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Influence of dynamical parameters on pre-scission particles and fission
probability in heavy-ion collisions
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A stochastic approach to fission dynamics based on one- and three-dimensional Langevin equations was applied
to calculate the fission probability and the pre-scission particle multiplicity. Evaporation of pre-scission light
particles along Langevin fission trajectories from the ground state of the compound nucleus to its scission and
fission probability have been calculated using a Monte Carlo simulation technique. To examine this approach we
used 19F + 181Ta and 16O + 197Au systems. Our results show that the fission probability and pre-scission particle
multiplicity in three dimensions is different from the one-dimensional Langevin approach. The theoretical results
of pre-scission neutron, proton, and α-particle multiplicities and the fission probability for given systems based
on this model are compared with available experimental data. The obtained results using three-dimensional
calculations are in better agreement with experimental data.
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I. INTRODUCTION

Studies on the nature and magnitude of nuclear dissipation
have attracted considerable interest in recent years [1–6].
It is well established that the dissipation causes the delay
of the fission process [7–9] with respect to the statistical
picture of compound nucleus decay and has an impact on
many experimental observables, such as pre-scission particle
multiplicities, fission probability, and the mass-energy distri-
bution of fission fragments. The emission of light particles,
especially neutrons that act as a clock to measure the fission
time scale, has proved to be very useful in investigating the
mechanism of nuclear fission [10,11]; e.g., an important fact
is that the nuclear temperature decreases as the neutrons are
emitted, removing kinetic energy from the fissioning nucleus.
The observed neutron multiplicity emitted prior to scission is
larger than the result calculated by the statistical model of Bohr
and Wheeler [12].

Many recent studies have demonstrated the successful
application of the multidimensional Langevin equations to the
fission of an excited compound nuclei formed in reactions
induced by heavy ions [10,13–15]. From the physical point
of view, the Langevin equations are equivalent to the Fokker-
Planck equation, which is widely used for modeling the fission
of excited nuclei in the framework of the diffusion model. In
contrast to models based on the Fokker-Planck equation, the
multidimensional Langevin equations are more suitable for
computer modeling and do not require extra assumptions and
approximations during the integration procedure.

Ye and co-authors have proposed many one-dimensional
dynamical fission calculations to investigate the sensitivity
of the pre-scission particle, γ -ray [16–19], and evaporation-
residue cross sections [20,21] by considering the isospin of
the compound nucleus and viscosity as effective parameters.
Nearly all the problems in collective nuclear dynamics
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are essentially multidimensional. However, one-dimensional
calculations can be used for the theoretical investigation
of pre-scission particle emission and time characteristics of
the fission process. Ying Jia and Jing Dong Bao [22] have
calculated the pre-scission neutron multiplicity and anisotropy
using Langevin equations with one and two dimensions. They
show that their results for a two-dimensional model are in
better agreement with the experimental data. However, studies
based on the influence of the dimensionality of the dynamical
model on the pre-scission particles and fission probability have
not yet been performed.

In this study we performed one- and three-dimensional
dynamical calculations to investigate the influence of di-
mensionality of the dynamical model on the pre-scission
neutron, proton, α-particle, and fission probability. The paper
is organized as follows. In Sec. II, we describe the model,
basic equation, and parameters. Results obtained based on
this model compared with experimental data are presented in
Sec. III. Finally, concluding remarks are given in Sec. IV.

II. MODEL CONSIDERATIONS

In our model we used the (c, h, α) parametrization, in which
c denotes the elongation parameter, h is the variation in the
thickness of the neck for a given elongation of the nucleus,
and α is the asymmetry parameter. The equation of the nuclear
surface in cylindrical coordinates is given by [23]

ρ2
s (z) = (c2 − z2)(A/c2 + Bz2/c2 + αz/c), (1)

where ρs and z are radial and parallel coordinates relative to
the symmetry or fission axis, respectively. A and B are defined
in Ref. [23]. The neck thickness and asymmetry parameter of
fissioning nucleus can be defined by [23]

h = −1.047c3 + 4.297c2 − 6.309c + 4.073 (2)

and

α = 0.11937α2
as + 0.24720αas, (3)
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where

αas = A1 − A2

A
. (4)

In this relation A1 and A2 are the mass numbers of the fission
fragments.

The coupled Langevin used in this model reads [24]

dqi

dt
= µijpj ,

(5)
dpi

dt
= −pjpk

2

∂µjk

∂qi

− ∂F

∂qi

− γijµjkpj + R(t),

where qi is the vectors of the collective coordinate, and
pi are their conjugate momenta. F (q) = V (q) − a(q)T 2 is
the Helmholtz free energy. V (q) is the potential energy,
mij (q)(‖µij‖ = ‖mij‖−1) is the tensor of inertia, γij (q) is
the friction tensor, and R(t) represents the random part
of the interaction between the fission degree of freedom
and the thermal bath [24]. The temperature T of the heat bath
is determined by the Fermi-gas model formula

T =
√

Eint/a(q), (6)

where Eint is the internal excitation energy of nucleus, and
a(q) is the level density parameter [25]. During a random
walk along the Langevin trajectory, conservation of energy is
satisfied by

E∗ = Eint + Ecoll + V (q) + Eevap(t), (7)

where E∗ is the total excitation energy of the compound
nucleus, Ecoll is the kinetic energy of the collective degrees
of freedom, and Eevap is the energy carried out by evaporated
particles.

The friction tensor in the one-body dissipation scheme
for small elongation before neck formation (c < cwin) can be
written as [26]

γ wall
ij (c < cwin) = π ρm

2
υ

∫ zmax

zmin

(
∂ρ2

s

∂qi

) (
∂ρ2

s

∂qj

)

×
⌈

ρ2
s +

(
1

2

∂ρ2
s

∂z

)2
⌉−1/2

dz, (8)

and for further elongation in which a neck is formed
(c > cwin), the corresponding friction tensor can be
written as [26]

γ wall
ij (c � cwin)

= π ρm

2
υ

⎧⎨
⎩

∫ zneck

zmin

(
∂ρ2

s

∂qi

+ ∂ρ2
s

∂z

∂D1

∂qi

) (
∂ρ2

s

∂qj

+ ∂ρ2
s

∂z

∂D1

∂qj

)

×
[
ρ2

s +
(

1

2

∂ρ2
s

∂z

)2
]−1/2

dz +
∫ zmax

zneck

(
∂ρ2

s

∂qi

+ ∂ρ2
s

∂z

∂D2

∂qi

)

×
(

∂ρ2
s

∂qj

+ ∂ρ2
s

∂z

∂D2

∂qj

) [
ρ2

s +
(

1

2

∂ρ2
s

∂z

)2
]−1/2

dz

⎫⎬
⎭ , (9)

γ win
ij (c � cwin) = π ρm

2
υ

(
∂R

∂qi

∂R

∂qj

)
�σ. (10)

Here ρm is the mass density of the nucleus, υ is the average
nucleon speed inside the nucleus, and D1,D2 are the position
of the centers of two parts of the fissioning system relative
to the center of mass of the whole system. zmin and zmax are
two extreme ends of the nuclear shape along the z axis and
zneck is the position of neck plane that divides the nucleus into
two parts. �σ is the area of the window between two parts of
the system and R is the distance between centers of mass of
nascent fragments.

The wall friction is modified by a chaoticity factor (µ),
which gives the average fraction of trajectories which are
chaotic when sampling is done uniformly over the surface.
In other words, the chaoticity is used to express the degree
of irregularity in the dynamics of the system. Each such
trajectory is identified as a regular or as a chaotic one by
considering the magnitude of its Lyapunov exponent over
a long time interval [27]. This modified or scaled version
of the wall friction is known as the chaos-weighted wall
friction [28]:

γij (c < cwin) = µ(c)γ wall
ij (c < cwin), (11)

γij (c � cwin) = µ(c)γ wall
ij (c � cwin) + γ win

ij (c � cwin), (12)

where the value of µ changes from 0 to 1 as the nucleus evolves
from spherical to a deformed shape.

The angular momentum l for each Langevin trajectory
is simulated by the Monte Carlo method from the trian-
gular spin distribution function with the maximum critical
angular momentum lc for fusion. This function is defined
by [11]

dσ (l)

dl
= 2π

k2

2l + 1

1 + exp[(l − lc)/δl]
. (13)

The particle emission width for a particle of kind ν is given
by [11]

�ν = (2sν + 1)
mν

π2h̄2ρc(E∗)

×
∫ E∗−Bυ

0
ρR(E∗ − ευ)ευσinv(ευ)dεν, (14)

where sν is the spin of the emitted particle ν and mν is
its reduced mass with respect to the residual nucleus. The
level densities of the compound and residual nuclei are
denoted by ρc(E∗) and ρR(E∗ − εν), respectively. The intrinsic
energy is E∗, and Bν are the liquid drop binding energies
according to Refs. [29,30]. The inverse cross sections are given
by [31]

σinv(εν) =
{
πR2

ν (1 − Vν/εν), εν > Vν,

0, εν < Vν,
(15)
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with

Rν = 1.21
[
(A − Aν)1/3 + A1/3

ν

] + (
3.4/ε1/2

ν

)
δν,n, (16)

where Aν is the mass number of the emitted particle ν =
n, p, α. The considered barriers for the charged particles are

Vν = [(Z − Zν)ZνKν]/(Rν + 1.6), (17)

with Kν = 1.32 for α particles and 1.15 for protons.
For γ -ray multiplicity the ground state to saddle point

evaluation of the compound nucleus contributes much more
than the saddle to scission point. In other words, we considered
only γ rays which are emitted at the beginning of the process.
For the emission of giant dipole γ quanta we used the formula
given by Lynn [32]:

�γ = 3

ρc(E∗)

∫ E∗

0
dερc(E∗ − ε)f (ε), (18)

where ε is the energy of the emitted γ ray and f (ε) is defined
by [32]

f (ε) = 4

3π

1 + k

mc2

e2

h̄c

NZ

A

�Gε4

(�Gε)2 + (
ε2 − E2

G

)2 , (19)

with EG = 80A−1/3 MeV and �G = 5 MeV being the position
and width of the giant dipole resonance and k = 0.75 [33].
Also A, Z, and N refer to mass, charge, and neutron number
of compound nucleus, respectively.

A Monte Carlo algorithm is used to calculate the competi-
tion among particle emission, γ -ray emission, and fission. In
the first step a random number r on the interval (0, 1) is chosen
based on a Monte Carlo technique. This random number is a
numerical characteristic assigned to an element of the sample
space. Then we define the probability of emission of a particle
as x = τ/(h̄/�R), where �R = �n + �p + �α + �γ and τ is
the time step of the calculation. Values of r < x are interpreted
as particle emissions. In each time interval only the emission
of one particle is considered.

In the case when a particle is emitted, the type of emitted
particle is then decided by a Monte Carlo selection with
the weights �ν/�R (ν = n, p, α, γ ). After each emission the
intrinsic excitation energy of the residual mass and spin of
the compound nucleus is recalculated based on the energy
removed by one particle emission. The spin of the compound
nucleus is reduced by assuming that each neutron, proton, or
a γ ray carries away 1 h̄ while the α particle carries away 2 h̄

of angular momentum. This cycle of calculations is repeated
for typically 50 000 Langevin trajectories and until it reaches
a scission point criteria (c = csci) [23]

csci = −2.0α2 + 0.032α + 2.0917. (20)

The pre-scission particle multiplicities have been calculated
for each α and finally these multiplicities are averaged
to obtained the pre-scission particle multiplicities. In one-
dimensional Langevin calculations, we used the elongation
parameter c as a collective coordinate, while the parameters h

and α have been set to zero. The three-dimensional Langevin
calculations were performed using the collective coordinates
c, h, and α.

We obtained average values of the different quantities using
the following relation:

〈ξ 〉 =
∑

l

∑
α〈ξ 〉l,α(2l + 1)Pl∑

l

∑
α(2l + 1)Pl

. (21)

The quantity ξ can be any of the parameters MPre
n ,MPre

p , and
MPre

α . Also, Pl is the probability of a particle crossing the
fission barrier, which depends upon angular momentum, and
is calculated using

Pl = Nl

N
, (22)

where N and Nl are the total number of trajectories and the
number of trajectories which undergo fission, respectively.

Summation over the asymmetry parameter is defined in an
interval [0, α] and summation over l is defined in an interval
[0, lf ], where αf and lf refer to maximum asymmetry and
critical angular momentum for fusion, respectively.

III. RESULTS

The systems typically chosen for the present work are 19F +
181Ta and 16O + 197Au because of the ample experimental data
available for them in the literature. The calculated pre-scission
neutron, proton, and α-particle multiplicities are plotted along
with the respective experimental data versus energy of the
compound system for comparison in Figs. 1–6. The variations
of pre-scission neutron multiplicity as a function of energy
for 19F + 181Ta and 16O + 197Au reactions are shown in
Figs. 1 and 2, respectively. At lower energies the difference
between theoretical results based on Langevin dynamics and
experimental data is lower but at higher energies the results
based on three-dimensional calculations are lower than those
from one-dimensional ones and consequently are in better
agreement with experimental data.

FIG. 1. Pre-scission multiplicity as function of energy for 19F +
181Ta reaction. Filled squares show experimental data [34]. Filled
circles and open squares represent theoretical calculations based on
one- and three-dimensional Langevin approaches, respectively. The
dashed and solid lines are approximation of, respectively, one- and
three-dimensional Langevins by a polynomial of second order.
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FIG. 2. Pre-scission multiplicity as function of energy for 16O +
197Au reaction. Filled squares show experimental data [34]. Filled
circles and open squares represent theoretical calculations based on
one- and three-dimensional Langevin approaches, respectively. The
dashed and solid curves are approximation of, respectively, one- and
three-dimensional Langevins by a polynomial of second order.

In Figs. 3 and 4 the variation of pre-scission proton
multiplicity is presented as a function of excitation energy
for 16O + 197Au and 19F + 181Ta reactions, respectively. The
obtained results for proton multiplicity based on one- and
three-dimensional approaches are close to each other (at lower
and medium energy); however, three-dimensional results are
in better agreement with experimental data. The variation of
pre-scission α-particle multiplicity is plotted as a function of
excitation energy for 16O + 197Au and 19F + 181Ta reactions
in Figs. 5 and 6, respectively. With an increase in excita-
tion energy, theoretical calculations without including neck
thickness and asymmetry (dashed curves in Figs. 5 and 6)
systematically overestimate the experimental pre-scission α-
particle multiplicities. By using neck thickness and asymmetry
parameters in calculations (solid curves in Figs. 5 and 6) the

FIG. 3. Pre-scission proton multiplicity as a function of excitation
energy for the 16O + 197Au reaction. Filled squares show experimental
data [35]. Filled circles and open squares show results of one- and
three-dimensional Langevin approaches, respectively. The dashed
and solid curves are approximations of, respectively, one- and
three-dimensional Langevins by a polynomial of second order.

FIG. 4. Pre-scission proton multiplicity vs excitation energy for
the 19F + 181Ta reaction. The experimental data (filled squares) are
taken from Ref. [35]. Filled circles and open squares show results of
one- and three-dimensional Langevin approaches, respectively. The
dashed and solid curves are approximation of, respectively, one- and
three-dimensional Langevins by a polynomial of second order.

agreement between theoretical and experimental results can
be reasonably well explained.

We studied the fission probability of the two systems as
a function of excitation energy. The results are shown in
Figs. 7 and 8. The results obtained from the one-dimensional
calculations are lower than those of the three-dimensional
calculations. The agrement between theoretical results based
on a three-dimensional calcualtion and experimental data is
satisfactory. The difference between the fission probability in
the two models is caused by the fission rate being larger in
three-dimensional calculations than in one-dimensional calcu-
lations. We calculated the probability of the system remaining
as a compound nucleus, PC.N., i.e., the number of samples
with c < cscis divided by the total number of samples, and then
calculated the fission rate as r(t) = −(1/PCN) dPCN/dt . The

FIG. 5. Pre-scission α-particle multiplicity as a function of
excitation energy for the 16O + 197Au reaction. Filled squares show
experimental data [35]. Filled circles and open squares show results of
one- and three-dimensional Langevin approaches, respectively. The
dashed and solid curves are approximations of, respectively, one- and
three-dimensional Langevins by a polynomial of second order.

024602-4



INFLUENCE OF DYNAMICAL PARAMETERS ON PRE- . . . PHYSICAL REVIEW C 83, 024602 (2011)

FIG. 6. Pre-scission α-particle multiplicity vs excitation energy
for the 19F + 181Ta reaction. The experimental data (filled squares) are
taken from Ref. [35]. Filled circles and open squares show results of
one- and three-dimensional Langevin approaches, respectively. The
dashed and solid curves are approximations of, respectively, one- and
three-dimensional Langevins by a polynomial of second order.

fission rate is analyzed in terms of the stationary value and the
transient time. The transient time is the time needed for the r(t)
to reach 90% of the stationary value and is obtained as τf =
β/2ω2 ln(10bf /T ) [9], where β represents the dissipation
strength, ω defines the potential inside the barrier, bf is the fis-
sion barrier hight, and T is the nuclear temperature. Our study
shows that the transient time is larger for three-dimensional
calculations. This result reflects the fact that three-dimensional
trajectories explore a large phase space compared to those in
one dimension before they reach the scission configuration,
resulting in an additional delay for the former.

The change in the stationary value of the fission rate
when going from a one-dimensional to a three-dimensional
description can be caused by both static and dynamic char-
acteristics of the fission process. In Ref. [37] the influence of

FIG. 7. Fission probability vs excitation energy for the 19F +
181Ta reaction. Filled squares show experimental data [36]. Filled
circles and open squares show results of one- and three-dimensional
Langevin approaches, respectively. The dashed and solid curves
are approximations of, respectively, one- and three-dimensional
Langevins by a polynomial of second order.

FIG. 8. Fission probability vs excitation energy for the 16O +
197Au reaction. The experimental data (filled squares) are taken
from Ref. [38]. Filled circles and open squares show results of
one- and three-dimensional Langevin approaches, respectively. The
dashed and solid curves are approximations of, respectively, one- and
three-dimensional Langevins by a polynomial of second order.

the geometry of the fission valley on the calculated value of
the stationary fission rate has been discussed. It was shown
that if the fission valley gets wider as one approaches the
saddle-point configuration, the three-dimensional stationary
value of the fission rate will increase by up to 50% as compared
to the one-dimensional value. The opposite is to be expected
if the fission valley gets narrower when approaching the
saddle-point configuration. Apart from these static arguments,
in the three-dimensional Langevin model the stationary value
of the fission width will also be influenced by the dependence
of the mass and friction tensors on the chosen collective
variables. The combination of all these effects leads to the
differences between the one- and three-dimensional results, as
is clear in Figs. 7 and 8.

IV. SUMMARY AND CONCLUSION

In conclusion, we have developed two dynamical model
(one- and three-dimensional Langevin models) for fission
where fission trajectories are generated through solving
Langevin equations with dissipative forces and by consid-
ering asymmetric mass division of fragments and noncon-
stant viscosity to simulate the pre-scission particle emis-
sion through a Monte Carlo simulation technique. The
results based on a three-dimensional Langevin approach
compared with a one-dimensional Langevin approach are
in better agreement with experimental data. For pre-scission
particles at lower energies the results of the two models are
almost identical but at medium and higher energies the results
of the one-dimensional calculation give higher values than in
the three-dimensional case. Also, one can conclude that con-
sidering the neck thickness and asymmetry degrees of freedom
decreases the pre-scission particle multiplicities. For the pre-
scission configuration particle multiplicity is lower for three-
dimensional calculations compared with one dimensional. It
is evident that each emission of a light particle carries away
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excitation energy and angular momentum, thereby increasing
the height of the fission barrier of the residual nucleus, which,
in turn, renders the fission event less and less probable. Also,
the difference between the fission probability in the two models

is caused by the fission rate in the three-dimensional model
being larger than in the one-dimensional model. Also, our
results agree with theoretical investigations by other authors on
other systems, in particular the work of Natdtochy et al. [24].
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