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Dilepton production in schematic causal viscous hydrodynamics
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Assuming that in the hot dense matter produced in relativistic heavy-ion collisions, the energy density, entropy
density, and pressure as well as the azimuthal and space-time rapidity components of the shear tensor are uniform
in the direction transversal to the reaction plane, we derive a set of schematic equations from the Isreal-Stewart
causal viscous hydrodynamics. These equations are then used to describe the evolution dynamics of relativistic
heavy-ion collisions by taking the shear viscosity to entropy density ratio of 1/4x for the initial quark-gluon
plasma (QGP) phase and of 10 times this value for the later hadron-gas (HG) phase. Using the production
rate evaluated with particle distributions that take into account the viscous effect, we study dilepton production
in central heavy-ion collisions. Compared with results from the ideal hydrodynamics, we find that although
the dilepton invariant mass spectra from the two approaches are similar, the transverse momentum spectra are
significantly enhanced at high transverse momenta by the viscous effect. We also study the transverse momentum
dependence of dileptons produced from QGP for a fixed transverse mass, which is essentially absent in the ideal
hydrodynamics, and find that this so-called transverse mass scaling is violated in the viscous hydrodynamics,

particularly at high transverse momenta.
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I. INTRODUCTION

The ideal hydrodynamics without shear viscosity was quite
successful in describing the anisotropic flow of particles in
heavy-ion collisions at the Relativistic Heavy-Ion Collider
(RHIC) [1,2]. Because the viscosity is inversely proportional
to the scattering cross section between constituent particles,
the applicability of the ideal hydrodynamics at RHIC provides
a strong evidence that the quark-gluon plasma (QGP) formed
at RHIC is a strongly coupled one (sQGP). The study based
on the Ads/CFT gauge-gravity duality has, however, suggested
that the shear viscosity to entropy density in the QGP cannot
be smaller than 1/47 [3]. Small viscosities of QGP have also
been obtained in studies based on either the quasiparticle
model that fits the equation of state from the lattice gauge
calculations [4] or the pQCD, including both gluon elastic
and radiative scatterings, which gives a good description of
measured elliptic flows at RHIC [5]. On the other hand, the
viscosity of hadronic matter was found to be much larger in
theoretical studies [6—8], about an order of magnitude larger
than the lower bound predicted by the Ads/CFT gauge-gravity
duality.

Including a small viscosity in the hydrodynamics has led
to an improved description of measured anisotropic flows of
hadrons at large transverse momenta [9]. A nonzero viscosity
also affects particle momentum distributions in the hot dense
matter produced in heavy-ion collisions, resulting in a devia-
tion from thermal equilibrium during its expansion, and this is
particularly so for particles of high transverse momenta [10].
Moreover, the viscosity can change the evolution dynamics
of produced hot matter in relativistic heavy-ion collisions.
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Because of the heat generated by viscosity, cooling of the
hot matter becomes slower, leading to a slower decrease of
its temperature and thus a larger transversal but a slower
longitudinal expansion compared to the case of the ideal
hydrodynamics [11].

The viscous effect can further affect dilepton production
in relativistic heavy-ion collisions, which was suggested
as a possible tool to probe the properties of quark-gluon
plasma [12-17] as well as those of hot dense hadronic
matter [18-24]. As shown in Ref. [25], the viscosity modifies
significantly the transverse momentum spectrum of dileptons
produced in relativistic heavy-ion collisions, although not
much the invariance mass spectrum. This study was based on
the noncausal Navier-Stokes viscous hydrodynamics, which
is known to have instabilities in numerical simulations [26],
and only included the viscous effect on dilepton produc-
tion in the leading-order correction from modified particle
distributions. In the present paper, we extend the study
by using the causal Israel-Stewart viscous hydrodynamics
and including also the effect of the second-order correction
from modified particle distributions on dilepton production.
To simplify calculations, we assume that in the hot dense
matter produced in relativistic heavy-ion collisions, the energy
density, entropy density, and pressure as well as the azimuthal
and space-time rapidity components of the shear tensor are
uniform in the direction transversal to the reaction plane
and derive a set of schematic equations as in Refs. [27,28]
for the ideal hydrodynamics. Results from our study will
be relevant to the physics of dilepton transverse momen-
tum spectra [29-31] that have been intensively discussed
during the past few years following the publication of
experimental data from heavy-ion collisions at the SPS by
the NA60 Collaboration [32].

This paper is organized as follows: In Sec. II, general
causal viscous hydrodynamic equations are introduced. These
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equations are simplified in Sec. III by assuming that all thermal
quantities as well as the azimuthal and space-time rapidity
components of the shear tensor are uniform in the transversal
direction. In Sec. IV, the quasiparticle model of massive quarks
and gluons for the quark-gluon plasma and the resonance gas
model for the hadronic matter are introduced for describing the
equation of state of the hot dense matter produced in relativistic
heavy-ion collisions. The schematic viscous hydrodynamic
equations are then solved in Sec. V for heavy-ion collisions
at RHIC energies to show the viscous effect on the evolution
dynamics and the distribution of particle transverse momentum
spectra. In Sec. VI, dilepton production is studied in the
viscous hydrodynamics to find out the effect of viscosity on
the dilepton invariant mass and transverse momentum spectra.
Finally, discussions and summary are given in Sec. VII. Details
on the method used to solve the viscous hydrodynamics
are given in Appendix A, whereas those on the derivation
of the dilepton production rate using the modified particle
distributions from the viscous hydrodynamics are given in
Appendix B. Also, the explicit expression for the p meson
differential yield is shown in Appendix C.

II. THE VISCOUS HYDRODYNAMICS

In hydrodynamic description of relativistic heavy-ion
collisions, the hot dense matter is characterized by its net
charge currents and energy-momentum tensor. Because parti-
cles at midrapidities are largely produced ones, their net charge
currents are essentially zero and can be safely neglected. In the
Landau and Lifshitz frame, which assumes that the four-vector
velocity u* = y (1, v)is parallel to the energy flow and the heat
conductivity is zero [33], the energy-momentum tensor can be
written as [34]

T" = (e + p)u"u’ — pg"’ + ", (D

where e and p are the energy density and pressure, respectively,
and " is the traceless symmetric shear tensor. At midrapidity
particles follow essentially the boost-invariant expansion along
the longitudinal direction [35] (i.e., the longitudinal flow
velocity is equal to z/¢), if it starts at z = t = 0. Furthermore,
the transverse flow velocity is independent of the azimuthal
angle ¢ in central heavy-ion collisions. In the (7,7, ¢, n)
coordinate system defined by

1 ¢t
T =12 —22, n:—ln—+z,
2 t—z
r=+x*+y?,

¢ = tan"'(y/x),

only T7%, T'", T, T", and T*? components of the energy-
momentum tensor, and 777, 7’7", 77, 7™, and %% of the
shear tensor are nonzero in central heavy-ion collisions. For
the energy-momentum tensor, they are given by

2

T =(e+ Pui — P,
T = (e+ Pucu,, (3)
T = (e+ Pu; + P,

where P, = p — 22" — r27%? is the effective radial pres-
sure. The azimuthal and space-time components of the shear

PHYSICAL REVIEW C 83, 024904 (2011)

tensor r>?? and 727" are the only independent ones as the
others can be related to them according to

77 = vrnrr’
77— U,JT” — ernrr’ (4)
I —y,.z(rznw + 27,

where v, is the radial velocity and y, = 1/,/1 — v2. The
first two equations are derived from u,7w*” = 0 and the last
one from the traceless property x/; = 0. The shear tensor

components 7% and 7" are boost invariant in the radial
direction and satisfy the following simplified Israel-Stewart

equations: [34]
1 2ns (6 ;
am = (2B ()
Ve T 2\3 1

1 2ns (6 Uy
(9, + v,0,)m% = — [nw—%(—— i )} ©)
VrTr r 3 r

(8‘[ + vrar)nm] = -

where
1 1
0=0-u=-0.(ty,)+ —-0.(rv-y,),
T r

with n; and t, being the shear viscosity and the relaxation
time for the particle distributions, respectively.

From the energy-momentum conservation conditions
0,T"" =0, we then obtain the following viscous hydrody-
namic equations for the produced fire cylinder:

1 1 1
—0,(tT™) 4+ =0,(rT™) = ——(p + T22™), (7)
T r T

1 Tr 1 rr 1 2_pop
;&(TT )+;3r(rT )= ;(p+r ??). (®)

Furthermore, the condition u,(7,") =0, where the flow
velocity (ur, u,, ug, uy) = (y/coshn, yv,, 0,0) reduces to
(Y, ¥rVr, 0,0) in midrapidities and T.," is the covariant
derivative [34], leads to

1 1
=0 (Tsyy) + =0,(rsy,vr)
T r

= —l u—rtzn”” + &rzn‘”
T| t r

— Bty + Bou, )(r*w?? + rzn"’w} 9)

where s = (e + p)/T is the local entropy density in the hot
dense matter. Equation (9) shows that a nonzero shear tensor
affects the entropy density of the matter.

III. A SCHEMATIC VISCOUS HYDRODYNAMICS

If all thermal quantities like energy density, temperature,
entropy density, and pressure as well as the azimuthal and
space-time components of the shear tensor are uniform along
the transverse direction in the hot dense matter produced
in heavy-ion collisions, we can then simplify the causal
viscous hydrodynamic equations by integrating them over the
transverse area [27,28]. Specifically, we integrate Eqs. (7) and
(9) as well as Egs. (5) and (6) multiplied by y,rz and y,rz,
respectively, over the transverse area. In terms of 7] = 2
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and 7)) = 727 this leads to
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3 (AT(T™)) = —(p + 7)) A, (10)
gaT(Arsm» = —A<y’r”’ 7y~ A(ry’)m? + {8f<A<yr>) - %A}(ﬂi’ +m),  AD
Aly, A 0 3
dc(Aly))m)) — {8T(A<yr>> +2¥}n;; = —;[n: - 2m{% - <VT> ” (12)

3: (Aly,)my) — {at(A<yr))+2A<yrvr>}n$ _ _i[%

r

where A = mR? with R being the transverse radius of the
uniform matter and (- - -) denotes average over the transverse
area. Assuming that the radial flow velocity is a linear
function of the radial distance from the center, that is, y,v, =
YrR(r/R), where R = 9R/dt and yg = 1/+/1 — R?, we then
have

2 p2 2 p2
(2) = 14+ B 22 = T
, 2 2 p (14)
_ 3 . VrUr _ VR
= 5z i = 1) < ; >_ e

Because the energy density e and pressure p are related by
the equation of state of the matter through its temperature 7,
Egs. (10)—(13) are thus four simultaneous equations for T, R,
rr(f ,and 7).

IV. THE EQUATION OF STATE

For the equation of state of QGP, we use the quasiparticle
model of Ref. [36], which assumes that the QGP is composed
of noninteracting massive quarks and gluons. In terms of the
temperature 7 of QGP, their masses are given by

N, N 2(T)T? 2(T)T?
it (Ne  NAEOT L 2o
§ 3 6 2 a 3
where the strong coupling constant g(7) is given by
4872

(1IN. —=2Np)In FX(T, T, A)’

18 T T.
18.4¢T/TFP2 4+ 1T, A’
with T, = 170 MeV, T./A = 1.05, N. = 3, and Ny = 3. The

pressure, energy density, and entropy density of QGP are then
given, respectively, by

¢(T) =

F(Tv TC? A) =

p(r) =32 /Dodkf-(T)—k4 _ B(T)
; 67'[2 0 ' Ei
= T)— B(T),
Dol ?g (Oo) (16)
N8 2 (T,
o(T) = §i :27#[0 Ak f,(T)E; + B(T),

S K2+ mX(T
s('f>=2'327f2T/0 dkﬁ-(TﬁT'm,

1

9 rUr
(-2

with m;(T) and g; being, respectively, the thermal mass and
degeneracy factor of parton species i. The parton distribution
function is denoted by

1

Ji(T) = BT L] (17)

with the plus and minus signs in the denominator for quarks

\/m? + k2. For the bag

pressure B(T), it is determined from the relation s = dp /90T
such that

and gluons, respectively, and E; =

Im*(T)
AT

B(T)= B " ar_2po
=Bo+y [ dT (18)
i YT

am3(T)

where By is the bag pressure at 7, and is taken to be 0.095 times
the energy density at this temperature to keep the pressure
continuous at 7. A similar value of By was used in Ref. [37]
for the case of nozero but small baryon chemical potential.

For the HG phase, we use the resonance gas model that
includes both stable hadrons and their resonances up to
1.5 GeV for mesons and 2.0 GeV for baryons. Its pressure,
energy density, and entropy density can be similarly evaluated
as those in Eq. (16) for the QGP, except that the bag constant is
not present and the hadron masses are taken to be their values
in free space.

Because of the larger entropy density in QGP than in HG
at 7., a mixed phase of constant temperature 7, is introduced
during the transition between these two phases of matter. In
terms of the fraction f of HG in the mixed phase, the entropy
of the mixed phase is

s=fs?+1 - )<, (19)

where s and s are, respectively, the entropy density of HG
and QGP at T,. Similar relations hold for the energy density
and pressure.

We refer the reader to Ref. [38] for details of the previous
equations of state for QGP and HG.

For the shear viscosity, we take its ratio with respect to
the entropy density to be 1/4m for QGP as given by the
Ads/CFT gauge-gravity duality and 10 times this value for HG
as determined from the hadronic transport model [7]. For the
relaxation time 7, in Egs. (5) and (6), we use the assumption
n/tx = sT /3 [11] for both QGP and HG.
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V. HEAVY-ION COLLISION DYNAMICS IN THE
SCHEMATIC VISCOUS HYDRODYNAMICS

The schematic viscous hydrodynamic equations,
Egs. (10)—(13), can be solved by dividing the time into
infinitesimal intervals as shown in Appendix A. In the
following, we show results obtained from the schematic
viscous hydrodynamics with the initial conditions of
790 = 0.6 fm/c for the thermalization time, Ty = 319 MeV
for the initial temperature, and V, = 0.01¢ for the initial
radial flow velocity [38], which are appropriate for
heavy-ion collisions at the top RHIC energy. In the top
panel of Fig. 1, the time evolution of the temperature T
of the fire cylinder is given by the solid line. It is seen that
the QGP, mixed, and HG phases last for about 5.1 fm/c,
1.4 fm/c, and 10.0 fm/c, respectively, which are similar to
those in the ideal hydrodynamics with zero viscosities in both
QGP and HG as shown by the dashed line in the top panel of
Fig. 1. The latter is obtained with a higher initial temperature
of Tp =338 MeV to ensure the same total entropy per
unit midrapidity at thermal freeze-out as that in the viscous
hydrodynamics. For the time evolutions of the radial flow
velocity d R/dt and transverse radius R of the fire cylinder in
viscous hydrodynamics, they are shown by solid lines in the
middle and bottom panels of Fig. 1, respectively, and both are
slightly above those in ideal hydrodynamics (dashed lines).

Figure 2(a) shows the change of entropy per unit rapidity
in time. Because of nonzero viscosity, the entropy per
unit rapidity (solid line) increase with time in the viscous
hydrodynamics, reaching a value at thermal freeze-out similar

0_4|||||||||||||||||
viscous |

< 03

- ---ideal

GeV

< 0.2
|-

0.1

\
Taola a1y T

- N\
I|I|I|I|I

2 4 6 8 10 12 14 16
T (fm/c)

FIG. 1. (Color online) Time evolutions of temperature 7 (top
panel), radial flow velocity d R/dt (middle panel), and transverse
radius R (bottom panel) of the fire cyclinder in viscous (solid lines)
and ideal (dashed lines) hydrodynamics.
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FIG. 2. (Color online) (a) Entropy per unit rapidity in viscous
(solid line) and ideal (dashed line) hydrodynamics. (b) Shear tensor
components rrf; (solid line) and 7, (dashed line) in the viscous
hydrodynamics. Dash-dotted and dotted lines are rrq‘f and 77 in the
Navier-Stokes limit.

to that in the ideal hydrodynamics (dashed line). Figure 2(b)
shows the time evolution of the shear tensor components
n$ (solid line) and m,! (dashed line). The two are seen to

satisfy approximately the relation nq‘f ~ —m,1/2. Using this

rr

result in Jrg —i—rr,’] = —n'", which is from traceless of the

shear tensor, leads to 7 ~ 7'". Because the two are equal

in the absence of radial flow [39], our results thus indicate
that the assumption of uniform n$ and 7] in central heavy-ion
collisions is reasonable.

For comparisons, we also show in Fig. 2(b) the shear
tensor components na‘f (dash-dotted line) and 7, (dotted line)
obtained in the Navier-Stokes limit, that is,

! :

) = 2ns[3T—Aa,(rA<yr>) - M, 0)
1 rvr

g = 2ns[maf<m<yr>>—<yr” ﬂ @1

It is seen that they only differ appreciably from those in the
Israel-Stewart causal viscous hydrodynamics at early times.

Although the evolution dynamics in the viscous hydro-
dynamics does not differ very much from that in the ideal
hydrodynamics, the transverse momentum spectra of particles
can differ significantly. According to Ref. [10], amicroscopical
model for the particle interactions in the medium is needed
to determine the momentum dependence of the viscous
correction to the particle momentum distributions. In the
present study, we use the one from Ref. [40], that is,

)
PubvT GY))
2T%(e + p)

where fjy(k) is the equilibrium thermal distribution of particles
in the ideal hydrodynamics and §f (k) is the viscous correc-
tion. This quadratic momentum-dependent viscous correction
corresponds to a relaxation time of the particle momentum

fk) = folk) +8f (k) = fo(k)[l +
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FIG. 3. (Color online) Quark (left panel), pion (middle panel),
and p meson (right panel) transverse momentum spectra from the
viscous (solid lines) and ideal (dashed lines) hydrodynamics at 7' =
300, 150, and 120 MeV, respectively.

distributions that is linearly proportional to the particle
momentum [10].

In Fig. 3, we show the quark (left panel), pion (middle
panel), and p meson (right panel) transverse momentum
spectra in local frame from the viscous (solid lines) and ideal
(dashed lines) hydrodynamics at temperatures of 300, 150, and
120 MeV, respectively. It is seen that the transverse momentum
spectra from the viscous hydrodynamics are enhanced at
high transverse momenta compared to those from the ideal
hydrodynamics. The inverse slope parameters of the quark,
pion, and p meson transverse momentum spectra are 340, 170,
and 130 MeV, respectively, which are significantly larger than
those in the ideal hydrodynamics. The total particle density is,
however, not much affected by the viscosity. These results can
be understood as follows. In the (7, r, ¢, ) coordinate system,
the factor p, p,m"" can be written as [41]

PPy’ = my cosh®(y — ™" + pj cos* (¢, — )"
+ p3 sin’ (¢, — @)} + m3 sinh*(y — )]
—2my pr cosh(y — n) cos(¢p, — )", (23)

where mp = vm? + p% with pr being the transverse momen-
tum, and y and ¢,, are the energy-momentum rapidity and the
azimuthal angle of the momentum, respectively. In the absence
of radial flow, Eq. (23) reduces to

pupy™’ = pr’” + pim). (24)

Because 7’7" is positive, the particle transverse momentum
distribution is thus enhanced at high p7. On the other hand, the
particle number density is not much affected by the viscosity
as all components of the shear tensor have similar magnitude
because of its traceless property. We note that the viscous
correction is larger for p mesons than for quarks and pions
as a result of their larger masses. Furthermore, the p-meson
transverse momentum spectrum at low transverse momenta
can be negative as the shear tensor component 7', whose
contribution is more important at low transverse momenta, is
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negative. In Fig. 3, the part of p-meson transverse momentum
spectrum that is negative is not shown.

If the relaxation time for the particle momentum distribution
is independent of momentum, then the viscous correction to
the particle momentum distribution would depend linearly
on the particle momentum [10]. In this case, the viscous
effect would be reduced, bringing the results from the viscous
hydrodynamics closer to those from the ideal hydrodynamics.
In Ref. [10], this effect was explicitly demonstrated for the
particle elliptic flow in noncentral heavy-ion collisions.

VI. DILEPTON PRODUCTION IN THE VISCOUS
HYDRODYNAMICS

A. In-medium dilepton emission

The dilepton production rate from the scattering of two
particles in hot dense matter is given by

dN [ &’k d’k;
d*x ) Qa3 @2r)?

where k; and k, are momenta of the two particles; v is
their relative velocity; and o is the cross section for dilepton
production from their scattering.

For QGP, we consider the dominant quark-antiquark anni-
hilation process for dilepton production, and its cross section is

2 g2
<7(M2)=47-m2 Z e L+ 2my /M

3Ne L= w2 1 —dam2 /w2

where m, is the quark mass, e; is the charge of quark species i,
and M? = (k| + k»)? is the squared invariant mass.

For HG, the dominant pion-pion annihilation is considered,
and the cross section is

f (k1) f(k2)veer0, (25)

(26)

M) dra® |F(M?)? { 4m?2 27
o = - ,
3 M? M?
with the electromagnetic form factor of pion,
Nimj‘
|Fr (MY = (28)

i=p,p',p" (mzz - M2)2 + ml2F12 ’
where p, o/, and p” denote p(770), p’(1450), and p”(1700),
respectively, with their respective width of I') =153 MeV,
')y =237 MeV, and T',» =235 MeV and respective strength
N,=1,Ny =8.02x 1073,and N,y = 5.93 x 1073 [14]. We
have used in the aforementioned the vacuum widths of p
mesons for dilepton emission to illustrate the viscous effect.
In nature, there is strong evidence for in-medium modification
of p mesons (see, e.g., Ref. [32] for a summary.).

Expressing the relative velocity as v = |Ki/E1 — Ko/ E3|,
Eq. (25) can be written in Lorentz-invariant form as

dN 1 /d3k1 &k, f(k)f(k)Mz X 4m? s

—_ = _ —_ —0

d*x ~ @2ne ) E E, UV M? ’
(29)

where m; is the mass of colliding particles. Changing variables
into P, = ky, + ko, and k,, = (ky,, — k2,,)/2, we can rewrite
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the Lorentz-invariant phase space as
&’k d°k,  d°Pd’k  d°P Ed’k
E, E, EE  E EE
with E = E| + E,. Because d°P/E is Lorentz invariant,

Ed’k/(E, E,) also should be Lorentz invariant. Boosting to
the center-of-mass frame of the two particles, we obtain

d°PEd’k PP E'PK  d°P ALK
E E\E, E E/E, E M’

(30)

€29

where K’ is the momentum, and E i s Eé, and E’ are energies of
particles 1 and 2, and their total energy in their center-of-mass
frame, respectively.

Using Eq. (22), the product of particle distribution functions
becomes

fk) fk) = folkr) folka) + fo(ki)Sf (k2)
+ folk2)df (k1) + 8f (k1)Sf (k2)

K kEm,,, kY,
= g1ge P |1 4 22 2T 12 17
2T*(e+p) 2T*(e+ p)
Ky kY kS k5 700705 ’ 32)
4T4(e + p)*

where g; and g, are degeneracies of particle 1 and 2,
respectively. Substituting Egs. (31) and (32) into Eq. (29),
we obtain

k“ k"'

28182/d P/dsk/ —PuT
d4x (2m)e T2(e + p)

N Y PO TN
T T et oy ~ 2’
where k¥ = (k{, k), k% = (k,, —k'), and JTW are momenta
of particles 1 and 2, and the shear tensor in their center-of-
mass frame, respectively. By using d*x = tdtrdrdnd¢ and
d*P/E = ndyd P% and integrating over the solid angle of k'’
in the right-hand side of Eq. (33), the differential yield of
dileptons in heavy-ion collisions is then given by

dN
i 4?;2)3)(1&420(1142) / drt f drr |:Io(oz)Ko(;3)
T
M2(1 + x/3) TP
—_— AiiLi(@)K;(B)
2 Z J J
ATe+p) | 54,
e (i+j=0,2,4) :|
—_— BijIi()K;(B) |.
4 2 Z J J
64T (€+p) i,j=0,1,2,3,4

(34)
In the aforementioned, X =1—4m?/M?, and I;(a) and
K ;(B) are modified Bessel functions with « = Py sinhp/T
and B = My cosh p/T, where p = tanh™! v,. The coefficients

Ajj, Bjj, and details on the derivation of the previous
expression are given in Appendix B.

B. Dilepton emission from vacuum decay of p mesons

Although the contribution from the vacuum decay of p
mesons at thermal freeze-out to the total dilpeton yield is
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small compared with that from the in-medium decay, which
is included in the present study via the pion-pion annihilation,
it can become important for dileptons of high transverse
momenta as a result of the large radial flow at thermal
freeze-out [31]. This contribution to the differential yield of
dilepton is given by [31]

dN dl et~ dN,

1
= — , 35
dydM?d*pr T, dM? dyd’Pr (33)
where
dl ) ot e 1 r
p—; = Fp%e te~ m,O2 £ ) (36)
am T(M? —m2)” 4 (m,T,)

with ', o+.~ = 7.04 keV, is the differential decay width of
p meson to dileptons and

dN, _ My (* ok
dydP? ~ 2n /0 rdr| b@OKiP) + gm0
(i+j=13)
x Y c,-,-l,-<a)1<,-<ﬂ)} (37)
i=0,1,2

is the differential yield of p mesons at freeze-out. In the
previous equation, R, T, «, and 8 are all evaluated at thermal
freeze-out. Details on the derivation of Eq. (37) and the
coefficients C;; are given in Appendix C.

C. Results

In Fig. 4, we show by solid lines the transverse momentum
(pr) spectrum of dileptons from the viscous hydrodynamics
for various dilepton invariant masses. Compared with those
from the ideal hydrodynamics given by the first term of
Egs. (34) and (37) and shown by dashed lines, the dilepton
spectra in the viscous hydrodynamics are enhanced at high pr
as in Ref. [25]. The viscous effect on the dilepton transverse
momentum spectra is thus similar to that on the particle
transverse momentum spectra as a result of enhanced density
of quarks in QGP or pions in HG at high pr. Because dileptons
of small invariant masses are mainly produced from pion-pion
annihilations in HG, in which the viscosity is large, the viscous
effect is thus particularly large for dileptons of small invariant

viscous
----ideal

é 3 4 5
P, (GeV)

FIG. 4. (Color online) Transverse momentum spectra of dileptons
of various invariant masses of 0.5, 1.5, and 2.5 GeV from top to bottom
in viscous (solid lines) and ideal (dashed lines) hydrodynamics.
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FIG. 5. Dilepton spectra from viscous (solid line) and ideal
hydrodynamics (dashed line).

masses. Too large a viscous correction makes, however, the
results from the viscous hydrodynamics unreliable. In fact,
negative values can appear for the dilepton yield from pion-
pion annihilation in integrating Eq. (34) over the radial variable
r if the dilepton invariant mass is large. In this case, we have set
the negative value to zero. This has, however, a negligible effect
on the final result as the contribution of pion-pion annihilations
in HG to dileptons of large invariant masses is insignificant
compared to that from quark-antiquark annihilations in QGP.

Figure 5 shows the dilepton invariant mass spectra from the
viscous (solid line) and the ideal (dashed line) hydrodynamics.
It is seen that less high mass dileptons are produced in viscous
hydrodynamics than in ideal hydrodynamics as a result of the
lower initial temperature.

In Ref. [14], it was shown in the ideal hydrodynamics
that the differential yield of thermal dileptons with a fixed
value of transverse mass My is essentially independent of
their transverse momenta if they are produced from QGP [14],
although this so-called My scaling is violated for dileptons
produced from HG. In Fig. 6, we show by dashed lines the
transverse momentum spectra of dileptons with My =1, 1.5,
2,2.5, and 3 GeV from QGP in the ideal hydrodynamics. It is
seen that the M7 scaling still holds approximately, although

viscous
----ideal

>
> ]
o
N -
Q_ -
©
>
o
Z i
©
107 ; . . . ,
00 05 10 15 20 25 3.0

P, (GeV)

FIG. 6. (Color online) Transverse momentum spectra of dileptons
from QGP with transverse mass M7y =1, 1.5, 2, 2.5, and 3 GeV from
top to bottom. Dashed and solid lines are, respectively, from ideal
and viscous hydrodynamics.
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we have used massive quarks and gluons in our study while
massless ones were used in Ref. [14]. The results from the
viscous hydrodynamics are shown by solid lines and it shows
that including viscosity leads to a violation of the My scaling
of dileptons from QGP at high Py.

VII. DISCUSSIONS AND SUMMARY

We have derived a set of schematic equations from the
causal viscous hydrodynamics of Israel-Stewart for central
relativistic heavy-ion collisions by assuming that not only
the energy density, pressure, and entropy density are uniform
in the produced fire cylinder but also the azimuthal and
space-time rapidity components of the shear tensor. Solving
these equations using the massive quasiparticle model for the
equation of state of QGP and the resonance gas model for that
of HG, we have found that the shear viscosity slightly delays
the cooling of produced hot matter and enhances somewhat
its transverse expansion. It also increases significantly the
particle distributions at high pr, compared with those in the
ideal hydrodynamics. Using this model, we have investigated
thermal dilepton production in relativistic heavy-ion collisions
by including contributions from the dominant quark-antiquark,
pion-pion annihilations, and p-meson decay after freeze-out.
Because of the viscous effect, the dilepton p7y spectrum
is enhanced at high pr, which is similar to those found
in Ref. [25] based on the noncausal Navier-Stokes viscous
hydrodynamics and the first-order viscous correction from the
modified particle transverse momentum distributions. For the
invariant mass spectrum of dileptons, it is found to differ very
little from that in the ideal hydrodynamics if the invariant
mass is low but is suppressed if the invariant mass is high as
a result of the lower initial temperature. We have also studied
the effect of viscosity on the M7 scaling of thermal dileptons
from QGP (i.e., the yield is independent of p7 for fixed
dilepton transverse mass My) that was previously predicted
in the ideal hydrodynamics with massless quarks and gluons,
and it is found that the My scaling still holds in the ideal
hydrodynamics even if QGP is composed of massive quarks
and gluons as aresult of their strong couplings. The M7 scaling
of dileptons is, however, broken in the viscous hydrodynamics
because of the enhancement in the number density of quarks
and antiquarks at high pr by the viscous effect. These results
have been obtained by assuming that the viscous correction
to the particle transverse momentum distributions depends on
the particle momentum quadratically. Studies based on micro-
scopic models for the particle interactions in medium have
indicated that the realistic momentum dependence is weaker
than the quadratic one [10]. The true viscous effects on the
dilepton spectra from heavy-ion collisions are thus expected to
be somewhat smaller than those obtained in the present study.
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APPENDIX A: SOLVING THE VISCOUS HYDRODYNAMICS

To apply the schematic viscous hydrodynamic equations, Egs. (10)—(13), to heavy-ion collisions, we divide the time into
infinitesimal intervals. These equations then become

Rt
(yl~2)n+len+l + <yrzvr2>n+1 |:pn+1 - (n;)nJrl - ( ¢)n+li| = R -

A
T, R 1 [()/,z)nen + {(Vrzvf)n - TT }Pn
n+1tn+l

A
R R AR N IO
n ] R? 2(yrR BUAN R A A
(Vr)nt1 [ft:‘ Tusur1 — (13), — (7)), | = RZ_L(Y’)"[T"S” - {1 + %}(jﬁf)n _ {1 L rrRnAT AT }(n

<Vr>an Tl‘l

ol

(A2)
2(n5\ | R,%AT 2(yr)n 1 g Ns L E
e ) B e () (o)

2(ns\ 1 RAx Yy, 1 2 ( ny 1 1 Ve,
<Vr>n+1|:(n$)n+1 - (nf)n - §<Z)n_ = R3+1 |:{2< - >n - (T )n }(n;;)n - g(;)n{(A__[ - ‘L'_) (Vidn + 3< . >n}i|,

n
where At = 1,4

7, with the subscript denoting the time step and (00 /971),, = (0,41

(A4)
= — 0,)/Ar.
Equations (A1)-(A4) are solved by using the following relations between the (n + 1)th and nth time steps in the energy
density, pressure and entropy:
de as
€nt1 =€y + ﬁ ) ntl —Tn)y  Png1 = pu+ ﬁ ) w1 — 1), Spp1 =8, + ﬁ ) w1 — T, (AS)
where
ds s N Z af, (4/3)k> + m? (4/3)k* + am?/dT
T T £ T E; : E; ’
de af; f, am dpo dm?
— dkk® i —— L
oT Zz:ﬂ/ [aT 2E; 8Ti|+8mi2 oT
Z /‘ k4 af; fi om? dpo Im?
672 oT  2E? oT am? T

APPENDIX B: DILPETON PRODUCTION RATE WITH THE VISCOUSCORRECTION

In this Appendix, we give the details on the derivation from Egs. (33) to (34). Keeping the nonvanishing terms in the integration
with respect to K’ in the right-hand side of Eq. (33) leads to

72 /
28182/‘1 P/d3k’M 14 U(Mz) —Pu/T| ] 4 Komh + Kimh, + K35, + K3,
d4x 270

T*(e + p)

4 14 4_y ’ 2,2 127127
+4T4(e—~|—)2{k0 i + K+ KT+ K3 + 4( — Kok gy — Kok 37, —
+k 2k/§ n + k/zk/% 4%) + 2(/(/3](,2 ’

2,2 nHi2,02
k/ k/ 722 k/ k/ 72
TooTT 1
12512 1270

+ Kk sy 4 k k1”33”11)}}

3703 27T1o
” 2
+ K ok 2T + K ok 377007733 + K i ST Ty

(BI)
Splitting the integral 4Kk’ into the radial and angular parts according to

P = kParaa =2 Ao M amrde,
- T 16\ me2

(B2)
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and integrating with respect to the solid angle d<2, we obtain

d_N: 8182 /Q/szXMza(Mz)e—P'”/T 14 M?\ 750 4 (X/3)(}, 4 75, + 7033)
d*x  4Qrm) E 4 T2(e + p)

1

M2 2 2X ’ o ro_ 2 ” 2
+ T e+ pP (T) {7760 + ?(”(/)0”;1 + w07y, + o33 — 2(7g, " + 7 + 7g3))

X2
+ 3(3(7711 + 7722 + ”33) + 4(7712 + ”23 + 7731) + 207y 75y + Ty + 77337711))”

where X =1 — 4mi2 /M?. Using the traceless property of the shear tensor nr/; = 0, Eq. (B3) can be rewritten as

dN 8182 2 2/ / —PuT M*(1+ X/3)
= XM*o(M?) | drtd dnd Wil =Ly
dydrd P2~ Bny oM [ dredrr [ dndge T et )
M4
+64T4(e+p)2
2

+ E(”oo +2(n] +7p + ) 4+ s+ ”ézl))”

2X ,
(i + 25 = 2+ 3+ 7))

(B3)

(B4)

The previous integrals can be evaluated by transforming the shear tensor in the center of mass frame ), to the shear tensor

in the fire-cylinder frame 7, through the Lorentz transformation, that is,

, ot 0z ot 0z ot 0z ot 0z
Ty = (a/LOE + au3$> (Cluog + avSE)”rt + (Cluoan +au;3 377) (avO% + av3%>ﬂnn
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n a - v w0~ v3 L - a - r
G0y Ty )\, T2y, oy T J\ g, Ty ) |
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+ [(a,0 coshn + a,,3 sinh n)(a,; cos ¢ + a,; sin @) + (a,o coshn + a,3 sinh n)(a, cos ¢ + a,o sinP)]m,,, (BS)
where a,,, are components of the Lorentz transformation matrix,
ap = (Mr/M)coshy, ap =ajp=—(Pr/M)cos¢,, apn =apy=—(Pr/M)sing,,
Pr/M)? cos? Pr/M)?sin?
an = axy = —(My/M)sinhy, ay =1+ /€S8y gy LMY S,
(Mp/M)coshy + 1 (My/M)coshy + 1
(M7 /M)?sinh® y (Pr/M)? cos ¢, sin ¢, (Pr/M)cos ¢,(My/M)sinhy
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G = a3 = (Pr/M)sin¢,(Mr /M) y’ (B6)

(My/M)coshy + 1

with 7, y, ¢, and ¢, being the space-time rapidity, energy-momentum rapidity, and azimuthal angle in configuration space and
in momentum space, respectively. It is straightforward to show that the square brackets in Eq. (B4) are a function of y — n and
¢ — ¢, and lead to modified Bessel functions after integration over 1 and ¢, as given by Eq. (34), where the coefficients A;; and

B;; are

2 2_1
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[
APPENDIX C: DIFFERENTIAL YIELD OF p MESONS Carrying out the ¢ and 5 integrations leads to
The differential yield of p mesons is given by dN, 3tM; (R
= L rdr| @K + g
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