contributions from
various parent states [Figs. 5(a)–16(a)] show that the decay
from the ground state is always dominant at the temperatures
within the gray area of interest. The contributions of the
decays from excited states increase with T , as they become
more and more thermally populated, but in general, they do
not represent significant contributions to the total rates and
can be neglected in most cases. Nevertheless, there are a
few cases where these contributions should not be ignored,
which correspond to those cases where the excitation energy
of the 2+ excited state is very low. This is the case of the
middle-shell nuclei Kr, Sr, Zr, and Mo, where the contributions
of the low-lying excited states compete with those of the
ground state already at temperatures in the range of rp

process. The effect on the rates of the decay from excited
0+

2 states was also considered in Ref. [17] in the case of
Kr and Sr isotopes. It was concluded that, in general, their
relative impact is again very small in the total rates at these
temperatures.

Concerning the competition between β+ and CEC rates
[Figs. 5(b)–16(b)], one should distinguish between different
isotopes. Thus, the more exotic isotopes appearing in the
top plots of the figures show a clear dominance of the β+
rates over the CEC ones, which can be neglected except at
very high densities beyond rp-process conditions. On the
other hand, the opposite is true with respect to the more
stable isotopes in the bottom plots, where the β+ rates
are completely negligible. The origin of these features can
be understood from the behavior of the phase-space factors as a
function of the available energy Qif . As mentioned in Sec. II B
and discussed in Ref. [17], more exotic nuclei with larger Qif

values favor β+ because of the larger phase-space factors,
while the opposite is true for more stable nuclei with smaller
Qif values.

The interesting cases occur in the middle panels, which
correspond in most cases to the N = Z WP nuclei.In these
plots, there is a competition between β+ and CEC rates that
depends on the nucleus, on the temperature, and on the density
ρYe. One can see that for large enough densities, CEC becomes
dominant at any T . For low densities, β+ rates dominate at low

T , while CEC dominates at higher T , but in general, there is a
competition that must be analyzed case by case.

Finally, the total rates in Figs. 5(c)–16(c) are a consequence
of the competition between β+ and CEC rates. Since the β+
decay rate is independent of the density and depends on T

only through the contributions from excited parent states, the
total rates are practically constant for the more exotic isotopes
in the top plots, except modulated by the small contribution
from CEC. In the central isotopes the rates are the result of
the competition shown in Figs. 5(b)–16(b), and finally, in the
heavier isotopes (bottom plots) we can see that the total rates
are practically due to CEC with little contribution from β+.
Tables containing β+, CEC, and total decay rates for all the
isotopes considered in this work are available in Ref. [82].

IV. SUMMARY AND CONCLUSIONS

In summary, the weak decay rates of waiting-point and
neighbor nuclei from Ni up to Sn have been investigated at
temperatures and densities where the rp process takes place.
The nuclear structure has been described within a microscopic
QRPA approach based on a self-consistent Skyrme-Hartree-
Fock-BCS mean field that includes deformation. This ap-
proach reproduces both the experimental half-lives and the
more demanding GT strength distributions measured under
terrestrial conditions in this mass region.

The relevant ingredients to describe the rates have been
analyzed. We have studied the contributions to the decay rates
coming from excited states in the parent nucleus, which are
populated as T increases. It is found that they start to play
a role above T = 1 − 2 GK and that for isotopes with low-
lying excited states, their contributions can be comparable to
those of the ground states. Concerning the contributions from
the continuum electron-capture rates, it is found that they are
enhanced with T and ρ. They are already comparable to the
β+ decay rates at rp conditions for the WP nuclei. For more
exotic isotopes the rates are dominated by β+ decay, while for
more stable isotopes they are dominated by CEC.
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