Comparison of the ⁷Li(¹⁸O,¹⁷N)⁸Be and ¹⁸O(d,³He)¹⁷N reactions

A. T. Rudchik,^{1,*} Yu. M. Stepanenko,¹ K. W. Kemper,² A. A. Rudchik,¹ O. A. Ponkratenko,¹ E. I. Koshchy,³ S. Kliczewski,⁴ K. Rusek,^{5,6} A. Budzanowski,⁴ S. Yu. Mezhevych,¹ I. Skwirczyńska,⁴ R. Siudak,⁴ B. Czech,⁴ A. Szczurek,⁴

J. Choiński,⁶ and L. Głowacka⁷

¹Institute for Nuclear Research, Prospect Nauki 47, 03680 Kiev, Ukraine

²Physics Department, Florida State University, Tallahassee, Florida 32306-4350, USA

³Kharkiv National University, Svobody 4, 61077 Kharkiv, Ukraine

⁴H. Niewodniczański Institute of Nuclear Physics, Radzikowskiego 152, PL-31-342 Cracow, Poland

⁵A. Soltan Institute for Nuclear Studies, Hoża 69, PL-00-681 Warsaw, Poland

⁶Heavy Ion Laboratory, Warsaw University, L. Pasteura 5A, PL-02-093 Warsaw, Poland

⁷Institute of Applied Physics, Military University of Technology, Kaliskiego 2, PL-00-908 Warsaw, Poland

(Received 5 September 2010; revised manuscript received 24 December 2010; published 15 February 2011)

New angular distributions for the ${}^{7}\text{Li}({}^{18}\text{O},{}^{17}\text{N}){}^{8}\text{Be}$ reaction at an energy of $E_{\text{lab}}({}^{18}\text{O}) = 114 \text{ MeV}$ for the ground states of ⁸Be and ¹⁷N and the excited states of ¹⁷N were measured. These data and ¹⁸O(d, ³He)¹⁷N reaction data taken at $E_d = 52$ MeV were analyzed within the coupled-reaction-channels method using ⁷Li + ¹⁸O and ¹⁸O + d optical potentials deduced from previous elastic and inelastic scattering results. Shell-model spectroscopic amplitudes were used in the analysis. Both reactions are dominated by single proton transfer. Calculations show that heavy-ion reactions of the type studied in this work can be used to identify final-state spins when measurements are carried to small angles.

DOI: 10.1103/PhysRevC.83.024606

PACS number(s): 25.70.Hi, 25.70.Bc, 24.10.Eq, 24.10.Ht

I. INTRODUCTION

Our understanding of the extraction of single-particle spectroscopic information as a function of depth of the orbit below the nuclear Fermi surface is a lively topic of study at present [1,2]. The current ability to investigate nuclei with large neutron or proton excesses through single-nucleon removal reactions means that theories of structure and reactions are being tested in relatively uncharted nuclear domains. It is difficult to probe this question with stable beams because the most easily accessible orbits are not deeply bound. However, it is possible, for example, that the use of proton pickup reactions with vastly different Q values from neutron-rich isotopes such as ¹⁸O and ²²Ne can provide tests of current theories used in the more exotic rare isotope works. A recent experiment that bombarded a ⁷Li target with an ¹⁸O beam yielded a rich data set, one part of which, proton pickup, allows comparison between a standard light-ion reaction having a very negative Q value, with a heavy-ion reaction with a positive Q value.

The present work reports angular distributions for the ⁷Li(¹⁸O, ¹⁷N)⁸Be reaction at the energy $E_{lab}(^{18}O) = 114$ MeV. This reaction was measured simultaneously with $^{7}Li + {}^{18}O$ elastic scattering [3] so that combining the deduced $^{7}Li + ^{18}O$ potential parameters with shell-model spectroscopic amplitudes of nucleons and clusters, previously calculated, in a coupled-reaction-channels (CRC) analysis resulted in a detailed test of our interpretation of the ⁷Li(¹⁸O, ¹⁷N)⁸Be reaction data. A further test of the spectroscopic amplitudes used in this study was carried out by their use in a CRC analysis of previously reported ¹⁸O(d, ³He)¹⁷N reaction data taken at $E_d =$ 52 MeV [4]. The reaction Q value for the ${}^{7}\text{Li}({}^{18}\text{O},{}^{17}\text{N}){}^{8}\text{Be}$ reaction is +1.3 MeV, while for the ${}^{18}O(d, {}^{3}He){}^{17}N$ reaction, it is -10.5 MeV, so that different nuclear properties are probed in this comparison.

The paper is organized as follows. In Sec. II, we present the experimental procedure. The results of the CRC analysis of the ${}^{7}\text{Li}({}^{18}\text{O},{}^{17}\text{N}){}^{8}\text{Be}$ and ${}^{18}\text{O}(d,{}^{3}\text{He}){}^{17}\text{N}$ reaction data are presented. Comparison with the previously obtained potentials ${}^{8}\text{Be} + {}^{15}\text{N}$ [5], ${}^{8}\text{Be} + {}^{13}\text{C}$ [6], ${}^{8}\text{Be} + {}^{9}\text{Be}$ [7], and ${}^{8}\text{Li} + {}^{17}\text{O}$ [8] are also given in Sec. III. Summary and conclusions close our paper.

II. EXPERIMENTAL PROCEDURE

The present ${}^{7}\text{Li}({}^{18}\text{O},{}^{17}\text{N}){}^{8}\text{Be}$ reaction data were taken at the same time as the previously reported ⁷Li(¹⁸O,¹⁸O)⁷Li elastic scattering data [3] at the Warsaw Heavy Ion Cyclotron Laboratory, which provided the 114-MeV ¹⁸O beam for the experiment. The details of the target, detector, and data accumulation system are given in Ref. [3].

Figure 1 shows a typical $\Delta E(E)$ spectrum from the Si telescope used to collect the data. As can be seen, the resolution is sufficiently good to separate the reaction products of interest. Figure 2 shows a typical residual energy spectrum of ¹⁷N from the ⁷Li(¹⁸O,¹⁷N)⁸Be reaction after subtraction of a background. To extract the yields, the peaks were fitted by the sum of Gauss symmetric functions

$$N(E) = \sum_{i} N_{0i} \exp\left(-0.5 \frac{(E - E_{0i})^2}{h_i^2}\right),$$
 (1)

with the peak positions E_i determined by the corresponding kinetic energies and by fixing the parameters h_i to the width of the elastic-scattering peaks or to the natural level width (curves in Fig. 2). The peak areas were used to calculate the reaction

^{*}rudchik@kinr.kiev.ua

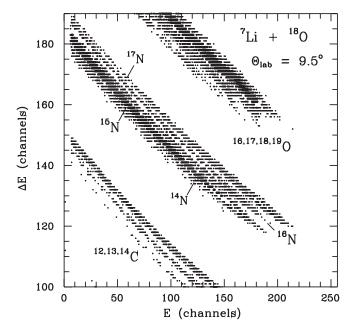


FIG. 1. Typical $\Delta E(E)$ spectrum of the products from ⁷Li(¹⁸O,X) reactions at energy $E_{\text{lab}}(^{18}\text{O}) = 114 \text{ MeV}.$

cross sections for the ground states of ⁸Be and ¹⁷N and excited states of ¹⁷N. The area errors of peaks were estimated to be about 20% if the peaks were well resolved, and 30–40% for poorly resolved peaks.

The absolute cross sections for the ⁷Li(¹⁸O, ¹⁷N)⁸Be angular distributions were obtained by multiplying them by the same

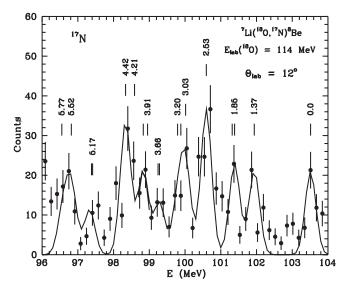


FIG. 2. Typical energy spectra of ¹⁷N from the ⁷Li(¹⁸O,¹⁷N)⁸Be reaction at $E_{lab}(^{18}O) = 114$ MeV for the angle $\theta_{lab} = 11^{\circ}$ after subtraction of a background. The curves show the Gauss symmetric forms.

normalization factor as determined from the simultaneously measured ⁷Li + ¹⁸O elastic scattering [3]. The error in the absolute cross section is about 15%. The resulting angular distributions of the ⁷Li(¹⁸O,¹⁷N)⁸Be reaction for ground states of ⁸Be and ¹⁷N and excited states of ¹⁷N at energy $E_{lab}(^{18}O) =$ 114 MeV are shown in Figs. 3–6.

 E^* Nuclei V_0 W_S Ref. $E_{\rm c.m.}$ r_V a_V r_W a_W (MeV) (MeV) (MeV) (fm) (MeV) (fm) (fm) (fm) $^{7}Li + {}^{18}O$ 31.9 174.5 0.806 0.900 13.0 1.470 0.900 [3] g.s. ${}^{8}\text{Be} + {}^{17}\text{N}$ 33.2 174.5 7.0 1.250 0.900 0.8000.900 ${}^{8}Li + {}^{17}O$ 25.9 183.9 0.802 0.700 5.0 1.200 0.700 [8] ${}^{8}\text{Be} + {}^{15}\text{N}$ 29.2 252.6 0.796 0.400 4.3 1.250 0.400 [5] ${}^{8}\text{Be} + {}^{9}\text{Be}$ 24.8 192.4 9.0 1.600 0.788 0.678 0.678 [7] ${}^{8}\text{Be} + {}^{13}\text{C}$ 31.1 170.2 0.793 0.760 7.0 1.250 0.760 [<mark>6</mark>] $^{16(14)}N + \alpha$ 0.904 51.0 160.8 0.904 27.6 0.390 0.535 [13] ${}^{17}N + {}^{3}He$ 36.4 175.5 0.687 24.0 1.150 0.750 0.750 35.0 1.374 175.5 0.687 0.750 24.01.350 0.750 34.5 1.845 175.5 0.687 0.750 24.0 1.250 0.750 34.4 1.907 175.5 24.0 1.300 0.750 0.687 0.750 33.8 2.526 175.5 0.687 0.950 20.0 1.550 0.450 33.2 3.129, 3.204 175.5 0.687 24.0 1.650 0.750 0.750 32.7 3.629, 3.663 175.5 0.687 0.750 24.0 1.700 0.750 30.8 175.5 0.750 24.0 1.250 0.750 5.515 0.687 29.4 6.990 175.5 0.687 0.750 24.0 1.250 0.750 $^{18}O + d^{a}$ 9.0 81.0 0.737 0.893 7.8 1.430 0.440 46.8 81.0 20.0 0.440 0.737 0.893 1.430 ${}^{16}\text{O} + d^{\text{b}}$ 46.8 82.5 0.687 0.769 10.5 0.777 1.137 $^{19(18)}$ O + p 48.5 37.8 0.827 0.706 9.0 1.129 0.486 [13]

TABLE I. Parameters of optical potentials.

^aFrom fitting the ¹⁸O + d elastic scattering data at $E_{\text{lab}} = 10 \text{ MeV}$ [14].

^bFrom fitting the ${}^{16}O + d$ elastic scattering data [15]. The parameters of the spin-orbit potential were taken from Ref. [15].

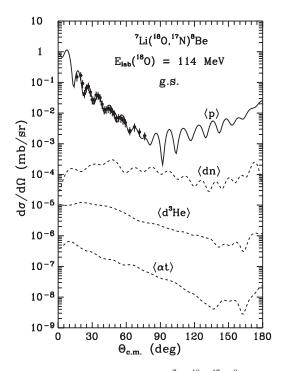


FIG. 3. Angular distribution of the ${}^{7}\text{Li}({}^{18}\text{O},{}^{17}\text{N}){}^{8}\text{Be}$ reaction at $E_{\text{lab}}({}^{18}\text{O}) = 114 \text{ MeV}$ for transition to the ground states of ${}^{8}\text{Be}$ and ${}^{17}\text{N}$. The curves show the CRC calculations for different transfers.

III. THE DATA ANALYSIS

A. Calculation procedure

The reaction data were analyzed with the CRC method using optical model potentials in the entrance and exit channels of Woods-Saxon form

$$U(r) = V_0 \left[1 + \exp\left(\frac{r - R_V}{a_V}\right) \right]^{-1} + i W_S \left[1 + \exp\left(\frac{r - R_W}{a_W}\right) \right]^{-1}, \quad (2)$$

and Coulomb potentials of a uniform charged sphere

$$V_{C}(r) = \begin{cases} \frac{Z_{P} Z_{T} e^{2}}{2R_{C}} \left(3 - \frac{r^{2}}{R_{C}^{2}}\right), & r \leq R_{C} \\ \frac{Z_{P} Z_{T} e^{2}}{r}, & r > R_{C}. \end{cases}$$
(3)

Here

$$R_i = r_i \left(A_P^{1/3} + A_T^{1/3} \right), \quad i = V, W, C, \tag{4}$$

where A_P , Z_P and A_T , Z_T are the mass and charge numbers of ¹⁸O,¹⁷N and ⁷Li, ⁸Be, respectively; *e* is the electron charge. The parameter $r_C = 1.25$ fm was used in all calculations.

The most important transfer reactions as well as ${}^{7}\text{Li} + {}^{18}\text{O}$ elastic and inelastic scattering were included in the coupledchannels scheme. The transitions to the excited states of ${}^{7}\text{Li}$ and ${}^{18}\text{O}$ were treated as in Ref. [3] (see Fig. 7 there). Figure 7 shows the diagrams of one- and two-step transfers, which were included in the calculations.

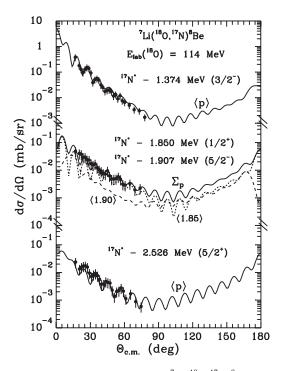


FIG. 4. Angular distribution of the ${}^{7}\text{Li}({}^{18}\text{O},{}^{17}\text{N}){}^{8}\text{Be}$ reaction at $E_{\text{lab}}({}^{18}\text{O}) = 114 \text{ MeV}$ for transitions to the 1.374 MeV (3/2⁻), 1.850 MeV (1/2⁺) + 1.907 MeV (5/2⁻), and 2.526 MeV (5/2⁺) states of ${}^{17}\text{N}$. The curves show the CRC calculations for proton transfers.

In the ${}^{7}\text{Li} + {}^{18}\text{O}$ entrance reaction channel, the optical potential parameters obtained by fitting the elastic scattering data [3] were used. The ${}^{8}\text{Be} + {}^{17}\text{N}$ potential was deduced from the experimental data by fitting the exit channel potential parameters

$$X_i = \{V_0, r_V, a_V, W_S, r_W, a_W\}$$
(5)

to the reaction data for ground and excited states of ¹⁷N independently while keeping the ⁷Li + ¹⁸O potential parameters and the spectroscopic amplitudes S_x of transferred clusters or nucleons *x* fixed. The parameters of ⁷Li + ¹⁸O potential and ⁸Be + ¹⁷N potential parameters deduced in the fitting procedure are listed in Table I. The spectroscopic amplitudes S_x of transferred clusters or nucleons *x* for a nucleus A = C + x,

$$S_x = \begin{pmatrix} A \\ x \end{pmatrix}^{1/2} \langle \Psi_A | \Psi_C \Psi_x; \varphi_{Cx} \rangle, \tag{6}$$

were obtained within the translationally invariant shell model (TISM) [9] by using the code DESNA [10,11]. The calculated values of amplitudes S_x are listed in the Appendix.

The wave function of x for a nucleus A = C + x was calculated by varying the depth of the Woods-Saxon binding potential to reproduce the binding energy of x in nucleus A. The geometry parameters of the binding potentials were the following: a = 0.65 fm and $r_V = 1.25A^{1/3}/(C^{1/3} + x^{1/3})$ fm. The code FRESCO [12] was used for the CRC calculations. The description of the CRC method used is included in Ref. [12].

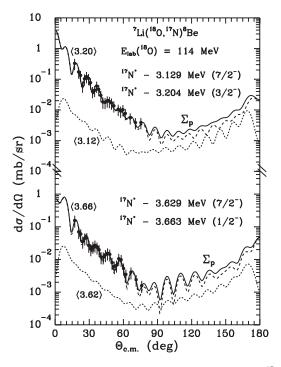


FIG. 5. Same as in Fig. 4, but for other excited states of ¹⁷N.

B. ⁷Li(¹⁸O,¹⁷N)⁸Be reaction

The measured angular distribution of the ⁷Li(¹⁸O,¹⁷N)⁸Be reaction at $E_{lab}(^{18}O) = 114$ MeV leading to the ground states of ⁸Be and ¹⁷N and the results of the corresponding CRC calculations are presented in Fig. 3. The dashed curves labeled $\langle x \rangle$ show the CRC calculations for the direct transfers of particle *x*; those labeled $\langle xy \rangle$ present a coherent sum of two-step transfers of particles: first *x* and then *y* as well as vice versa. The proton transfer (curve $\langle p \rangle$) dominates. Other transfers contribute negligibly to this reaction.

Figures 4–6 show the angular distributions of the ⁷Li(¹⁸O,¹⁷N*)⁸Be reaction for transitions to different excited states of ¹⁷N. As in the previous case, the proton transfer (curves $\langle p \rangle$ and Σ_p) dominates all transitions.

In Figs. 4–6, the curves Σ_p show the incoherent sums of the individual CRC calculations for the ⁷Li(¹⁸O,¹⁷N*)⁸Be reaction for the transitions to the excited states of ¹⁷N unresolved in the experiment.

The proton transfer from the ground state of ¹⁸O to ⁷Li is forbidden for some excited states of ¹⁷N*, i.e., spectroscopic amplitude $S_p = 0$ for such systems ¹⁸O = ¹⁷N* + *p*. In these cases, the two-step processes were used, when the nucleus ¹⁸O is excited to a level from which a proton transfer is possible (second diagram in Fig. 7), i.e., the spectroscopic amplitudes S_p for systems ¹⁸O* =¹⁷N* + *p* were used (see Table II in the Appendix). Such two-step proton transfers were used for the transitions to the 1.85 MeV (1/2⁺), 1.907 MeV (5/2⁻), 2.526 MeV (5/2⁺), 3.129 MeV (7/2⁻), 3.629 MeV (7/2⁻), 4.006 MeV (3/2⁺), 4.209 MeV (3/2⁺), and 5.772 MeV (1/2⁺) states of ¹⁷N.

The ⁸Be + ¹⁷N^{*} potential parameters deduced by fitting the ⁷Li(¹⁸O, ¹⁷N^{*})⁸Be reaction data for the transitions to excited states of ¹⁷N were found the same as for the ground state of ¹⁷N.

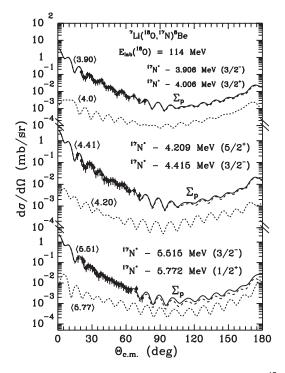


FIG. 6. Same as in Fig. 4, but for other excited states of ¹⁷N.

In Table I, the ⁸Be + ¹⁷N potential parameters are compared with those for the ⁸Be interaction with ¹⁵N, ¹³C, and ⁹Be as well as with the ⁸Li + ¹⁷O potential parameters. The comparison of the ⁸Be + ¹⁷N potential with those for ⁸Be + ¹⁵N and ⁸Li + ¹⁷O is shown also in Fig. 8. The ⁸Be + ¹⁷N potential has the largest radial extent of all systems studied to date.

An interesting difference between the use of a reaction like (⁷Li, ⁸Be) and that of proton transfer with light ions is the possibility of determining final-state spins from small-angle cross section determinations. Early on in the study of heavy-ion transfer reactions [16,17] it was observed that transfers from a $p_{3/2}$ particle in the beam to a $p_{3/2}$ orbit in the target, resulted in a large cross section at small angles because of the presence of an allowed L = 0 component in

$$\frac{7_{\text{Li}}}{18} \times \frac{8_{\text{Be}}}{17_{\text{N}}} + \frac{7_{\text{Li}}}{18} \times \frac{7_{\text{Li}}}{18} \times \frac{7_{\text{Li}}}{17_{\text{N}}} \times \frac{8_{\text{Be}}}{18} + \frac{7_{\text{Li}}}{18} \times \frac{9_{\text{Be}}}{18} \times \frac{9_{\text{Be}}}{18}$$

FIG. 7. Diagrams of different mechanisms of the ${}^{7}\text{Li}({}^{18}\text{O},{}^{17}\text{N}){}^{8}\text{Be}$ and ${}^{18}\text{O}(d,{}^{3}\text{He}){}^{17}\text{N}$ reactions.

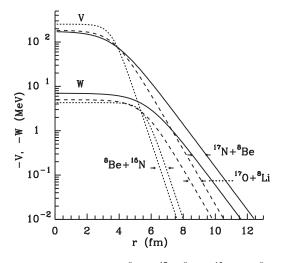


FIG. 8. Comparison of the ${}^{8}Be + {}^{17}N$, ${}^{8}Be + {}^{15}N$, and ${}^{8}Li + {}^{17}O$ potentials.

the transferred angular momenta (L = 0, 1, 2), whereas that between a $p_{3/2}$ orbit and a $p_{1/2}$ one had a decreasing cross section at small angles (L = 1, 2). The appearance of this difference in angular distributions can be seen by comparing the calculations to the ground $1/2^{-}$ and $3/2^{-}$ first excited states in ¹⁷N shown in Figs. 3 and 4. It is also possible to use beam-target combinations where the transferred particle is from either a $p_{3/2}$ or $p_{1/2}$ orbit to get the same type of cross section selectivity for determining final-state total spins in the nuclei of interest [18]. The use of inverse kinematics in the present work with Si detectors makes it difficult to carry out the present small-angle measurements needed to observe this final-state J dependence. However, were these measurements carried out with a modern spectrometer, it would be quite easy to distinguish the different final-state total spins up through the f-p shell [16,17]. Experimenters would have to resort to polarized beams or targets to get the same information from light-ion induced reactions.

C. ${}^{18}O(d, {}^{3}\text{He}){}^{17}\text{N}$ reaction

The availability of previously published high-quality data for the ${}^{18}O(d, {}^{3}He)$ reaction at 52 MeV allows detailed testing of the spectroscopic amplitudes used in the heavy-ion reaction analysis of the previous section and makes possible a detailed comparison between two very different proton transfer reactions. The existence of ${}^{16}O + d$ elastic scattering data at 52 MeV means that the potential parameters needed for the $^{18}O(d, {}^{3}He)^{17}N$ reaction analysis can be determined from a fit to these data. The potential parameters are given in Table I, and the data and optical model (OM) calculations are shown in Fig. 9. The spin-orbit potential was taken from Ref. [15]. These parameters when combined with the previously calculated spectroscopic amplitudes leaves then as the only unknown in the reaction analysis the ${}^{3}\text{He} + {}^{17}\text{N}$ potential parameters, which then are found from the CRC calculations. The diagrams for proton transfer in the $(d, {}^{3}\text{He})$ reaction are shown at the bottom of Fig. 7.

As an aside to the present analysis, the existence of ${}^{18}\text{O} + d$ elastic scattering data at 10 MeV allowed the potential parameter dependence of this elastic scattering to be explored over a wide energy range. It was found that a quite good description of the 10-MeV data could be found by simply reducing the strength of the imaginary potential from 20 to 7.8 MeV. The results of the calculation are shown in Fig. 9, and the parameter set is given in Table I.

In the CRC transfer analysis, the spectroscopic amplitudes were taken from Table II. For proton transfer via ¹⁸O excitations, the collective model with deformation parameters from Ref. [3] was used for transitions to excited states in ¹⁷N. The two-step transfers of d + n and n + d were calculated using ¹⁸O + p potential parameters for the ¹⁹O + p channel and the ¹⁴N + α potential parameters from Ref. [13] for the ¹⁶N + α channel. These sets of parameters are given in Table I. The ¹⁷N + ³He scattering potentials were found from fitting the ¹⁸O(d, ³He)¹⁷N reaction data and are listed in Table I.

Figure 10 shows the angular distributions of the ${}^{18}O(d, {}^{3}He){}^{17}N$ reaction [4] and their corresponding CRC calculations. In Fig. 10, the curve $\langle dn \rangle$ shows the CRC calculations for the d + n and n + d transfers (coherent sum) for the transition to the ground state of ${}^{17}N$. As one can see, these more exotic transfers give a small contribution to the $(d, {}^{3}He)$ reaction, again demonstrating that the $(d, {}^{3}He)$ transfer to the single-particle states proceeds as a one-step direct transfer. The fact that the present CRC analysis and the previous distorted-wave born approximation (DWBA) one of the $(d, {}^{3}He)$ reaction both arrive at the conclusion that this reaction is dominated by one-step proton transfer gives strong support for the use of the DWBA when analyzing proton

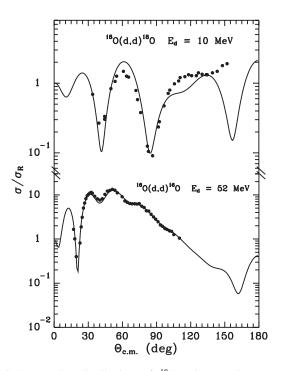


FIG. 9. Angular distribution of ¹⁸O + *d* scattering at $E_d = 10$ MeV [14] and ¹⁶O + *d* scattering at $E_d = 52$ MeV [15]. The curves are the OM calculations.

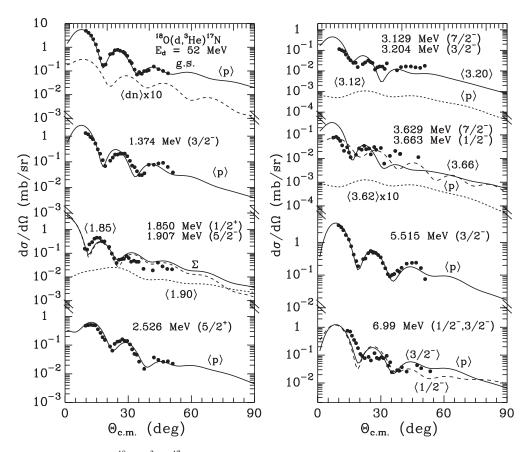


FIG. 10. Angular distribution of the ¹⁸O(d, ³He)¹⁷N reaction at $E_d = 52$ MeV [4]. Curves are the CRC calculations. Curves $\langle E \rangle$ (E = 1.85, 1.90, 3.12, 3.20, 3.62, 3.66) show CRC calculations for corresponding excited states of ¹⁷N in MeV. Curves $\langle 1/2^- \rangle$ and $\langle 3/2^- \rangle$ show the calculations to the $1/2^-$ and $3/2^-$ states of ¹⁷N, respectively. Curve $\langle dn \rangle$ shows the d + n, n + d transfers (coherent sum).

pickup reactions in this energy range. These transfers are denoted in Fig. 10 by the curves $\langle p \rangle$.

The transitions dominated by single-proton transfer are to the $1/2^-$, $3/2^-$, $1/2^+$, and $5/2^+$ states in ¹⁷N. The transitions to the $5/2^-$ and $7/2^-$ states in ¹⁷N proceed via the 2^+ and 4^+ excited states in ¹⁸O. In general, all transitions reported in the $(d, {}^{3}\text{He})$ work of Ref. [4] are satisfactorily described in the present work.

IV. SUMMARY AND CONCLUSIONS

The present work reports new data and an analysis of the proton transfer reaction ${}^{7}\text{Li}({}^{18}\text{O},{}^{17}\text{N}){}^{8}\text{Be}$ and a reanalysis, with the same spectroscopic amplitudes as for the heavy-ion reaction, of previously reported ${}^{18}\text{O}(d,{}^{3}\text{He}){}^{17}\text{N}$. The success in describing the angular distributions for both reactions with the same single-proton spectroscopic strengths, even though they have radically different Q values, lends support to the idea that the reaction analysis carried out is well grounded with current reaction theory. It is also interesting that in the present case, while the reaction Q values are quite different in the two cases studied, the angular momenta mismatches are roughly the same (about 1 \hbar) and are well matched for the states populated in ${}^{17}\text{N}$. Both reactions appear to be well described as single-proton transfers and can serve as test cases for

future reaction theory studies. The present heavy-ion transfer calculations demonstrate the possible usefulness of these reactions for determining final-state total angular momenta in future studies with radioactive beams at laboratories that have modern magnetic spectrometers for small-angle measurements.

As part of the present analysis, optical potentials were deduced from the reaction analyses for both the ${}^{17}N + {}^{8}Be$ and ${}^{17}N + {}^{3}He$ systems. The ${}^{17}N + {}^{8}Be$ real and imaginary potentials are stronger at larger radii than that for the ${}^{15}N + {}^{8}Be$ system, suggesting that the lower breakup energy for ${}^{17}N$ (~5.8 MeV) and greater low-lying level density when compared with ${}^{15}N$ (~10.2 MeV) produces nuclear interactions at much greater distances than might be expected from the study of other systems.

ACKNOWLEDGMENTS

We thank Professor A. Sobiczewski, Professor J. Jastrzebski, and Dr. A. G. Artukh (JINR, Dubna, Russia) for their interest in this work. One of us (K.W.K.) acknowledges support of the State of Florida in this work.

APPENDIX

TABLE II	. Spectroscopi	c amplitudes S,	of the particles x	in the $A = C + x$ systems.
----------	----------------	-----------------	--------------------	-----------------------------

Α	С	x	nL_j	S_x	Α	С	x	nL_j	S_x
² H	р	n	$1S_{1/2}$	-1.000	$^{18}O_{6.198}^{*}$	$^{17}\mathrm{N}^{*}_{1.850}$	р	$1P_{1/2}$	-0.393
³ He	p	d	$1S_1^{/2}$	-1.225^{a}	0.170		-	$1P_{3/2}^{/2}$	-0.556^{a}
³ He	d	р	$1S_{1/2}$	1.225 ^a	$^{18}O_{1.982}^{*}$	${}^{17}N_{1.907}^{*}$	р	$1P_{1/2}^{1/2}$	0.279 ^a
⁴ He	d	d	$1S_1$	1.732	$^{18}O_{3555}^{*}$	$^{1}N_{1 007}^{*}$	p	$1P_{3/2}^{/2}$	0.976
⁴ He	³ He	п	$1S_{1/2}$	1.414 ^a	¹⁸ O [*] _{3.920}	$^{17}N_{1.907}^{*}$	p	$1P_{1/2}^{/2}$	0.279 ^a
⁷ Li	⁴ He	t	$2P_{3/2}^{/2}$	-1.091			•	$1P_{3/2}^{/2}$	-0.149
⁷ Li	⁵ He	d	$2S_1^{-1}$	-0.674^{a}	¹⁸ O _{5.255} *	${}^{17}\mathrm{N}^*_{1.907}$	р	$1P_{1/2}^{2/2}$	0.279 ^a
			$1D_1$	-0.121^{a}				$1P_{3/2}^{1/2}$	-0.149
			$1D_{3}$	0.676 ^a	¹⁸ O	$^{17}N_{2.526}^{*}$	р	$1D_{5/2}$	-1.173^{a}
⁷ Li	⁶ Li	п	$1P_{1/2}$	-0.657	$^{18}O_{4.450}^{*}$	17 N [*] 526	p	$1P_{3/2}$	-1.179^{a}
			$1P_{3/2}^{1/2}$	-1.179^{a}	$^{18}O^{*}_{5.098}$	$^{17}N_{2.52}^{*}$	p	$1P_{3/2}^{3/2}$	0.629
⁸ Be	⁵ He	³ He	$2P_{3/2}^{3/2}$	-1.102^{a}	100^{+} 100	17 NT	p	$1P_{3/2}^{5/2}$	-0.735^{a}
⁸ Be	⁴ He	α	$3S_0^{3/2}$	1.225	$^{18}O_{6.404}^{*}$	$^{17}N_{2.526}^{*}$	p	$1P_{3/2}^{5/2}$	0.629 ^a
⁸ Be	⁶ Li	d	$2S_1$	1.217	$^{18}O_{3.555}^{*}$	$^{17}N_{3.129}^{*}$	p	$1P_{1/2}^{5/2}$	-0.861
⁸ Be	⁷ Li	р	$1P_{3/2}$	1.234 ^a	- 5.555		Γ	$1P_{3/2}^{1/2}$	-0.727^{a}
⁹ Be	⁷ Li	d d	$2S_1^{-1}$	-0.226^{a}	^{18}O	¹⁷ N _{3.204} 17N*	р	$1P_{3/2}$	-1.217^{a}
			$1D_1$	0.111 ^a	¹⁸ O [*] _{1.982}	$^{17}N_{3.204}^{*}$	p	$1P_{1/2}$	0.302
			$1D_{1}$ $1D_{3}$	-0.624^{a}			P	$1P_{3/2}$	0.302 ^a
⁹ Be	⁸ Be	n	$1P_{3/2}$	0.866	¹⁸ O _{3.920} *	$^{17}N^*_{3.204}$	р	$1P_{3/2}$ $1P_{1/2}$	0.302
${}^{10}B$	⁷ Li	³ He	$2P_{3/2}$	0.419	03.920	1 3.204	P	$1P_{1/2}$ $1P_{3/2}$	0.302 ^a
Ъ	Li	110	$1F_{5/2}$	-0.104^{a}	¹⁸ O _{5.255} *	$^{17}N_{3.204}^{*}$	р	$1P_{3/2}$ $1P_{1/2}$	0.302
			$1F_{7/2}$	0.347	05.255	1 3.204	P	$1P_{1/2}$ $1P_{3/2}$	0.302 ^a
^{10}B	⁸ Be	d	$1D_{3}$	0.811	¹⁸ O _{3.555} *	$^{17}N^{*}_{3.629}$	р	$1P_{3/2}$ $1P_{1/2}$	-0.861
¹¹ B	⁷ Li	α	$3S_0$	-0.638	03.555	1 3.629	P	$1P_{1/2}$ $1P_{3/2}$	-0.727^{a}
Б	LI	u	$2D_2$	-0.422	¹⁸ O	$^{17}N_{3.663}^{*}$	n	$1P_{3/2}$ $1P_{1/2}$	-0.727 1.198ª
${}^{11}B$	⁸ Be	t	$2D_{2}$ $2P_{3/2}$	0.641	$^{18}O^{*}_{1.982}$	¹⁷ N [*] _{3.663}	p p	$1P_{1/2}$ $1P_{3/2}$	-0.559
¹⁷ N	^{14}C	t t	$1P_{1/2}$	0.466	180	$^{17}N_{3.906}^{*}$	p p	$1P_{3/2}$ $1P_{3/2}$	1.695ª
¹⁷ N	¹⁵ C	d d	$1P_{1/2}$ $1P_1$	0.400^{a}	$^{18}O^{*}_{4.456}$	$^{17}N_{4.006}^{*}$	p p	$1P_{3/2}$ $1P_{1/2}$	-0.439^{a}
¹⁷ N	¹⁶ N	n n	$1D_{3/2}$	-1.008	04.456	14.006	р		0.196
$^{17}N_{1.374}^{*}$	¹⁶ N		$2S_{1/2}$	-0.713	$^{18}O_{4.456}^{*}$	¹⁷ N [*] _{4.209}		$1 P_{3_{/2}}$ $1 P_{3_{/2}}$	-0.589^{a}
¹⁸ O	^{14}C	n	$\frac{2S_{1/2}}{4S_0}$	-0.713 -0.802	¹⁸ O	17 _{4.209}	p p	$1 P_{3/2}$	-0.389 1.695ª
¹⁸ O	¹⁵ C	$^{\alpha}{}^{3}$ He		-0.802 -0.903^{a}	180	$^{17}N^{*}_{4.415}$	p p	$1P_{3/2}$	1.695 ^a
¹⁸ O	¹⁶ N	d d	$\frac{3S_{1/2}}{2P_2}$	-0.903 -1.304	¹⁸ O*	$^{17}N_{5.515}^{*}$	p	$1P_{3/2}$	-0.393
¹⁸ O	¹⁷ N				¹⁸ O [*] _{4.456}	¹⁷ N [*] _{5.770}	р	$1P_{1/2}$	
¹⁸ O		p	$1P_{1/2}$	1.198 ^a	¹⁸ O			$1P_{3/2}$	-0.556^{a}
180*	$^{17}N_{1.374}^{*}$	p	$1P_{3/2}$	-1.217^{a}	0	$^{17}N_{6.99}^{*}(1/2^{-})$	p	$1 P_{1/2}$	1.198 ^a
$^{18}\mathrm{O}^{*}_{1.982}$	${}^{17}N_{1.374}^{*}$	р	$1P_{1/2}$	0.559	¹⁹ O	${}^{17}\mathrm{N}^{*}_{6.99}(3/2^{-})$	p	$1P_{3/2}$	-1.217^{a}
180*	17 • *		$1P_{3/2}$	0.559 ^a	0	·· N	d	$1F_2$	-0.209
$^{18}\mathrm{O}^{*}_{3.920}$	${}^{17}\mathrm{N}^{*}_{1.374}$	р	$1P_{1/2}$	0.559	¹⁹ O	18 O		$1F_3$	-0.056^{a}
180*	17 N T*		$1P_{3/2}$	0.559 ^a	²⁰ F	¹³ O ¹⁷ N	n^{3}	$1D_{5/2}$	-0.882
$^{18}\mathrm{O}^{*}_{5.255}$	${}^{17}\mathrm{N}^{*}_{1.374}$	р	$1P_{1/2}$	0.559	-"F	· · IN	³ He	$3P_{3/2}$	-0.103
¹⁸ O	17 N *	~~	$1P_{3/2}$	0.559^{a}	²⁰ F	¹⁸ O	1	$2F_{5/2}$	-0.105
	¹⁷ N [*] _{1.850} 17 N*	p	$2S_{1/2}$	-0.453^{a}	²⁰ F ²¹ F	¹³ O ¹⁷ N	d	$2D_2$	0.380
$^{18}O_{*4.456}$	${}^{17}\mathrm{N}^{*}_{1.850}$	р	$1P_{1/2}$	-0.393	²¹ F ²¹ F	¹⁷ N ¹⁸ O	α	$3F_3$	0.059
			$1P_{3/2}$	-0.556^{a}	ſ	0	t	$3D_{5/2}$	-0.001

 $\overline{{}^{a}S_{\text{FRESCO}} = (-1)^{J_C + j - J_A}S_x} = -S_x.$

- [1] A. Gade et al., Phys. Rev. C 77, 044306 (2008).
- [2] J. Lee et al., Phys. Rev. Lett. 104, 112701 (2010).
- [3] A. A. Rudchik et al., Nucl. Phys. A 785, 293 (2007).
- [4] D. Hartwig et al., Z. Phys. 246, 418 (1971).
- [5] A. A. Rudchik et al., Eur. Phys. J. A 23, 445 (2005).
- [6] A. T. Rudchik et al., Nucl. Phys. A 660, 267 (1999).
- [7] V. O. Romanyshyn *et al.*, Phys. Rev. C **79**, 054609 (2009).
- [8] A. T. Rudchik et al., Nucl. Phys. A 831, 139 (2009).
- [9] Yu. F. Smirnov and Yu. M. Tchuvil'sky, Phys. Rev. C 15, 84 (1977).
- [10] A. T. Rudchik and Yu. M. Tchuvil'sky, computer code DESNA, Report KIYAI-82-12, Institute for Nuclear Research, Ukrainian Academy of Science, Kiev, 1982 (unpublished).
- [11] A. T. Rudchik and Yu. M. Tchuvil'sky, Ukr. Phys. J. 30, 819 (1985).

- [12] I. J. Thompson, Comput. Phys. Rep. 7, 167 (1988).
- [13] C. M. Perey and F. G. Perey, At. Data Nucl. Data Tables 17, 1 (1976).
- [14] E. J. Stephenson *et al.*, Nucl. Phys. A **331**, 269 (1979).
- [15] F. Hinterberger et al., Nucl. Phys. A 111, 265 (1968).

- PHYSICAL REVIEW C 83, 024606 (2011)
- [16] R. L. White, K. W. Kemper, L. A. Charlton, and G. D. Gunn, Phys. Rev. Lett. 32, 892 (1974).
- [17] K. W. Kemper, R. L. White, L. A. Charlton, G. D. Gunn, and G. E. Moore, Phys. Lett. B 52, 179 (1974).
- [18] P. D. Bond, J. Barrette, C. Baktash, C. E. Thorn, and A. J. Kreiner, Phys. Rev. Lett. 46, 1565 (1981).