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Regions of different critical behavior of the two-flavor Nambu–Jona-Lasinio model
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We study the chiral phase diagram in the T -µ-m0 space of the two-flavor Nambu-Jona-Lasinio model with
the approach of the Landau theory of phase transitions. The tricritical point (TCP) is an endpoint of a line of
triple points as well as a crosspoint of three λ-transition lines. These double characters bring the connective and
consistent problem of a critical phenomenon at the TCP. There is a crossover region from normal critical to
tricritical behavior near the TCP, no matter whether the current quark mass is zero or not. The critical exponents
need to be renormalized when one approaches the TCP along the first-order phase-transition line.
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I. INTRODUCTION

The Lagrangian of quantum chromodynamics (QCD) has
a marked character; i.e., it is chirally symmetric if the current
quark mass is zero (chiral limit) while the chiral symmetry is
explicitly broken if the current quark mass is nonvanishing.
This dynamical character leads a series of thermodynamical
properties of both QCD and the corresponding chiral model
theories. Exploring the phase structure of QCD is one of the
most exciting topics in the field of strong-interaction physics.
In the temperature (T ) and baryon chemical potential (µB)
plane, recent lattice studies [1] and effective model studies [2]
show that at sufficiently high µB , there is a first-order phase
transition line between the chiral symmetry restored phase and
broken phase. Moving along the phase boundary to higher T

and lower µB , the first-order transition line ends in a TCP and
becomes a second-order transition line for vanishing current
quark mass, or it ends in a second-order critical point (critical
endpoint CEP) and becomes a smooth crossover for nonzero
current quark mass. The closer the current quark mass is to
zero, the closer the CEP is to the TCP.

In statistical physics, the mechanism behind the occurrence
of tricritical phenomena has been discussed qualitatively [3]. If
a fictitious “field” h that is conjugate to the order parameter of
the system exists, there will be two lines of critical endpoints
emerging from the TCP symmetrically. Recently, Hatta [4] and
Stephanov [5] gave some theoretical analyses of the symmetry
group and universal class on the QCD phase diagram near the
TCP. In the QCD theory, the current quark mass m0 plays the
role of external field h.

The critical phenomenon of the TCP is different from that of
the CEP in principle. However, their critical regions may
overlap if the current quark mass is small enough. Works [4,6]
often discuss the critical region through calculating the
ratio of baryon number susceptibility χB/χ free

B and the the-
oretical basis that the TCP and CEP do not belong to the same
universal class. Recently, the technique has been extended
to study the sign of the third moments of conserved charges
as well as their mixed moments [7]. Reference [4] pointed
out that the hidden TCP can affect the critical phenomena
around the CEP with nonzero current quark mass. However,
a recent paper [8] with a nonlocal chiral model shows that
there is no influence of the TCP properties on the CEP critical

exponents. This indicates that whether the TCP affects the
physics of CEP is an open problem. The critical point (CP)
is the end of the two-phase coexistence line. The TCP is
the endpoint of three-phase coexistence line. The CEP is
the endpoint of two-phase coexistence line when the third
phase still exists. We notice that these three points are relative
as well as distinguishing, so in our paper we make an
overall consideration in discussing the critical phenomena.
We study the critical phenomena along different kinds of
phase-transition lines, namely, the connection line of CEPs, the
normal second-order phase-transition line, and the first-order
phase-transition line.

One of the most thoroughly studied models in connection
with the aspects of QCD chiral symmetry and its spontaneous
breaking in the physical vacuum is the Nambu-Jona-Lasinio
(NJL) model. The chiral transition line in the temperature and
quark chemical potential plane calculated with the model is
close to the result of a lattice QCD [9]. The two-flavor model
Lagrangian takes the form [10]

L = ψ̄(iγ µ∂µ − m0 + µγ 0)ψ + G[(ψ̄ψ)2 + (ψ̄iγ5τψ)2].

(1)

Here ψ(ψ̄) is the quark (antiquark) field, m0 is the current
quark mass, and µ is the quark chemical potential. The
interaction between quark fields is constructed in a manifestly
chirally invariant fashion. Gluons do not appear explicitly
but are subsumed in an effective contact interaction of
strength G. In this paper, we will treat the NJL model
in a mean-field theory by neglecting the fluctuation of the
order parameter around its mean. At finite temperature, the
NJL grand thermodynamical potential under the mean-field
approximation can be determined as

�(T ,µ; σ ) = Gσ 2 − 2NcNf

∫
	

d3 �p
(2π )3

Ep − 2NcNf T

∫
d3 �p

(2π )3
[ln(1 + e−(Ep−µ)/T ) + ln(1 + e−(Ep+µ)/T )],

(2)

where Ep =
√

�p 2 + m2
q is the Hartree quasiparticle energy of

the quark, and mq = m0 − 2Gσ is the constituent quark mass.
The chiral-order parameter σ is defined as the condensation
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of quark-antiquark pairs, i.e., the vacuum expectation value
〈ψ̄ψ〉. The three-dimensional momentum cutoff 	 is a
regularization scheme in the NJL model. Its value depends
on the detailed model parameters. Nc(Nf ) is the quark color
(flavor) number.

II. THE TCP AND THE CONNECTION LINE OF CEPS

The Landau theory of phase transitions was developed
by Landau in the 1940s, originally to describe supercon-
ductivity [11]. The procedure is general and is one of the
most useful tools in condensed matter physics. The theory
phenomenologically describes continuous phase transition
using the change of thermodynamical potential and its relation
with the order parameter at the phase transition point. It is a
mean-field theory and emphasizes the importance of symmetry
change in the phase transitions. The core of the theory grips
the special property of system free energy, which contains a
surprising amount of information about the physics of phase
transitions.

In this section, we start from the Landau theory of phase
transitions and study a T -µ-m0 phase diagram of the two-
flavor NJL model. In the vicinity of the critical point, the order
parameter σ is an arbitrary small quantity. We expand the grand
thermodynamical potential to the sixth power of chiral-order
parameter σ and omit the third and fifth power terms. The
Landau function has the following form:

�(T ,µ; σ ) = 1
2aσ 2 + 1

4bσ 4 + 1
6cσ 6 − hσ. (3)

The coefficients a, b, c, h of the Landau expansion are func-
tions of (T ,µ). Their explicit expressions are given in the
Appendix. With the detailed model parameters [12], we could
obtain numerical results. Here h is an external field that couples
directly to the order parameter σ . One has

h = −∂�

∂σ
. (4)

In the NJL model the current quark mass m0 plays the role of
h. From Eq. (A2) we know that when m0 = 0, h equals zero.

Figure 1 shows a chiral phase diagram of the two-flavor NJL
model in the T -µ-m0 space. We display analytical expressions
of four curves connected with the TCP in the following. The

FIG. 1. Chiral phase diagram in T -µ-m0 space of the two-flavor
NJL model.

λ-line (three dash-dotted lines) is given in general form by

∂2�

∂σ 2
= ∂3�

∂σ 3
= 0. (5)

With the Landau free energy (3) and field h’s expression (4),
Eqs. (5) yield

a = 0, h = 0, (6)

and in addition

a = 9b2

20c
, h = ±8c

3

(−3b

10c

) 5
2

. (7)

Substituting the expansive coefficients in the Appendix into
Eq. (6), and noticing that b > 0, Eq. (6) gives the relation
between T and µ through the T - and µ-dependent coefficients
a and h, which is shown by the dash-dotted line in m0 = 0
(h = 0) plane. Similarly, Eq. (7) determines the other two
λ lines for nonzero quark mass, which will be discussed later.
In the Landau theory of phase transitions, the three λ lines are
of the normal second-order phase-transition line. The Landau
theory also predicts a first-order phase-transition line (τ line)
in the m0 = 0 plane. When we neglect the linear term, the
Landau expansion formula [Eq. (3)] becomes a typical φ6

potential, which has one minimum at σ = 0 and two other
symmetric minima. At critical T and µ of the first-order
phase transition, the values of three local minima of �(T ,µ; σ )
are equal. The analytical equations determining the first-order
phase transition line are

b2 = 16
3 ac, b < 0, h = 0. (8)

The numerical result is shown by the thick solid line in Fig. 1.
We notice that it connects with three λ lines at the TCP. At
the TCP, a = b = 0, and the three-local-minimum structure of
�(T ,µ; σ ) vanishes.

In the m0 = 0 plane, one has a first-order coexistence
surface A. On the two sides of the A plane, the order parameter
undertakes nonzero values with opposite signs depending on
whether m0 → 0 from positive or negative directions. (This
is a theoretical analysis. Actually, m0 must be positive in the
real world.) As T increases, the surface A terminates in a line
of critical points, the λ line (the dash-dotted line in m0 = 0
plane), and for T < T TCP, it terminates in the two-phase
coexistence curve (τ line). From Fig. 1 one notes that through
the τ line, A is connected to two first-order surfaces (the
wings) extending symmetrically into the regions of m0 > 0
and m0 < 0, respectively. The wings themselves terminate
with increasing temperature in two lines of CEPs (the two
dash-dotted lines in space). These two lines of CEPs also
indicate the λ transition given by Eq. (7). The three λ lines
join together at the TCP. Therefore, the TCP may be regarded
either as the termination of a line (τ line of m0 = 0) of triple
points or, equivalently, as the confluence of three λ lines. With
our model parameters, the TCP is located at T TCP = 0.1 GeV
and µTCP = 0.267 GeV.

The dashed curves on the surface of the wing in Fig. 1
indicate the first-order coexistence curves at different quark
current mass m0. The end of each line is a CEP. In order
to highlight the meaning of CEP, we confine ourselves to
m0 = 0.0055 GeV and elaborate how to fix the corresponding
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FIG. 2. Phase diagram on the a-b plane at m0 = 0.0055 GeV of
the two-flavor NJL model. The thin solid curves indicate different
types of the grand thermodynamical potential as functions of order
parameter σ .

first-order phase transition line and the CEP. The thick solid
line in Fig. 2 represents the first-order coexistence curve.
The thin solid curves indicate different types of the grand
thermodynamical potential as functions of order parameter σ .
Since h �= 0, the linear term in the φ6 potential exists. So
the �(T ,µ; σ ) exists three minima that are not symmetric
about σ = 0. In the three minima, one is higher and always
exists at any T ,µ. The other two are lower. The first-order
coexistence curve is determined by the critical T ,µ when
the other two local minima of �(T ,µ; σ ) are equal. At the
CEP, the two-local-minimum structure vanishes while the third
local minimum still exists. With explicit model parameters,
we obtain the detailed axis values in the a-b plane. (The two
dashed curves in Fig. 2 represent two metastable states.) From
this discussion we can see that (1) three coexisting and distinct
phases become identical simultaneously at a TCP; (2) if two
phases become identical in the presence of a third phase, which
remains distinct, that thermodynamic state is called a CEP; and
(3) two phases become identical at an ordinary CP. We reiterate
these concepts in order to stress that their properties would
result in a deeper understanding of the critical phenomena,
which we will discuss in the following.

III. REGIONS OF DIFFERENT CRITICAL BEHAVIOR

First, we discuss the situation at the chiral limit. Figure 3
shows the T -µ phase diagram. In the m0 = 0 plane the
second-order phase transition line (λ line) meets the first-order
phase-transition line (τ line) at the TCP. The dash-dotted line
indicates the λ transition, and the heavy solid line indicates the
τ transition.

In Fig. 3 the thin solid curves show the shapes of the grand
thermodynamical potential for the chiral-order parameter σ .
In the chiral symmetry broken phase, the potential has two
equal minima. On the τ line, the potential has three equal
minima that fuse into one minimum at the TCP as discussed
in Sec. II. In the region near the TCP, we could not observe
a distinct difference of the grand thermodynamical potential.
In the chiral symmetry restored phase, the potential has only

TCP
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FIG. 3. The chiral phase diagram in the m0 = 0 plane of the
two-flavor NJL model. Indices I, II, and III indicate the regions of
different critical behavior in the chiral symmetry broken phase. The
thin curves indicate different types of the grand thermodynamical
potential as functions of order parameter σ .

one minimum. The Landau theory predicts a uniform set of
critical exponents. In the chiral symmetry broken phase, all
critical exponents are determined by the value of the order
parameter and need to be discussed in different regions. With
thermodynamical conditions

∂�

∂σ
= 0,

∂2�

∂σ 2
> 0, (9)

and for m0 = 0, we have

σ 2
0 = −b + √

b2 − 4ac

2c
. (10)

This allows us to analyze the critical behavior in different
regions. In region I, defined by b2 � −4ac, we retain the
linear term, and Eq. (10) gives approximately

σ 2
0 ≈ −a

b
. (11)

We assume that the slope of the λ line at the TCP is finite;
then Eq. (11) yields a normal critical exponent. This is a
typical φ4 theory of phase transitions. We calculate the critical
exponent βλ as an example. One assumes that a = a0t(a0 > 0)
and b is a positive constant, and t is the reduced temperature
T −Tλ

Tλ
, with Tλ the critical temperature of the phase transition.

We start from the definition σ ∼ |t |β . Substituting Eq. (11),
one has σ0 ≈ ±√

a0
b

|t | 1
2 . Thus the critical exponent βλ = 1

2 . In
region II, defined by b2 
 −4ac, one has

σ 2
0 ≈

√
−a

c
. (12)

Equation (12) yields a normal tricritical exponent βt = 1
4 . This

is a typical critical exponent of the phase transition theory of
φ6. Region III is the other part of the vicinity of the TCP ex-
cluding the region I and II in the chiral symmetry broken phase.

Based on this discussion, one obtains that when b2 ∼ −4ac

there is a region in which the types of critical exponents transfer
from φ4 to φ6. In Fig. 4 we show a numerical result of the phase
diagram on the a-b plane at the chiral limit. The dash-dotted
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FIG. 4. The crossover regions of critical behavior from φ4 to φ6

on the a-b plane at the chiral limit of the two-flavor NJL model.

line displays the normal second-order phase transition. The
black solid curve is of a first-order phase-transition whose
analytical expression is as shown as Eq. (8). The dashed
curve corresponds to b2 = −4ac. For b > 0, the region around
the dashed curve has critical exponents lying between normal
critical and tricritical exponents. This region is termed the
φ4-φ6 crossover region. The ratio of b2

4a0c
is a proper indicator

characterizing the normal critical to tricritical crossover be-
havior. Its magnitude decides how close the thermodynamical
system is to the TCP and whether the crossover behavior
can be observed. As the TCP is approached, the range of
the normal critical behavior region decreases and shrinks to
zero at the TCP. We calculate the temperature T0 and quark
chemical potential µ0 that satisfy the equation b2 = −4ac. Ac-
cording to our numerical results, |T0 − T TCP|, |µ0 − µTCP| are
within the limit of 5 MeV.

Second, we turn to the m0 �= 0 situation. One approaches
the TCP along the connection line of the CEPs, i.e., the other
two λ lines in space in Fig. 1, and discusses the corresponding
critical behavior. From the viewpoint of theoretical unification,
we should do some analysis as follows for the m0 �= 0 case:
Step 1: Find the analytical solution σm of

∂
(

1
2aσ 2 + 1

4bσ 4 + 1
6cσ 6 − hσ

)
∂σ

= 0.

Step 2: According to the character of σm explore possible
critical regions in the vicinity of the CEP, such as the ap-
proach of the m0 = 0 situation with Eqs. (10)–(12). However,
the general solution of a quintic in terms of generalized
hypergeometric functions is of little help in analyzing the
regions of different critical behaviors. On the other hand, as
is well known, the critical exponents determine the behavior
of relevant thermodynamical quantities in the vicinity of the
second-order phase transition line. We specially calculate the
quark number susceptibility χ at the CEP with the path parallel
to the µ axis in the T -µ plane. The quark number susceptibility
χ is defined by

χ = −∂2�

∂µ2
. (13)

FIG. 5. The quark number susceptibility for m0 = 0.5 MeV
(upper panel) and 5.5 MeV (lower panel) as functions of |µ − µCEP|
at corresponding critical quark chemical potential µCEP(m0).

Following the general definition of critical exponent, we use a
linear logarithmic fit

lnχ = −γ ′ln|µ − µCEP|, (14)

where |µ − µCEP| is the distance to the CEP and γ ′
is critical exponent. In Fig. 5, χ is plotted for m0 =
0.5 MeV (upper panel) and m0 = 5.5 MeV (lower
panel). For m0 = 0.5 MeV situation, we obtain γ ′ =
0.56. Compared to the normal critical mean field the-
ory 2

3 , it is closer to the mean-field value of TCP 1
2 .

At m0 = 5.5 MeV, we obtain γ ′ = 0.68 in the |µ − µCEP| <

0.5 MeV region and γ ′ = 0.58 in the |µ − µCEP| > 1 MeV
region, respectively. According to the changing behavior of
the critical exponent, when one approaches the TCP along
the line of CEPs, there also exists a crossover region. This
result is in agreement with Ref. [4]. To recognize how
strong is the suppression of the effect of the hidden TCP
with increasing m0, we increase the current quark mass m0

to 7 MeV and calculate the critical exponent of the quark
number susceptibility. The result indicates that the effect
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of the hidden TCP vanishes until this point. Our study is
helpful in the understanding of the connection and difference
of the CEP, TCP, and CP.

IV. RENORMALIZATION OF THE CRITICAL EXPONENT
IN THE FIRST-ORDER PHASE-TRANSITION REGION

Since the TCP is a connection point of the λ line and
τ line, how do the critical phenomena become consistently and
continuously at this point if we are approaching it along the
λ line and τ line, respectively? We turn to studying the property
of the response function. The quark number susceptibilities
χ as a function of the temperature T for three different values
of quark chemical potential µ are displayed in Fig. 6. The
susceptibility χ diverges at the TCP. We take a normalized
scale factor C to make it finite in order to compare χ at
different situations. For quark chemical potential µ below
µTCP, in the second-order phase-transition region, the response
function displays a narrow peak. which is shown as the
dotted curve. For µ = µTCP, the χ/C indicates a sharper and
narrower peak at the transition temperature (as shown as the
dashed-dotted curve) than in the second-order phase-transition
case. These two behaviors show a consistent and continuable
trend in the way of approaching the TCP along the λ line.
Now we turn to the discussion along the τ line. For chemical
potential above µTCP, we have a first-order phase transition,
and, consequently, χ/C has a discontinuity. It rises straight
up to positive infinity and drops down to negative infinity
immediately and then finally jumps back to zero. Literature
often show a broken and discontinued behavior of the response
function in the first-order phase-transition region.

In region III of Fig. 3, we care about the critical phenomena
in the vicinity of the TCP along the first-order phase-transition
line. Since it is usually rather hard to know whether the ther-
modynamical function really diverges to infinity or whether it
has only a sharp but finite cusp at critical temperature, the
corresponding critical exponents are less well determined.
We notice that boundaries of region III and the λ line have
the same slope at the TCP. This means the behavior of χ/C

should be a finite cusp instead of diverge when approaching

TCP
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FIG. 6. Behavior of the scaled quark number susceptibility χ/C

as functions of temperature T at three values of quark chemical
potential.
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FIG. 7. Behavior of the scaled quark number susceptibility χ/C

as functions of temperature T . The critical exponent is renormalized
in the case of µ > µTCP.

the TCP in region III. Fisher [13] pointed out that for any
system that can display a divergent specific-heat anomaly there
will be natural circumstances in which the system will be
characterized by renormalized critical exponents and a finite,
although sharply cusped, finite specific heat. He also discussed
a variety of exactly soluble models where this renormalization
can be checked explicitly. In condensed matter physics, this
theory has been widely applied [14]. Following this idea, when
approaching the TCP along the τ line, the tricritical exponents
are needed for renormalization. They are given by

α−
τ = −αt/(1 − αt ),

β−
τ = βt/(1 − αt ),

(15)
γ −

τ = γt/(1 − αt ),

ν−
τ = νt/(1 − αt ).

The subscript t represents the critical exponents of the mean
field at the TCP. Then the renormalized tricritical exponents
arising are the following: α−

τ = −1, β−
τ = 1

2 , γ −
τ = 2, ν−

τ = 1.
The superscript − means to approach the transition point
from the chiral symmetry broken phase. These renormalized
exponents also satisfy the same homogeneity or scaling
relations [13]. For example, α−

τ + 2β−
τ + γ −

τ = 2.
We calculate the scaled susceptibility χ/C after renor-

malization and show the numerical results in Fig. 7. When
µ > µTCP, χ/C shows a cusplike type approaching the critical
point. So this behavior is consistent and continuable with the
transition at the TCP and along the λ line.

In the current quark mass m0 nonzero situation, there also
exists a connecting point, the CEP, joining the first-order chiral
phase-transition line and crossover transition line together. We
know the chiral phase transition at the CEP itself is of second
order. So in the nonzero m0 plane, the critical exponents of the
CEP also need to be renormalized when approaching it along
the direction of the τ -transition line (the dashed curve on the
surface of the wing in Fig. 1).

V. SUMMARY AND DISCUSSION

Through the Landau theory of phase transitions, we
represent a T -µ-m0 chiral phase diagram of the two-flavor
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NJL model under the mean-field approximation. We explicitly
reveal the relation of TCP, CEP, and CP. We also emphasize
a few issues that should be noted in discussing the critical
behavior of the NJL model. Namely, in the T -µ plane of
m0 = 0, one should study along both the λ-line and τ -line to
approach the TCP. On the other hand, in the T -µ-m0 figure of
the m0 �= 0 situation, one should study along the connection
line of CEPs to approach the TCP.

Our results are the following. First, the critical behavior
of the λ line that is follows the φ6 theory could not simply
be recognized as the same as that of the second-order phase-
transition line following the φ4 theory. There is a crossover
region of the critical behavior when one approaches the TCP
from different directions in the T -µ-m0 space. Second, when
m0 is very small, the hidden TCP would affect the critical
behavior near the CEP. Third, when approaching the TCP
along τ line, one should adopt the renormalized critical
exponents that were created by Fisher. Finally, we expect
that our conclusion could be helpful for high-energy ion
experiments in exploring the phase boundary and the CEP
location through energy scanning.

Condensed matter physics has long been concerned about
the CEP (CP) behavior near and away from the TCP.
Reference [15] pointed out that there may be crossover regions

from the CEP (CP) to the TCP. In high-energy physics, Ref. [4]
first discussed the issue that the TCP may affect the physics
near the CEP and indicated a crossover of different university
classes by using a Cornwall-Jackiw-Tomboulis effective po-
tential for the two-flavor QCD. Our paper extends their work.
The results show that there exist crossover regions from either
the CP or the CEP approaching the TCP. Renormalization of
critical exponents is also a well-studied problem in condensed
matter physics. We try to apply the idea to the NJL model.
We discuss the qualitatively consistent problem of the critical
exponents when one approaches the TCP from the first-order
phase-transition line. However, the factor or mechanism that
results in the renormalization also requires in-depth analysis.
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APPENDIX

At the chiral limit m0 = 0, the explicit expressions of the
coefficients in Eq. (3) are

1

2
a(T ,µ) = G − 12G2

π2

∫ 	

0
k dk + 12G2

π2

∫
k[f (k + µ) + f (k − µ)] dk,

1

4
b(T ,µ) = 12G4

π2

∫ 	

0

1

k
dk − 12G4

π2

∫ {
1

T
[f (k + µ) + f (k − µ) − f 2(k + µ) − f 2(k − µ)]

+ 1

k
[f (k + µ) + (f (k − µ)]

}
dk,

1

6
c(T ,µ) = −48G6

π2

∫ 	

0

1

k3
dk + 16G6

π2

∫
3

(
1

3T 2k
+ 1

k2T
+ 1

k3

)
[f (k + µ) + f (k − µ)]

−
(

1

T 2k
+ 1

k2T

)
[f 2(k + µ) + f 2(k − µ)] + 2

T 2k
[f 3(k + µ) + f 3(k − µ)] dk. (A1)

Here f (k ± µ) is the Fermi-Dirac distribution f (k ± µ) =
1

1+e
k±µ
T

. At the real-world m0 �= 0 situation, we enumerate

the coefficients of linear and quadric terms of the Landau

expansion. About the coefficients of fourth and sixth power
terms, since the calculation is similar and the expressions are
trite, we do not show the expressions here.

h(T ,µ; m0) = 12Gm0

π2

∫ 	

0

k2

Ek

dk − 12Gm0

π2

∫
k2

Ek

[f (k + µ) + f (k − µ)] dk,

1

2
a(T ,µ; m0) = G − 12G2

π2

∫ 	

0

k4

E3
k

dk + 12G2

π2

∫
k2

{
m2

0

T E2
k

[f 2(Ek + µ) + f 2(Ek − µ)]

− 1

Ek

(
m2

0

T Ek

+ m2
0

E2
k

− 1

)
[f (Ek + µ) + f (Ek − µ)]

}
dk, (A2)

where Ek =
√
k2 + m2

0.
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