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The microscopic formulas of the bulk viscosity ζ and the corresponding relaxation time τ� in causal dissipative
relativistic fluid dynamics are derived by using the projection operator method. In applying these formulas to the
pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent
results. In the leading-order approximation in the chiral perturbation theory, the relaxation time is enhanced near
the QCD phase transition, and τ� and ζ are related as τ� = ζ/[β{(1/3 − c2

s )(ε + P ) − 2(ε − 3P )/9}], where ε,
P , and cs are the energy density, pressure, and velocity of sound, respectively. The predicted ζ and τ� should
satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by
Israel and Stewart and the string theory, and confirm that all three approaches are consistent with the causality
condition.
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I. INTRODUCTION

Relativistic hydrodynamics is an important tool for
describing high energy flow phenomena in different areas,
such as heavy-ion collisions, relativistic astrophysics, and
cosmology, although its theoretical foundation has not yet been
fully established, in particular, when dissipative processes are
involved [1]. The simplest formulation is a relativistic covari-
ant extension of the nonrelativistic Navier-Stokes equation. It
is, however, known that the relativistic Navier-Stokes theory
suffers the problem of relativistic acausality and instability
[2–4]. The importance of the modification of the relativistic
Navier-Stokes theory is discussed also in Ref. [5].

Since the seminal work by Israel and Stewart [6], many
different approaches of relativistic hydrodynamics which are
consistent with causality have been proposed [7–13]. In the
following, we call these the causal dissipative relativistic
hydrodynamics (CDR) theories [1]. The crucial difference
of any CDR theories from the Navier-Stokes theory can be
characterized by the introduction of finite relaxation times
in the definitions of irreversible currents. This aspect is
somehow overlooked but has an important consequence. That
is, any relativistically causal fluids will be non-Newtonian
in the sense that irreversible currents are no longer simply
proportional to the corresponding thermodynamic forces while
their Newtonian counterparts are.

In hydrodynamics, all transport coefficients such as shear
viscosity and bulk viscosity are inputs and should be deter-
mined from a microscopic theory. In Navier-Stokes theory,
the coefficients are usually calculated by using two different
approaches. One is the kinetic approach based mainly on the
Boltzmann equation, and the other is the microscopic approach
using the Green-Kubo-Nakano (GKN) formula.

Strictly speaking, the kinetic approach is applicable only
to rarefied gas and not reliable in practice for calculating the
transport coefficients for finite density systems. For example,
the density expansion of the shear viscosity η(ρ) of a classical

fluid in three-dimensional space is given by [14]

η(ρ) = η0 + η1ρ + η2ρ
2 ln ρ + · · · . (1)

What we can calculate from the Boltzmann equation is only
the first term η0. This is because the Boltzmann equation
is the lowest order approximation of the Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy equation and
does not contain the information of multiple collisions,
which violates the important assumption of the Boltzmann
equation, that is, molecular chaos. To calculate the further
expansion coefficients η1 and η2 in the kinetic approach, we
have to use, for example, the Bogoliubov-Choh-Uhlenbeck
equation which is a generalized Boltzmann equation [14].
Unfortunately, a systematic generalization of the relativistic
Boltzmann equation is not yet known.

On the other hand, the GKN formula does not have such
a limitation with respect to the finiteness of density as far as
we know, because it is derived from the microscopic theory,
quantum field theory [15]. However, for a relativistic fluid, we
have to be careful because the Newtonian property of a fluid
is assumed to derive the GKN formula. Thus new formalism
is needed to calculate the transport coefficients of CDR.

Transport phenomena such as viscosities, diffusion, and
heat conduction in hydrodynamics are related rather to the
changes in boundary conditions than to the responses of the
system to an external mechanical perturbation. For this reason,
the required formulation should be different from the ordinary
linear response theory. This fact was already emphasized by
Kubo [16]. As a matter of fact, the well-known expressions
of transport coefficients of relativistic hydrodynamics are ob-
tained by using the nonequilibrium statistical operator method
by Zubarev [17,18]. So far, several different approaches have
been proposed to calculate the transport coefficients: indirect
Kubo method, Langevin-Fokker-Planck method, regression
hypothesis based method, local equilibrium approach, external
reservoir method, prediction theory, and so on. See Ref. [19]
for details.
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Recently, we proposed a new microscopic formula to
calculate shear viscosity and the corresponding relaxation time
of CDR using the projection operator method, which belongs
to the Langevin-Fokker-Planck method in the classification
mentioned above [20]. Our formula is expressed in terms of
the time correlation functions of microscopic currents and is
a natural extension of the GKN formula. We showed that,
for shear viscosity, it reproduces the GKN results in the
leading order. When applied to a Navier-Stokes fluid and
nonrelativistic diffusion processes, our approach reproduces
the well-known results, as is discussed in Refs. [21,22].

The purpose of this paper is to derive the microscopic
formulas of the bulk viscosity ζ and the corresponding
relaxation time τ� in the framework of the projection operator
method [23]. We apply the result to a pionic fluid and calculate
in the leading-order approximation in the chiral perturbation
theory with the renormalizable energy-momentum tensor. We
find that the relaxation time τ� is enhanced around the
temperature near the QCD phase transition.

We further discuss the differences among our formalism, the
kinetic theory [6,24–26] and the string theory [27]. In a CDR,
the values of ζ and τ� should satisfy the causality condition,
which is derived by employing that the propagating speed of a
physical signal should not exceed the speed of light [3,4]. If this
condition is violated, relativistic fluids become unstable [3,4].
We confirm that the values of transport coefficients obtained by
all three approaches are consistent with the causality condition.

It should be noted that the bulk viscosity and the corre-
sponding relaxation time are important not only for heavy-ion
collision physics, but also for astrophysics, for example, the
stability windows in parameter space of rotating compact
stars [28], driving inflation in the early universe, and the
associated entropy production [29].

This paper is organized as follows. First we give a brief
review of the projection operator method in Sec. II for the
sake of later convenience. In Sec. III, we apply the method
and derive expressions for bulk viscosity and relaxation time.
We calculate the formulas in the leading-order approximation
and discuss the consistency with the causality condition
in Sec. IV. Possible other generalizations of our result is
discussed in Sec. V. The summary of our results concludes
this work in Sec. VI. Throughout this paper, we will use metric
g = diag(+,−,−,−) and the natural units h̄ = c = kB = 1.

II. PROJECTION OPERATOR METHOD

For later convenience, let us briefly review the projection
operator method [30–32]. It should be emphasized that the
projection operator method was first proposed by Nakajima
[33], although it is often referred to as the Mori-Zwanzig
formalism due to the extensive use and developments done
by these authors [34,35].

Many dynamical variables of practical interest, such as the
conserved quantities, usually vary slowly in time compared to
other microscopic quantities. We call them gross variables.1 In

1When a phase transition is present, in principle, we should
consider also the corresponding order parameters and soft modes

order to discuss the dynamics of these slowly varying relevant
variables, we need to introduce a coarse-graining procedure to
smooth out the microscopic dynamics. The projection operator
method provides a systematic way to extract the information
of the relevant coarse-grained dynamics from the underlying
microscopic theories.

In the case of a quantum system, the full microscopic
dynamics is described by the Heisenberg equation of motion,

∂tO(t) = i[H,O(t)] ≡ iLO(t), (2)

where O is an arbitrary operator and H is the Hamiltonian.
For simplicity, here we have assumed that H is independent
of time. See Refs. [37,38] for the case of a system with
time-dependent Hamiltonian. The second equality defines the
Liouville operator L. In order to project out the irrelevant
information associated with variables of microscopic (short)
time scales, we introduce a time-independent projection
operator P and its complementary operator Q = 1 − P , which
satisfy the following general properties,

P 2 = P, PQ = QP = 0. (3)

With the help of these operators, the Heisenberg equation of
motion can be re-expressed as [35,37,38]

∂

∂t
O(t) = eiLtP iLO(0) +

∫ t

0
dτeiL(t−τ )P iLQeiLQτ iLO(0)

+QeiLQt iLO(0). (4)

This is called the time-convolution (TC) equation and its
right-hand side is composed of three distinct parts. The first
term is called the streaming term and usually corresponds to
collective oscillations such as plasma wave and spin wave.
The second term is called the memory term which turns into
the dissipation term after a coarse-graining procedure. The
third term is identified with the noise term after implementing
coarse-graining of time, as we will see later. Thus this equation
is considered as a generalized Langevin equation. As a matter
of fact, the memory term and the noise term are related through
the fluctuation-dissipation theorem of second kind [35,39].
Note that the TC equation is very general and still equivalent
to the Heisenberg equation of motion.

The choice of the most appropriate projection operator
depends on the specific properties of a given system and also
on the coarse-graining procedure which we wish to introduce.
If we choose the projection operator so as to extract all
the relevant gross (in our case, hydrodynamic) variables, we
can, in principle, derive hydrodynamic equations from the
TC equation. For this purpose, we use the Mori projection
operator [35]. Let

Ā =

⎛
⎜⎜⎜⎜⎝

Ā1

Ā2

...

Ān

⎞
⎟⎟⎟⎟⎠ (5)

as the candidates of the gross (hydrodynamic) variables. We do not,
however, discuss such a case in this work [36].
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be an n-dimensional vector formed by n time-independent
operators corresponding to the gross variables {Āi}, where the
notation Ā is used to distinguish the Schrödinger operator from
its Heisenberg form, A = A (t). We choose Ā = A (0), so that
A (t) = eiLt Ā.

Then the time-independent Mori projection operator P is
defined as [35]

PO =
n∑

i=1,

ciĀi , (6)

where O is an arbitrary operator, and the coefficient ci is given
by

ci =
n∑

j=1

(O, Ā
†
j ) · (Ā, Ā†)−1

ji . (7)

Here (X, Y ) denotes the inner product of two arbitrary
operators X and Y (see below), and (Ā, Ā†)−1

ji denotes ji

element of the inverse matrix of (Ā, Ā†), i.e.,∑
j

(Ā, Ā†)−1
ij · (Āj , Ā

†
k) = δi,k. (8)

In this way, we expect that the relevant part of an arbitrary
operator is expressed as a function of the gross variables
by operating this projection operator. In order to follow the
dynamics of the gross variables in time, we would need the
time-dependent projections [40], but for the present purpose
of calculating the transport coefficients, the time-independent
projection is sufficient.

We are still left with the freedom to choose the definition
of the inner product. Here, following Ref. [35], we use Kubo’s
canonical correlation,

(X, Y ) =
∫ β

0

dλ

β
Tr[ρeqe

λH Xe−λH Y ], (9)

where ρeq = e−βH /Tr[e−βH ] with β being the inverse of
temperature. One can see that, if it is a classical system, Kubo’s
canonical correlation is reduced to the usual classical thermal
expectation value. Thus Kubo’s canonical correlation is the
quantum generalization of the classical expectation values. It
is easy to confirm that

(iLX, Y ) = −(X, iLY ). (10)

Finally, the TC equation for the gross variable A (t) in the
Heisenberg picture can be expressed as

∂

∂t
A(t) = i� A(t) −

∫ t

0
dτ�(τ )A(t − τ ) + ξ (t), (11)

where � and � are operators of (n × n) matrices and ξ is an
n vector whose elements are given by

i�ij =
∑

k

(iLĀi, Ā
†
k)(Ā, Ā†)−1

kj , (12)

�ij (t) = −θ (t)
∑

k

(iLQeiLQt iLĀi, Ā
†
k)(Ā, Ā†)−1

kj , (13)

ξi(t) = QeiLQt iLĀi . (14)

If the set of n-gross variables {Āi} is appropriately chosen
so as to extract all the dynamics associated with the slow
hydrodynamic time scale, we expect that the dynamical
variation time scale of the last term ξi(t) of Eq. (11) should
be very small compared to the hydrodynamic time scale,
because the projection operator Q projects out components
only orthogonal to {Āi}. For this reason the term ξi(t) is called
the noise term.

III. GENERAL FORMULAS FOR BULK VISCOSITY AND
RELAXATION TIME

In this section, we derive the microscopic formulas for the
bulk viscosity ζ and the corresponding relaxation time τ�. Our
strategy is as follows. We derive the evolution equation of the
bulk viscous pressure � from the TC equation, and compare
the derived microscopic equation with the phenomenological
one to extract the microscopic formulas. For our purpose of
obtaining the transport coefficient, it is sufficient to consider
small deviation from the stationary background fluid in thermal
equilibrium.

The phenomenological equation of the bulk viscous pres-
sure � in CDR is given by [7,8]

τ�uµ∂µ� + � = −ζ∂µuµ, (15)

where ζ , τ�, and uµ are the bulk viscosity, relaxation time, and
fluid velocity, respectively. The first term on the left-hand side
represents the retardation effect of � which is necessary to
satisfy relativistic causality. For τ� = 0, Eq. (15) is reduced to
the usual Navier-Stokes constructive equation. In general, as
is predicted from the kinetic theory, it is possible to introduce
more nonlinear terms in Eq. (15) but, as mentioned above,
here we discuss only the lowest order equation consistent
with CDR.

To avoid any possible influence from the shear stress tensor,
we consider a perturbation in an infinite fluid in thermal
equilibrium having a planar symmetry in the (y, z) plane. All
the quantities associated with the perturbed fluid dynamics
vary spatially only along the x direction. In this case, the fluid
velocity points to the x direction (if one wants to discuss only
the shear viscosity, one can choose the fluid velocity to point
to the x direction but varying spatially along the y direction,
as is done in Refs. [20,30]). Then, the equation of continuity
of the energy-momentum tensor T µν in momentum space is
given by

∂tT
x0(kx, t) = −ikxT

xx(kx, t), (16)

where kx denotes the x component of the momentum vector
k. On the other hand, Eq. (15) is simplified as

τ�∂t�(kx, t) + �(kx, t) = −ζ ikxux(kx, t). (17)

We use this equation as the definition of ζ and τ�. Here
�(kx, t), T x0(kx, t), and T xx(kx, t) are the Fourier transforms
of �(x, t), T x0(x, t), and T xx(x, t), respectively.

To obtain the microscopic expressions of ζ and τ�, we
derive the equation for � from the TC equation. For this pur-
pose, we have to choose appropriate gross variables included in
Eq. (17) to define the projection operator. Among T x0, T xx, �,
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and ux , the bulk viscous pressure � is the deviation from
the equilibrium pressure in the diagonal components of the
energy-momentum tensor. Thus we use the following operator
representation,

�(kx) = − 1
3T µ

µ (kx) + 1
3

〈
T µ

µ (kx)
〉
eq, (18)

where 〈· · ·〉eq represents the equilibrium expectation value.
Furthermore, as we will discuss later, ux can be regarded as
linearly dependent on T 0x in the lowest order of the perturba-
tion. Then, Eq. (17) contains basically two independent gross
variables,

Ā(kx) =
(

T̄ 0x(kx)

�̄(kx)

)
, (19)

where the bar notation, for example, �̄, refers to the operator
value of �(t) at t = 0.

According to Eq. (6), the projection operator P is now
defined by

PO = (O, T̄ 0x(−kx))
(T̄ 0x(kx), T̄ 0x(−kx))

T̄ 0x(kx)

+ (O, �̄(−kx))
(�̄(kx), �̄(−kx))

�̄(kx), (20)

Substituting it into Eq. (11), we obtain the following two
equations,

∂tT
0x(kx, t) = −ikx�(kx, t), (21)

∂t�(kx, t) = −ikxRkx T 0x(kx, t) −
∫ t

0
dτ�22(kx, τ )

×�(kx, t − τ ) + ξ (kx, t), (22)

where

Rkx = (�̄(kx), �̄(−kx))
(T̄ 0x(kx), T̄ 0x(−kx))

, (23)

and we used

(iLĀ, Ā†)(Ā, Ā†)−1 =
(

0 −ikx

−ikxRkx 0

)
. (24)

Note that we consider homogeneous energy density and
pressure. Then the first equation is nothing but just Eq. (16),
that is, the equation of continuity, and the second equation
describes the nontrivial evolution of �.

The exact expression of the memory function �22 is given
in Ref. [39]. However, if we are interested in the expression in
the low kx limit, we can calculate it more easily. From Eq. (22),
the evolution of (�(kx, t), �̄(−kx)) is given by

∂t (�(kx, t), �̄(−kx))

= −ikxRB
kx (T 0x(kx, t), �̄(−kx))

−
∫ t

0
dτ�22(kx, t − τ )(�(kx, τ ), �̄(−kx)). (25)

Here we used (ξ (kx, t), �̄(−kx)) = 0, which is calculated from
the definition of ξ (kx, t). Then the Laplace transform of the
memory function at low kx is

�L
22(kx, s) = 1 − sXL(kx, s)

XL(kx, s)
, (26)

where

XL(kx, s) ≡
∫ ∞

0
dt e−st (�(kx, t), �̄(−kx))

(�̄(kx), �̄(−kx))
. (27)

From the final value theorem of the Laplace transform, we
can show that

lim
s→0+

sXL(kx, s) = lim
t→∞

(�(kx, t), �̄(−kx))
(�̄(kx), �̄(−kx))

= 〈�(kx,∞)〉eq〈�̄(−kx)〉eq

(�̄(kx), �̄(−kx))
= 0. (28)

Here we used the mixing property of the ergodic theory.
Finally, the memory function in the low kx and s limit is
given by

�L
22(kx, s) = 1

XL(kx, s)
. (29)

To extract the phenomenological equation (17), we have
to violate the time-reversal symmetry. For this purpose, we
implement the coarse-graining of time. Let us introduce a
macroscopic time scale τM as

τM = εt, (30)

where ε is a scale parameter and less than unity. Then the
time-convolution integral is expressed as∫ τM/ε

0
dτ �22(kx, τ )�(kx, τM/ε − τ ). (31)

When the microscopic and macroscopic time scales are clearly
separated, we can take the vanishing ε limit. Then the integral
is given by

lim
ε→0

∫ τM/ε

0
dτ �22(kx, τ )�(kx, τM/ε − τ )

=
∫ ∞

0
dτ �22(kx, τ )�(kx, t). (32)

We call this coarse-graining the time-convolutionless (TCL)
approximation. Note that this approximation is very similar
to the so-called Markov approximation. In the present case,
however, there is still the memory effect for � even after
the TCL approximation, and we cannot call it the Markov
approximation. With this approximation, Eq. (22) is expressed
as

∂t�(kx, t) ≈ −ikxRkx T 0x(kx, t) −
∫ ∞

0
dτ�22(kx, τ )�(kx, t)

= −ikxRkx T 0x(kx, t) − 1

τ�(kx)
�(kx, t)

≈ −ikxRkx (ε + P )ux(kx, t) − 1

τ�(kx)
�(kx, t).

(33)

Here, the noise term is neglected. The function τ�(kx) in the
second line is defined by

τ�(kx) = XL(kx, s = 0). (34)
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From the second line to the third line, we used the following
replacement

T 0x(kx, t) � (ε + P )ux(kx, t), (35)

which comes from the expression of the phenomenological
energy-momentum tensor,

T 0x(x, t) = [ε + P + �(x, t)]ux(x, t), (36)

and is justified near the local rest frame. Because we defined
the projection operator with � and ux by neglecting nonlinear
terms, we cannot predict the coefficients of nonlinear terms
correctly in the present calculation. Thus, for the sake of
consistency, we neglect the nonlinear term �(x, t)ux(x, t)
in Eq. (36). The validity of the TCL approximation and the
general comment for the derivation of the nonlinear term are
discussed in Sec. V.

By comparing Eq. (33) with Eq. (17), we obtain the
following correspondences:

τ� = lim
s,k→0

XL(k, s), (37)

ζ = (ε + P )R0 lim
s,k→0

XL(k, s). (38)

For the sake of convenience, we express these expressions
in terms of the retarded Green’s functions. Note that the
correlation function XL(k, s) can be re-expressed as

XL(k, s) = − 1

β

∫ ∞

0
dt

∫
d3x e−st−ik·x

∫ ∞

t

dτ 〈�(x, τ )�̄(0)〉ret

×
[∫

d3x1 e−ik·x1 (�̄(x1), �̄(0))
]−1

, (39)

where the retarded Green’s function is defined by

〈�(x, t)�(x1, τ )〉ret

= −iθ (t − τ )Tr{ρeq[�(x, t),�(x1, τ )]}

=
∫ ∞

−∞

dω d3k
(2π )4

GR
�(ω, k)eiω(t−τ )e−ik(x−x1). (40)

See Appendix A for details.
Then, finally, the formulas of ζ and τ� are given by

ζ

β(ε + P )
= ζGKN

β2
∫

d3x(T̄ 0x(x), T̄ 0x(0))
(41)

= − i

β

limω→0 limk→0 ∂GR
�(ω, k)/∂ω

limk→0 limω→0 GR
T 0x (ω, k)

, (42)

τ�

β
= ζGKN

β2
∫

d3x(�̄(x), �̄(0))
(43)

= − i

β

limω→0 limk→0 ∂GR
�(ω, k)/∂ω

limk→0 limω→0 GR
�(ω, k)

. (44)

Here we have introduced the usual expression of bulk viscosity
for the relativistic Navier-Stokes fluid in the GKN formula
(obtained with the Zubarev method),

ζGKN = −
∫

d3x
∫ ∞

0
dt

∫ ∞

t

dτ 〈�(x, τ )�̄(0)〉ret

= i lim
ω→0

lim
k→0

∂GR
�(ω, k)

∂ω
, (45)

and one more retarded Green’s function,

GR
T 0x (ω, k) =

∫ ∞

−∞
dt d3x〈T 0x(x, t)T̄ 0x(0)〉ret e

−iωt eikx. (46)

Equations (41)–(44) are our main results. The bulk viscosity
and it relaxation time are expressed by the ratios of Green’s
functions and different orderings of limits.

IV. APPLICATIONS TO HOT PIONIC FLUID

As an application of our microscopic formulas (42) and
(44), we will calculate the bulk viscosity ζ and relaxation time
τ� for hot pion fluid in confined phase within an effective
model.

Let φ be the scalar field for pions (we simply use a real
scalar field to present pions since the charge does not affect
the results). The usual definition of the energy-momentum
tensor of this field is

T µν = ∂µφ∂νφ − gµνL, (47)

where L is a Lagrangian density. In this case, the bulk viscous
pressure of Eq. (18) for the noninteracting case would become
order

�(x, t) = 1
3 {[∂φ(x, t)]2 − 2M2φ2(x, t)}
− 1

3 〈[∂φ(x, t)]2 − 2M2φ2(x, t)〉eq, (48)

where M is the pion mass. However, these expressions are
not adequate for our purpose. First, note that the above bulk
viscous pressure does not vanish even in the massless limit
M = 0, which does not reflect the conformal property of the
Lagrangian in this limit. Furthermore, the energy-momentum
tensor (47) is not renormalizable, i.e., its matrix elements
depend directly on the cutoff of the renormalized perturba-
tion theory, as discussed in Ref. [41]. Thus we introduce
the renormalizable energy-momentum tensor θµν following
Ref. [41] as

θµν(x, t) = T µν(x, t) − 1
6 (∂µ∂ν − gµν∂2)φ2(x, t). (49)

Then the corresponding bulk viscous pressure for the nonin-
teracting case is given by

�(x, t) = −1

3
θµ
µ (x, t) + 1

3

〈
θµ
µ (x, t)

〉
eq

= −M2

3
[φ2(x, t) − 〈φ2(x, t)〉eq], (50)

which recovers the conformal nature of the system in the
vanishing limit of M . Note here that for the fermion and
gauge fields, the usual definition of energy-momentum tensor
is already renormalizable and no redefinition of the energy-
momentum tensor is needed.

However, because of the reason which will be discussed in
the end of this section, this is still not the definition of the bulk
viscous pressure which is used in the following calculation.
We recall that the behavior of the retarded Green’s function
GR

� in the low momentum limit is not changed by adding an
additional term which is proportional to the energy density in
the definition of the bulk viscous pressure. Finally, we added
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an additional term which is proportional to the energy density
to define the bulk viscous pressure instead of Eq. (18),

�(x, t) = −1

3
θµ
µ (x, t) +

(
1

3
− c2

s

)
θ00(x, t)

+
〈

1

3
θµ
µ (x, t) −

(
1

3
− c2

s

)
θ00(x, t)

〉
eq

= −M2

3
φ2(x, t) +

(
1

3
− c2

s

)
θ00(x, t)

+
〈
M2

3
φ2(x, t) −

(
1

3
− c2

s

)
θ00(x, t)

〉
eq

, (51)

where cs is the velocity of sound. This is the same definition
of the bulk viscous pressure discussed in Refs. [17,42]. One
can easily see that this bulk viscous pressure still vanishes in
the massless limit.

As the lightest particles, pions dominate the transport
properties of QCD in hadronic phase. From Eqs. (41) and
(43), once the leading-order result of ζGKN is obtained, the
corresponding leading-order results for ζ and τ� are obtained
by substituting the denominators on the right-hand side by their
noninteracting counterparts. A straightforward calculation
leads to

lim
k→0

lim
ω→0

GR
T 0x (ω, k) = −ε − P, (52)

lim
k→0

lim
ω→0

GR
�(ω, k) = −

(
1

3
− c2

s

)
(ε + P ) + 2

ε − 3P

9
, (53)

where Ep =
√

p2 + M2. The energy density and pressure of
the free pion gas are, respectively, given by

ε = Nπ

V

∑
p

Epf (Ep), (54)

P = Nπ

3V

∑
p

p2

Ep
f (Ep), (55)

where f (x) is the Bose-Einstein distribution function 1/(eβx −
1) and the prefactor Nπ = 3 counts the degeneracy of π+, π−,
and π0.

The left-hand side of Eq. (53) has a term which is ultraviolet
divergent. In order to obtain the finite result of the right-hand
side, we have renormalized out this vacuum term. However, it
should be noted that the renormalization of this divergence is
not trivial, as discussed in Ref. [43].

In short, in the leading-order approximation, the bulk
viscosity and relaxation time are given by [23]

ζ

β(ε + P )
= ζGKN

β(ε + P )
, (56)

τ�

β
= ζGKN

β
[(

1
3 − c2

s

)
(ε + P ) − 2 ε−3P

9

] . (57)

The first equation shows that the bulk viscosity ζ is reduced
to the GKN bulk viscosity ζGKN, similary to the case of the
shear viscosity in the leading-order calculation [20]. There
already exist several calculations for ζGKN [44]. Thus we will
not discuss its behavior here.

FIG. 1. Temperature dependence of the relaxation time of the bulk
viscous pressure τ�/β of the hadron phase. The solid line represents
the result of the leading-order approximation in chiral perturbation
theory. For the sake of comparison, the result of the 14 moment
approximation from Ref. [45] is shown by the dashed line.

By adopting the result of ζGKN calculated in the chiral
perturbation theory, we plot the temperature dependence of the
dimensionless ratio τ�/β in the hadron phase in Fig. 1. For
the sake of comparison, the relaxation time calculated from the
Boltzmann equation with Grad’s moment method is shown by
the dashed line [45]. The order of magnitude is same as the
relaxation time of the shear viscosity, τπ/β, which is shown
in Fig. 1 in Ref. [20]. However, the temperature dependence
of τ�/β is nontrivial. As shown in Ref. [20], τπ/β is a mono-
tonically decreasing function of temperature in the hadronic
phase. On the other case, τ�/β, which is a decreasing function
at low temperature, starts to increase around T = 100 MeV
and shows maximum near the QCD phase transition. This
comes from the enhancement of ζGKN. As discussed in Ref.
[46], this enhancement is attributed to two mechanisms,
the trace anomaly and the unitarity correction. The latter is
related to the consideration of heavier excited states in chiral
perturbation theory.

Now we compare our result with the results from Grad’s
method with the 14 moment approximation [6,24] and string
theory [27]. For this purpose, it is convenient to consider the
ζ/τ� ratio, because this quantity is independent of the choice
of the collision term in the Boltzmann equation. In our leading-
order result for pions, this ratio is given by

ζ

τ�(ε + P )
= R0 =

(
1
3 − c2

s

)
(ε + P ) − 2

9 (ε − 3P )

(ε + P )
. (58)

In the result of the string theory, this ratio is given by [27]

ζ

τ�(ε + P )
=

(
1/3 − c2

s

)
2 − ln 2

. (59)

In the 14 moment approximation, this ratio is calculated by
using the function β0 which is defined by Eq. (7.8c) of Ref. [6].

The temperature dependence of the ζ /τ� ratio for pions
is shown in Fig. 2. The solid, dashed, and dot-dashed lines
represent our microscopic formula (58), the 14 moment
approximation, and the string theory, respectively. The string
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FIG. 2. Temperature dependence of the ζ/τ� ratio. The dot-
dashed, solid, and dashed lines represents the results of string theory,
our formula (58), and the 14 moment approximation, respectively.

theory predicts the largest value of the ratio, whereas the 14
moment approximation estimates the smallest value. At high
temperature, the three lines are monotonically decreasing func-
tions of temperature. The qualitative difference is observed at
low temperature. The ratios of our formula and the string
theory are still finite at T = 0 but that of Grad’s method
vanishes. The meaning of this difference is related to quantum
fluctuation which is not included in the Boltzmann equation.
This result is reported in another paper comparing our result
with a new kinetic calculation based on the Boltzmann
equation [23,26].

It is worth mentioning that this ratio is closely related to
the propagation velocity of signals in CDR, which is given
by [3,8]

vg =
√

c2
s + ζ

τ�(ε + P )
. (60)

Here, we neglected the contribution from the shear stress
tensor. As discussed in Refs. [3,4], for hydrodynamics being
causal and stable, this group velocity should be smaller than
the speed of light. Thus this ratio should satisfy the constraint

ζ

τ�(ε + P )
� 1 − c2

s . (61)

This is the so-called causality condition [3,4,7]. One can easily
see from Fig. 2 that all three calculations satisfy the causality
condition.

As mentioned before, we used Eq. (51) instead of Eq. (50)
as the definition of the bulk viscous pressure. Then we pointed
out that both definitions should give the same result. However,
this is not trivial when there is a UV divergence. As a matter of
fact, the ζ/τ� ratio calculated with Eq. (50) is different from
the solid line in Fig. 2 when we adapt the simple subtraction
of the vacuum term as renormalization. In this calculation,
we believe the calculation with Eq. (51) is more reliable than
that with Eq. (50) for the following three reasons: (1) When
we use Eq. (50) and employ the simple renormalization, the
calculated ζ/τ� violates the causality condition. (2) As pointed
out in Ref. [42], if Eq. (50) is used, the perturbative calculation

collapses because of divergence. This problem is solved by
using Eq. (51). (3) We can show that the ζ/τ� calculated
with Eq. (51) is consistent with the result from a new kinetic
calculation, as discussed in Ref. [23].

V. OTHER POSSIBLE GENERALIZATION

A. Another approximation to the memory function

In the derivation of Eq. (33), we replaced the time-
convolution integral of the memory term with the time-
convolutionless integral by assuming that the macroscopic
time scale is clearly separated from the microscopic one. On
the other hand, this coarse-graining may be formulated as the
following expansion of the memory term:∫ t

0
dτ�22(kx, τ )�(kx, t − τ )

=
∫ t

0
dτ�22(kx, τ )

[
�(kx, t) − τ

∂

∂t
�(kx, t) + · · ·

]
. (62)

When the higher order correction becomes important, the
evolution equation of the bulk viscous pressure is modified as

∂t�(kx, t) ≈ −ikxR
B
kx

(ε + P )ux(kx, t) −
∫ ∞

0
dτ�22(kx, τ )

×
[
�(kx, t) − τ

∂

∂t
�(kx, t)

]
−→ τ̃�∂t�(kx, t)

+�(kx, t) = −ikxζux(kx, t). (63)

Here, we replaced the upper limit of the integral by ∞,
assuming that the dominant contribution of the memory
function still comes from τ = 0. The expression of ζ is not
changed by this correction. However, the relaxation time is
modified by τ̃� which is given by

τ̃� = τ�

(
1 + lim

s,k→0

∂�L(k, s)

∂s

)
. (64)

This can be expressed in terms of the retarded Green’s function
as

τ̃� = τ�

[
limω,k→0 ∂2GR

�(ω, k)/∂ω2
] [

limk,ω→0 GR
�(ω, k)

]
2
[
limω,k→0 ∂GR

�(ω, k)/∂ω
]2 .

(65)

For example, let us assume an exponential form for the
memory function,

�22(0, t) = A�e−�t , (66)

where A and � are parameters. Then we obtain that

τ̃� = τ�

(
1 − A

�

)
. (67)

The result with the TCL approximation is reproduced in the
infinite � limit.

However, for the following reasons, we consider that τ� is
more reliable than τ̃�. Let us consider the equation

∂tJ (t) = F (t) +
∫ t

0
dτ�(t − τ )J (τ ). (68)
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From the initial and final value theorem of the Laplace
transform, we can calculate the initial and final values of J (t)
as follows:

lim
t→0

J (t) = lim
s→∞ sJL(s) = lim

s→∞ s
J (t = 0) − FL(s)

s − �L(s)

= J (t = 0) − FL(∞), (69)

lim
t→∞ J (t) = lim

s→0
sJL(s) = 0. (70)

Here we assumed that �L(0) is finite because of the existence
of the finite relaxation time. Next, we approximate the time-
convolution integral of the above equation by using the Taylor
expansion,

∂tJ (t) = F (t) + AJ (t) + B∂tJ (t). (71)

Then the initial and final values are

lim
t→0

J (t) = J (t = 0) − BJL(t = 0) − FL(∞)

1 − B
, (72)

lim
t→∞ J (t) = lim

s→0
sJL(s) = 0. (73)

To reproduce Eq. (69), we have to set B = 0.
As another reason, we consider the calculation of the

transport coefficients of the diffusion equation. As shown by
Kadanoff and Martin [47] and later by one of the present
authors [48], the ratio of the diffusion coefficient D and the
corresponding relaxation time τD is exactly determined from
a sum rule. See Eqs. (B.10), (B.16), and (B.28) of Ref. [48].
Then we obtain

D

τD

=
∫

d3x(J(x), J(0))∫
d3x(n(x), n(0))

, (74)

where n is the conserved number density and ∂tn + ∇J = 0.
In the projection operator method, this result is reproduced
only when the TCL approximation is applied.

That is, if we regard the TCL approximation as the lowest
order of the Taylor expansion and the next-order correction is
considered, we obtain a result which is inconsistent with the
initial value theorem and the sum rule.

When we observe with the time scale where the structure of
the memory function in Eq. (68) cannot be neglected, it means
that there still exist macroscopic degrees of freedom in the
memory function. To perform the program of coarse-graining
in the projection operator method, we have to redefine the
projection operator so as to extract this remaining macroscopic
degree of freedom. Then the form of hydrodynamics itself is
changed and the obtained equation is not given by Eq. (15)
anymore. In other words, once we assume that the hydrody-
namic equation is given by Eq. (15), we must observe with
the time scale where the structure of the memory function is
negligible, and hence, we must use the TCL approximation
instead of the Taylor expansion.

As an example of the time dependence of the memory
function, see Fig. 4 in Ref. [36]. One can see that the memory
function has finite values only around t = 0.

B. Nonlinear terms

In this work, we used the phenomenological equation (15)
as the definition of the bulk viscosity ζ and the relaxation time
τ�. On the other hand, it is possible to introduce nonlinear
terms to the phenomenological equation. For example, it
might be possible to derive the hydrodynamic equation for
the rarefied gas from the Boltzmann equation, by using
Grad’s moment method with the 14 moment approximation.
In particular, the equation of the bulk viscous pressure is given
by [24–26]

τ�

d

dτ
� + � = −ζ∂µuµ + a1�∂µuµ + a2ν

µ duµ

dτ
+ a3∂µνµ

+ a4ν
µ�µν∂

να + a5πµν�
µναβ∂αuβ, (75)

where

�µν = gµν − uµuν, (76)

�µναβ = 1
2

(
�µα�νβ + �µα�νβ − 2

3�µν�αβ
)
. (77)

To obtain the microscopic expressions of these ai’s in the
projection operator method, the definition of the projection
operator must be generalized so as to collect all gross variables
that appear in this nonlinear equation. This will be presented
in future work.

VI. CONCLUDING REMARKS

In this paper, we derived the microscopic formulas of the
bulk viscosity ζ and the corresponding relaxation time τ�

in causal dissipative relativistic fluid dynamics by using the
projection operator method. Applying these formulas to the
pionic fluid and calculating in the leading-order approximation
in chiral perturbation theory, we found that the relaxation
time is enhanced around the temperature near the QCD phase
transition, and there is a simple relation τ� = ζ/[β{(1/3 −
c2
s )(ε + P ) − 2(ε − 3P )/9}] between ζ and τ�. We compared

our result with the results of Grad’s moment method with the
14 moment approximation and the string theory by calculating
the ζ/τ� ratio which is independent of the choice of the
collision term of the Boltzmann equation. The ratio must be
smaller than (1 − c2

s )(ε + P ) to satisfy the causality condition.
We confirmed that all three approaches are consistent with
the causality condition. Finally, we discussed that the time-
convolutionless approximation, which is used to derive the
transport coefficients, is consistent with exact results, and we
should not consider corrections to this approximation.

It should be emphasized that Grad’s moment method
with the 14 moment approximation is not a unique method
for calculating the transport coefficients of CDR from the
Boltzmann equation. Recently, a new calculation method
based on the Boltzmann equation was developed, and it was
found that the calculated transport coefficients are different
from those of the 14 moment approximation [26]. These new
results are completely consistent with the leading-order results
of our formulas. This result was reported in another paper [23].
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APPENDIX: RELATION BETWEEN KUBO’S CANONICAL
CORRELATION AND RETARDED GREEN’S FUNCTION

In this Appendix, we give a relation connecting Kubo’s
canonical correlation and the retarded Green’s function. This
relation is used to obtain Eqs. (42) and (44). From the definition
of Kubo’s canonical correlation, we can transform it as

(�(t, x),�(t ′, x′))

≡
∫ β

0

dλ

β
Tr[ρeqe

λH�(t, x)e−λH �(t ′, x′)]

=
∫ β

0

dλ

β
〈�(t − iλ, x)�(t ′, x′)〉eq

= −
∫ β

0

dλ

β

∫ ∞

0
ds〈�(t − t ′ − iλ, x)

d

ds
�(s, x′)〉eq

= i

∫ ∞

0
ds

∫ β

0

dλ

β

d

dλ
〈�(t − t ′ − iλ, x)�(s, x′)〉eq

= i

∫ ∞

0

ds

β
〈[�(s, x′),�(t − t ′, x)]〉eq

= i

∫ ∞

0

ds

β
〈[�(s, x′),�(t − t ′, x)]〉eq. (A1)

Furthermore, when t = t ′, we have

(�(0, x),�(0, x′)) = i

∫ ∞

−∞

ds

β
θ (s)〈[�(s, x′),�(0, x)]〉eq

= −
∫ ∞

−∞

ds

β
GR

�(s, x′ − x)

= − 1

β
lim
ω→0

GR
�(ω, x′ − x). (A2)

Then we obtain∫
d3x(�(0, x),�(0, 0)) = − 1

β
lim
k→0

lim
ω→0

GR
�(ω, k). (A3)
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