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Balance functions reexamined
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The idea of glue clusters, i.e., short-range correlations in the quark-gluon plasma close to freeze-out, is used
to estimate the width of balance functions in momentum space. A good agreement is found with the recent
measurements of the STAR Collaboration for central Au-Au collisions.
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I. INTRODUCTION

It was observed by Bass, Danielewicz, and Pratt [1]
that measurements of balance functions in nucleus-nucleus
collisions provide a “clock” which allows determination of
the time when the charges observed in the final state are
created. The measurements performed by the STAR [2–4]
and NA49 [5,6] Collaborations proved (or at least strongly
suggested) that the charges appear at the late stage of the
production process, close to the freeze-out [7], thus implying
that the quark-gluon plasma phase is dominated by gluons.

In addition, these experiments showed that the measured
widths of the balance functions in central AA collisions are
substantially smaller than those seen in pp and in peripheral
AA collisions. The natural conclusion from this observation
is that the presence of the quark-gluon plasma phase induces
additional correlations in the system. The nature of these cor-
relations is of course a matter of debate. They were extensively
discussed [7] in the framework of the thermal blast wave
model [8]. It was argued that, when the quark-gluon plasma
is sufficiently cool, pairs of positive and negative charges
are created, with thermal momentum distribution, in certain
restricted domains in space (the existence of these domains
is derived from Hanbury-Brown–Twiss measurements [9]).
The resulting momentum separation is measured through
the balance function. Since the creation of charges happens
close to the end of the evolution, their separation induced by
expansion of the system is not effective and thus a small width
of the balance function is maintained.

In [10], on the other hand, the additional correlations
were interpreted as evidence for clustering in the quark-gluon
plasma. It was shown that production of uncorrelated isotropic
clusters of gluons decaying into qq̄ pairs, when supplemented
by their coalescence into hadrons [11], explains—in a natural
way—the correct width of the balance function in pseudora-
pidity.

In the coalescence model [11] it is assumed that hadrons are
created by coalescence of “constituent” quarks and antiquarks
into qq̄, qqq, and q̄q̄q̄ color singlets. If there are no
correlations in the system before coalescence, then the only
correlations that can appear between hadrons are those induced
by resonances (which also result from coalescence). This
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picture describes reasonably well the hadron-hadron data [12].
The additional short-range correlations, needed to account for
the experimental measurements of the STAR [2–4] and NA49
[5,6] Collaborations, may only appear if the constituent quarks
and antiquarks are correlated between themselves before the
coalescence process takes place. The postulated glue clusters
supply these additional correlations.

Since pseudorapidity is determined solely by the particle
production angle, distributions in pseudorapidity are only
marginally sensitive to particle momenta. It is therefore inter-
esting to verify if the hypothesis of glue clusters can explain
also the recently measured [3] balance functions in momentum
space. This is the subject of the present investigation. Our main
conclusion is that, indeed, the presence of glue clusters at the
last stages of the evolution of the quark-gluon plasma can
account for the observed width of balance funtions in qside,
qlong and qout. This result requires that the average momentum
〈q〉 carried by a quark and antiquark in the decay of a glue
cluster be located around ∼120 MeV.

In the next section we derive the momentum dependence
of the balance function. Comparison with data is presented
in Sec. III. Our conclusions and comments are listed in
the last section. The Appendix summarizes our treatment of
acceptance corrections.

II. BALANCE FUNCTION FROM GLUE CLUSTERS

Consider a two-body decay of a glue cluster into a qq̄ pair.
The distribution of the decay products is

dn

dp1dp2
= vc(p1 − p2)δ(p1 + p2 − P ), (1)

where P is the momentum of the cluster, p1 and p2 are
the momenta of the decay products, and the function vc

is responsible for the details of the decay (dp stands for
three-dimensional relativistic phase space, dp = d3p/E =
d2p⊥dy).

Consequently, the distribution of quarks and antiquarks
arising from two clusters is

dN(pu, pū, pd, pd̄ )

dpudpūdpddpd̄

=
∫

dPUdPDρc(PU )ρc(PD)

× δ(pu + pū − PU )vc(pu − pū)

× δ(pd + pd̄ − PD)vc(pd − pd̄ ), (2)
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where ρc is the distribution of clusters in momentum space.
The subscripts U,D refer to the flavor of the quarks to which
the cluster decays, and u, d, ū, d̄ to the flavor of the quarks
and antiquarks themselves.

For the balance function we obtain1

B(p+, p−) ∼
∫

dpudpūdpddpd̄δ(pu + pd̄ − p+)

× δ(pd + pū − p−)�(pu − pd̄ )

× �(pd − pū)
dN(pu, pū, pd, pd̄ )

dpudpūdpddpd̄

, (3)

where �(x) describes the coalescence process, and p± are the
momenta of the observed particles.

Introducing

δ+ = pu − pd̄, δ− = pd − pū, (4)

we have

B(p+, p−) ∼
∫

dδ+dδ−ρc(pu + pū)ρc(pd + pd̄ )�(δ+)

× �(δ−)vc(pu − pū)vc(pd − pd̄ ), (5)

[p+ = pu + pd̄, p− = pd + pū],

and thus

B(δ) ∼
∫

dδ+dδ−�[δ+ + δ−)/2]�[δ+ − δ−)/2]

×
∫

dpρc[(p + δ−)/2]ρc[(p − δ−)/2]

× vc[(δ + δ+)/2]vc[(δ − δ+)/2], (6)

where

p = p+ + p−, δ = p+ − p−, δ± = δ+ ± δ−. (7)

Equation (6) represents our final result. Its consequences for
the widths of the balance functions in various components of
the momentum are discussed in the next section.

III. The widths of balance functions

To simplify the discussion and reduce the number of
parameters, we assume in this section that the functions vc(x)
and ρc(x) are Gaussians:

vc(x) ∼ e−x2/v2
, ρc(x) = e−x2

‖/r2
‖ −x2

⊥/r2
. (8)

Then the dependence on δ+ and δ− in (6) factorizes out and
we have

B(δ)∼e−δ2/2v2
�(δ), �(δ) =

∫
dpe−p2

‖/2r2
‖ e−p2

⊥/2r2
. (9)

If there are no acceptance restrictions, the integral extends
over full phase space, �(δ) is a constant, and the balance
function is isotropic: its width does not depend on the chosen
direction2 and is entirely determined by the parameter v2. In

1Since we are only interested in the width of the balance function,
henceforth we shall ignore all normalizing factors.

2This was already observed in [7].

the STAR experiment [3], however, the acceptance corrections
are important. They were estimated and are summarized in the
Appendix.

Equation (9) contains three parameters: v, r , and r‖. This
number can still be reduced, using the available information
on the distribution of transverse and longitudinal momenta.
Indeed, the single-particle transverse momentum distribution
can be expressed as

D(p+⊥) = e−2p2
+⊥/(r2+v2)d2p+⊥ → 〈p2

+⊥〉 = (r2 + v2)/2

(10)

with an analogous formula for p‖. Consequently we have

r2 = 2〈p2
⊥〉 − v2, r2

‖ = 4〈p2
‖〉 − v2 (11)

and we are left with one parameter, v2, which should be
adjusted to data.

One sees from these formulas that r‖ is very large and
therefore its exact value is not important for estimate of
δlong. Therefore, to determine v, we used the value 〈δlong〉 =
190 MeV, measured in the central Au-Au collisions [3]. Using
Eq. (A10) from the Appendix, one obtains v = 276 MeV. With
this value and 〈p⊥〉 = 400 MeV [13], Eqs. (A8) and (A5) give

〈δside〉 = 284 MeV, 〈δout〉 = 126 MeV. (12)

This should be compared with

〈δside〉 = 280 ± 10 MeV, 〈δout〉 = 0.110 ± 10 MeV, (13)

measured in [3]. Given the crudeness of our (Gaussian)
approximation, the agreement is more than satisfactory. The
width uncorrected for acceptance is 〈δ〉 = 220 MeV.

From the obtained value v = 276 MeV and using (1)
one can evaluate the average value 〈q〉 of the momentum
carried by the quark and antiquark in the decay of the cluster.
One obtains 〈q〉 = v

√
π/4 ≈ 122 MeV and

√
〈q2〉 = v/2 ≈

138 MeV.

IV. CONCLUSIONS AND COMMENTS

In conclusion, we verified that the hypothesis of glue
clusters, i.e., positive short-range correlations in the quark-
gluon plasma [10], can account for the small widths of the
balance functions in momentum space, observed recently by
the STAR collaboration [3] for central Au-Au collisions. In
particular, it was shown that when the parameters of the
model are determined from the observed 〈δlong〉, one obtains
reasonable values of 〈δside〉 and of 〈δout〉. This result confirms
the existence of correlations in the plasma. It also shows
that they can be effectively studied by the method of balance
functions [1].

Several comments are in order.

(i) It should be emphasized that the observed small width
of the balance functions in momentum space simply
implies the existence of additional short-range corre-
lations between particles produced in central nucleus-
nucleus collisions (as compared to pp collisions). The
nature and origin of these correlations remain a subject
of debate but their very existence is beyond doubt. For

024914-2



BALANCE FUNCTIONS REEXAMINED PHYSICAL REVIEW C 83, 024914 (2011)

example, the explanation of the balance functions in the
blast wave model [8], presented in [7], also exploits the
correlations in the plasma (in the form of “domains”
from which the balancing charges are emitted).

(ii) The existence of short-range correlations in the quark-
gluon plasma close to the phase transition should not
be surprising. Indeed, the lattice calculations indicate
strong deviations from the Stefan-Boltzmann limit even
at temperatures greatly exceeding Tc [14]. Thus the
presence of quasiparticles is likely. The nature of these
quasiparticles is an open question. Our results suggest
that they may take the form of gluonic clusters.

(iii) Although our semianalytic estimates are admittedly
rather crude, it is interesting to observe that the average
momentum characterizing the decay of a glue cluster
(120 MeV) seems close to the breakup temperature in
the blast wave model, as discussed in [7]. This may
suggest that the approach of [7] and our interpretation
may not be impossible to reconcile. Precise data on the
balance functions for KK and Kπ pairs may throw
some light on this problem.

(iv) In our argument we have used the coalescence model
[11]. Although the model is rather successful in explain-
ing, e.g., the particle content [15] and v2 scaling [16],
its basic idea is often questioned since it is difficult to
reconcile with the picture of the pion as the Goldstone
boson of chiral symmetry breaking [17]. A possible way
out is to admit that the constituent quark mass depends
on the temperature of the system (or rather on its
distance from the temperature of the chiral transition). If
true, then also the mass of the glue clusters will depend
on the temperature. Although our results do not depend
on the constituent quark mass, it may be interesting to
investigate this problem in more detail.

(v) It was noticed in [7] that corrections due to production
of hadronic resonances may change the results by
10%–20%. This is not dramatic for our semiquantitative
approach but must be eventually improved if serious
comparison with data is attempted.

It is well known that resonance production is essen-
tial in description of the short-range correlations in pp
collisions [12] and that it allows us to explain the single-
particle spectra in nucleus-nucleus collisions (see,
e.g., [18]). Furthermore, it has been shown [19] that
thermal, uncorrelated production of resonances cannot
reproduce the small widths of balance functions in
central nucleus-nucleus collisions. It should be noticed,
however, that if hadronic resonances are formed by
coalescence of q and q̄ that are decay products of glue
clusters, they are correlated. This—in turn—should
produce additional correlations between their decay
products and thus reduce the widths of the balance
functions. It would be interesting to investigate such
a possibility in detail. This, however, requires more
sophisticated analysis than the one presented here.

(vi) The present work represents only a first-order approxi-
mation to the problem. We considered only the simplest
case when the hadron pairs are created by coalescence
of quarks and antiquarks which are decay products of

just two clusters. The contributions from more than
two clusters should certainly be included in a more
precise analysis. It seems likely, however, that they
are suppressed because (i) the probability of having
more clusters very close in space (as required by the
coalescence mechanism) is small and (ii) matching the
color of quarks from two different clusters reduces
this contribution even further. At present we can only
mention that (a) for three clusters the width of the
balance function depends on details of the coalescence
process and therefore its estimate involves more param-
eters than hitherto considered, and (b) if clusters are
uncorrelated, contributions from four clusters cancel in
the balance function (see e.g. [10]).

Let us also add that the Gaussian approximation is certainly
rather crude and our treatment of the acceptance corrections is
at best approximate. This can of course be improved, although
we feel that it would not be justified at the present level of
understanding.

In summary, the present investigation shows that the
hypothesis of glue clusters in quark-gluon plasma can account
for the recently measured widths of the balance functions in
central Au-Au collisions. This may have important conse-
quences for the phenomenology of the quark-gluon plasma.
It remains an open question if this result is confirmed when
data in larger acceptance regions are available.
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APPENDIX: ACCEPTANCE CORRECTIONS

We first consider transverse directions, i.e. two-dimensional
vectors p+ and p−. The distribution is given by (9) with the
acceptance limits

D2 � p2
+x + p2

+y � �2, D2 � p2
−x + p2

−y � �2, (A1)

where D = 200 MeV and � = 600 MeV.
We are interested in the distribution of δout and δside, defined

with respect to the total momentum of the pair. Since the
system is invariant with respect to common rotation of all
vectors, one can select the y axis as “out” and the x axis as
“side.” Thus we are looking for the configuration in which

px+ + px− = 0 → δside = δx = px+ − px− = 2px+,
(A2)

p±y � 0.

Consider first δout = δy . This is the most complicated case
because in this direction there is a significant effect of the flow,
which strongly distorts the spectrum and must be taken into
account. Flow implies that the cluster moves (on average) with
the velocity V of the fluid. Therefore the laboratory system in
which it is observed moves with the velocity −V and the
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distribution of the decay products is

e−(δ′
out)

2/2v2
e−(p′

out)
2/2r2

, δ′
out = p′

+−p′
−, p′

out = p′
+ + p′

−,

(A3)
where

p′
± = γ [p± − V E±], E± =

√
p2± + x2 + m2

π . (A4)

Consequently, the observed distribution of the balance function
is (we abbreviate p+x ≡ x)

P (δout) =
∫ �

0
dxe−2x2/v2

∫ pmax

pmin

e−δ′2
out/2v2

e−p′2
out/2r2

, (A5)

where pmax = 2�(x) − δout, pmin = 2D(x) − δout for δout �
2D(x), pmin = 0 for δout � 2D(x), and

�(x) =
√

�2 − x2, D(x) =
√

D2 − x2. (A6)

Numerical evaluation of (A5) shows that, with V = 0.6 (which
we used in our estimates), the effect of flow reduces the width
significantly.

For δside = δx the effect of flow is largely canceled and we
neglect it. Consequently, the distribution is

P (δside) = e−δ2
side/2v2

∫ �(x)

D(x)
dp+ydp−ye

−(p+y+p−y )2/2r2

× e−(p+y−p−y )2/2v2
(A7)

where x = δside/2. One Gaussian integration can be expressed
in terms of error functions and one obtains

P (δside) = e−δ2
side/2v2

∫ �(x)

D(x)
dy+e−2y2

+/(r2+v2)

×
{

erf(s|B+|) + erf(s|B−|)

−
[

A+
|A+|erf(s|A+|) − A−

|A−|erf(s|A−|)
]}

(A8)

with

A± = ±D(x) + w, B± = ±�(x) + w,
(A9)

w = y+
r2 − v2

r2 + v2
, s2 = r2 + v2

2r2v2
.

Note that we always have B+ � 0 and B− � 0.
Finally, let us consider δlong. In this case there is no lower

limit on particle momenta. Consequently, the distribution
becomes

P (δlong) ∼ e−δ2
long/2v2

∫ 2�−δlong

0
dpoute

−p2
out/2r2

‖

= e−δ2
long/2v2

erf

(
2� − δlong

r
√

2

)
. (A10)
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