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Description of pairing correlation in many-body finite systems with density functional theory
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Different steps leading to the new functional for pairing based on natural orbitals and occupancies proposed
earlier [D. Lacroix and G. Hupin, Phys. Rev. B 82, 144509 (2010)] are carefully analyzed. Properties of
quasiparticle states projected onto good particle numbers are first reviewed. These properties are used to
(i) prove the existence of such a functional, (ii) provide an explicit functional through a 1/N expansion starting
from the BCS approach, and (iii) give a compact form of the functional summing up all orders in the expansion.
The functional is benchmarked in the case of the picket-fence pairing Hamiltonian where even and odd systems
are studied, using the blocking technique, at various particle numbers and coupling strengths, with uniform
and random single-particle level spacing. In all cases, very good agreement is found, with a deviation of <1%
compared to the exact energy.
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I. INTRODUCTION

Nuclear systems [1,2] or ultrasmall metallic grains [3]
offer the possibility of obtaining insight into the finite pairing
correlations of systems with varying particle number. The
introduction of a simple many-body wave packet ansatz more
than 50 years ago by Bardeen, Cooper, and Schrieffer (BCS)
[4] was a major breakthrough for the understanding and
description of superconductivity. To illustrate the advantages
and drawbacks of the BCS theory, in Fig. 1, the condensation
energy, i.e., the difference between the Hartree-Fock (HF)
energy and the energy of the system obtained with BCS
(dashed line) is compared to the exact result (solid line) for
the picket-fence pairing Hamiltonian (for details, see Sec. IV)
[5–7]. One of the great advantages of the BCS or Hartree-Fock
Bogoliubov (HFB) theory is the possibility, at the price of
conserving only the average particle number, of grasping
part of the correlation beyond the Hartree-Fock level while
keeping the theory relatively simple. As can be seen from
Fig. 1, the BCS prediction becomes closer to the expected
result as the number of particles increases. Indeed, the BCS
theory is shown to be exact in the thermodynamic limit.
Besides these interesting aspects, BCS or HFB suffer from a
threshold at low coupling. In fact, when the coupling strength
is much smaller than the average level spacing between
single-particle states, BCS identifies with HF, while, in reality,
correlations build up as soon as the two-body interaction is
plugged in. In addition, even above the threshold, parts of the
correlation are systematically missed.

It is now standard practice to use BCS or HFB theories
in nuclear physics, for instance, within the energy density
functional (EDF) approach [8,9] leading to the so-called
single-reference (SR-EDF) or mean-field level of EDF. These
tools already provide a rather good reproduction of gross
nuclear properties. For instance, masses can be estimated with
a typical precision of 500–600 keV. Figure 1, however, clearly
points out that there is room for improving the BCS approach
in finite size systems. In particular, part of the discrepancy
stems from the use of a trial wave function that is not an
eigenstate of the particle number operator N̂ . Starting from

the BCS wave packet, a new state with a good particle number
can be obtained using the projection operator technique [10].
Within EDF, similar to the restoration of angular momentum or
calculation including dynamical fluctuations associated with
configuration mixing, projection onto a good particle number
enters into the class of multireference EDF (MR-EDF). If
the projection is made prior to the variation [variation after
projection (VAP)], the variational state directly becomes an
eigenstate of N̂ . Illustration of VAP condensation energy
(open circles) is given in Fig. 1 (see, for instance, Ref. [11]).
Such an approach provides a very accurate description of
pairing correlation at all coupling strengths and completely
removes the BCS threshold problem. VAP still remains
rather involved numerically, and a less efficient but simpler
approach consists of projecting the state after the variation,
the so-called projection after variation (PAV) (open triangles
in Fig. 1). The projection technique is becoming a popular
tool in nuclear structure. However, recent studies have shown
that projection aiming at restoring broken symmetries and/or
more generally configuration mixing should be handled with
care when combined with density functional theory [12,13],
due to the possible appearance of jumps and/or divergences
in the energy surface. These difficulties have been carefully
analyzed in Refs. [14–16] and have been related to the self-
interaction and self-pairing problem. By comparing theories
starting from a Hamiltonian and an energy functional, a
correction to the pathologies was proposed such that system-
atic calculation along the nuclear chart is now within reach.
These studies have clearly pointed out that specific aspects
might appear due to the use of functional theories (see also
Refs. [17,18]) when MR-EDF is used.

The EDF framework provides a unified framework not
only for nuclear structure but also for nuclear dynamics and
thermodynamics. While MR-EDF is a suitable tool for the
former, due to its complexity, it can hardly be used in the
latter cases. The goal of the present work is to discuss a new
approach to treat pairing where the projection effect is directly
incorporated into the functional through specific dependencies
on natural orbital occupancies. Such an approach, directly
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FIG. 1. (Color online) Exact condensation energy (red solid line)
obtained for the picket-fence pairing Hamiltonian as a function of
the coupling strength for 16 (top) and 8 (bottom) particles. In both
cases, the BCS (green dashed line) and the projected BCS with a
projection made before (open blue circle) or after the variation (open
violet triangle) are also shown. On the right, occupation numbers of
the different theories are plotted for g/�ε = 0.82.

written in the functional framework, avoids some ambiguities
encountered in current EDF and is expected to greatly simplify
PAV and to be easily adapted to the nonequilibrium evolution
of finite temperature studies. The main aspects of the new
functional theory have already been summarized in Ref. [19].
Here, we present a complete discussion of the different steps
leading to the functional. Below, we first discuss the interest
of using natural orbital based functionals. Then, mathematical
properties of projected BCS states that are used to propose the
functional are given. Finally, the new functional is applied
to a specific pairing Hamiltonian either with equidistant
or nonequidistant level spacing and benchmarked for any
coupling strength and particle number.

II. FUNCTIONALS BASED ON NATURAL ORBITALS
AND OCCUPANCIES

The possibility of replacing a many-body problem by a
functional of the density matrix was first proposed by Gilbert
[20] and is called density matrix functional theory (DMFT)
or reduced DMFT (RDMFT). The Gilbert theorem is a
generalization of the Hohenberg-Kohn theorem [21] where the
variational quantity, i.e., the local density ρ(r, r), is replaced by
the full one-body density matrix (OBDM) ρ(r, r′). Most often,
the OBDM is first written in the natural or canonical basis
as ρ = ∑

i |ϕi〉ni〈ϕi |. Here ni and {|ϕi〉} denote occupation
numbers and natural orbitals, respectively. Then, the initial
many-body problem is replaced by the minimization of an
energy functional

F[{ϕi}, {ni}] = E[{ϕi}, {ni}] − µ{Tr(N̂ρ) − N}
−

∑
ij

λij (〈ϕi |ϕj 〉 − δij ), (1)

where the variation is made with respect to both single-
particle states ϕ∗

i (r) and occupation numbers. The set of
Lagrange multipliers µ and {λij } are introduced to ensure
particle number conservation and orthogonality of the single-
particle states. RDMFT has several advantages compared to
the standard density functional theory (DFT). For instance,
while Kohn-Sham single-particle states used to construct the
local density are not expected to have physical meaning, the
nonlocal density ρ should match the exact one at the minimum.
Accordingly, associated single-particle states and occupations
identify with those of the exact many-body state. This is an
important aspect of this theory. Indeed, DFT can only provide
information on the energy. In RDMFT, not only the energy
can be estimated but also any one-body operators. Similary to
density functional theory, the main challenge is to find accurate
functionals.

Another interesting feature of this theory is its ability
to describe aspects that are not adequately obtained at
the DFT level, such as reactions, atomization energy, or
the dissociation of small molecules. All these phenomena
have their counterparts in nuclear physics. Nowadays, a sizable
effort is made to provide new accurate RDMFT functionals
and benchmark them on finite and infinite systems (see, for
instance, Ref. [22] and references therein).

In this article, we focus on pairing. Let us first remark that
current SR-EDFs that account for pairing already share many
aspects with RDMFT. Most nuclear SR-EDFs used now start
from a functional that can be written as

ESR[ρ,C] ≡ Eρ + Eρρ + EC

=
∑
ij

tij ρji + 1

2

∑
ijkl

v̄
ρρ

ijkl ρki ρlj

+ 1

4

∑
ijkl

v̄C
klij Cij,kl, (2)

where v̄ρρ and v̄C denote effective two-body kernels, re-
spectively, in the particle-hole and correlation channels. C1,2

denotes the irreducible two-body correlation matrix defined
as the difference between the two-body density and the
antisymmetric product of a one-body density matrix (see,
for instance, Ref. [23]). To treat pairing correlations, a
quasiparticle trial state |φQP〉 is considered, then the correlation
matrix elements can be written in terms of the anomalous
density κ as Cij,kl = κ∗

ij κkl [1,14]. In the natural orbital basis,
the quasiparticle state can be expressed in a BCS form,

|φQP〉 =
∏

i

(1 + xia
†
i a

†
ī
)|0〉, (3)

where |0〉 corresponds to the particle vacuum, while {a†
i , a

†
ī
}

correspond to doubly degenerated canonical states {ϕi, ϕī}
with occupation probability 2ni . The xi coefficients are
connected to the occupation numbers through

|xi |2 = ni

(1 − ni)
. (4)
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Accordingly, pairing energy reduces to

EC = 1

4

∑
ij

v̄κκ
iīj j̄

√
ni(1 − ni)

√
nj (1 − nj ).

Noting in addition that both Eρ and Eρρ can directly be written
as a functional of ni and ϕi through their dependence on the
one-body density, we see that current SR-EDF can indeed be
interpreted as a mapping between the initial problem into a
functional theory of ({ϕi}, {ni}), i.e.,

E[ρ,C] → E[{ϕi}, {ni}], (5)

provided that the functional is written in the canonical basis.
EDF based on quasiparticle states have the shortcomings
discussed in the Introduction when combined with projection
onto a good particle number within the MR-EDF. This is
nowadays used in nuclear structure study. If the projection is
made prior to the variation, such a projection is equivalent
to considering a new trial wave function, called hereafter
generically the projected BCS (PBCS) state, of the form

|N〉 ≡ P̂ N |φQP〉 ∝
(∑

i

xia
†
i a

†
ī

)N

|0〉, (6)

where P̂ N is the projector on particle number N (see, for
instance, Refs. [10,13,16]). In the following, we will use the
short notation 	† = ∑

i xib
†
i with b

†
i = a

†
i a

†
ī
.

When projection is made in a EDF, the associated functional
becomes much more complex to minimize. It should, however,
be noted that the functional is generally written in terms of the
normal and anomalous density of the original quasiparticle
state from which the projected state is constructed. Therefore,
the occupation probabilities of the new trial state |N〉 do not
appear directly [24]. Nevertheless, the occupation numbers of
|N〉 can be estimated numerically. Illustration of occupation
probabilities of the projected states are compared to the exact
ones for the picket-fence pairing Hamiltonian in Fig. 1. Both
VAP and PAV results as well as BCS case are displayed.
It is first interesting to mention that, while the energy is
improved in the PAV case, single-particle occupation numbers
deviate more from the exact solution than in the original BCS
case. This is something to worry about since, when PAV is
performed in EDF, expectation values of one-body operators
are estimated. In contrast, in the VAP method, occupation
probabilities perfectly match the exact case for all particle
numbers and pairing coupling strengths. Therefore, we see
that the use of the projected state before the variation leads to
a very good reproduction of both the ground state energy and
the single-particle occupation numbers.

Having this in mind, in the following, we use the prop-
erties of the PBCS state to provide a new functional for
pairing directly based on the occupation numbers of the
projected state. The state (6) is used as a starting point
where it is implicitly assumed that the orbitals are written
in their canonical basis, namely, the one which exhibits an
explicit time-reversal symmetry. In that case, the energy (2)

reduces to1

ESR[ρN,CN ] =
∑

i

ti n
N
i + 1

2

∑
ij

v̄
ρρ

iijj ρN
ii ρ

N
jj

+ 1

4

∑
ij

v̄C
iīj j̄

CN
iī,j j̄

, (7)

were ρN
ii = nN

i and CN
iī,j j̄

now stand for the occupation and
correlations associated with the projected state, i.e.,

nN
i = 〈N |a†

i ai |N〉
〈N |N〉 , CN

ij = 〈N |b†i bj |N〉
〈N |N〉 − δijn

N
i nN

j . (8)

Here, we have used the compact notation CN
ij ≡ CN

iī,j j̄
. In the

following, we will omit the N label to shorten the notation,
keeping in mind that these quantities refer to the projected
state. In order to do the mapping (5), we are left with the
challenge of expressing the correlation Cij as a functional of
ni as it can be easily done in the BCS or HFB case. But in the
present work, we aim at accounting for the particle number
conservation directly in the functional.

III. CONSTRUCTION OF FUNCTIONALS FOR PAIRING
FROM A PBCS STATE

Here, some properties of projected states are first high-
lighted. These properties are then used as guidance in con-
structing the functional. Over the years, interesting features
of matrix elements entering in Eq. (8) have been derived.
Some can eventually be deduced using the fact that the BCS
state plays the role of the PBCS state generating function
[25,26] and can be used, for instance, to minimize the energy
directly written as a functional of the {xi} parameters [27,28].
Proofs of some of the properties that are used below are first
given.

A. Definition of a class of operators, states, and overlaps

First, we start with a strategy similar to that in Ref. [29]. A
set of pair creation operators that omit one, two, . . . pairs of
single-particle states is first introduced:

	†(i) = 	† − xib
†
i ,

	†(i, j ) = 	† − xib
†
i − xjb

†
j , (9)

· · ·
where indices i, j refer to the removed pairs. In the following,

 will denote the size of the single-particle Hilbert space.
From these operators, a corresponding set of states with a

1Note that, correlation matrix elements should also appear in the
particle-hole channel. Since the aim of the present article is to focus
on the pairing channel and since these components cancel out exactly
in the example presented below, they are omitted here.
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given particle number is defined:

|K〉 = cK (	†)K |−〉,
|K : i〉 = cK (	†(i))K |−〉, (10)

|K : i, j 〉 = cK (	†(i, j ))K |−〉,
· · ·

with K � N , while cK is taken by convention equal to
(K!)−1/2. Note that the state introduced in Eq. (6) corresponds
to the special situation where K = N and no pair has been
removed. From these states, we define a set of coefficients
from the overlaps:

IK = K!〈K|K〉
IK (i) = K!〈K : i|K : i〉 (11)

IK (i, j ) = K!〈K : i, j |K : i, j 〉
· · ·

Using the fact that (b†j )2 = 0, due to the fermionic nature of
the particles, the different operators verify that

[	†(i1, . . . , iκ )]K = [	†(i1, . . . , iκ , j )]K

+Kxj [	†(i1, . . . , iκ , j )]K−1. (12)

This property leads to specific relationships between the states
defined above and their overlaps. For instance,

IK = IK (i) + K|xi |2IK−1(i),

IK (i) = IK (i, j ) + K|xj |2IK−1(i, j ), (13)

· · ·
These recurrence relations have been recently used to solve
numerically VAP [27] and will be at the heart of the present
work to design a new functional for pairing.

B. Energy as an explicit functional of {xi }
Since the PBCS state is written as a functional of the

parameter set {xi}, expectation values of any operators can
a priori be expressed as a functional of this set. Here,
an illustration is given for the occupation probabilities and
correlation matrix elements.

Using the states defined in Eq. (10), the expectation values
of operators entering into Eq. (8) can be expressed as

〈N |a†
i ai |N〉 = |xi |2〈N − 1 : i|N − 1 : i〉,

(14)
〈N |b†i bj |N〉 = x∗

i xj 〈N − 1 : i|N − 1 : j 〉.
We then deduce that both occupation numbers and correlation
components can be expressed in terms of ratios between the
different coefficients introduced in Eqs. (11):

ni = N |xi |2 IN−1(i)

IN

,

(15)

Cij = Nx∗
i xj

IN−1(i, j )

IN

for (i �= j ),

while for i = j , Cii = ni(1 − ni). Overlaps entering in ni and
Cij can be directly expressed as a functional of {xi}. Indeed, a

direct development of (	†)K in Eq. (6) gives

|N〉 = cK

�=∑
(i1,...,iN )

xi1 · · · xiN b
†
i1

· · · b†iN |−〉,

= K!cK

�=∑
i1<···<iK�


xi1 · · · xiN b
†
i1

· · · b†iN |−〉,

where
∑�=

(i1,...,iN ) is used to insist that the summation is
made only for indices different from each other. From this
expression, it is straightforward to see that

IK =
�=∑

(i1,...,iK )

|xi1 |2 · · · |xiK |2. (16)

In a similar way, the following expressions can be deduced:

IK (i) =
�=∑

(i1,...,iK )�=i

|xi1 |2 · · · |xiK |2,

IK (i, j ) =
�=∑

(i1,...,iK )�=(i,j )

|xi1 |2 · · · |xiK |2,

· · ·
Note that, these expressions also suggest additional sum rules
between the overlap:

IK =
∑

i

|xi |2IK (i),

IK (i) =
∑
j �=i

|xj |2IK (i, j ), (17)

· · ·
For completeness, additional properties are given in Ap-
pendix A. Reporting the above expressions into Eq. (15), both
ni and Cij , and consequently the energy, take the form of
an explicit functional of {xi}. This functional turns out to
be too complex for direct practical use unless one can take
advantage of the different recurrence relation to estimate the
desired quantities [27].

C. Energy as an implicit functional of {ni }
The possibility of writing the energy as a functional of

natural orbitals and occupation probabilities is far from being
trivial. Strictly speaking, the Gilbert theorem [20] holds for
systems bound by an external potential. It could, however,
be extended to self-bound systems with the introduction of
the Legendre multiplier technique [30]. In practice, such a
technique is useful when the energy can first be written
as a functional of the single-particle energies through some
preliminary approximations (see, for instance, Refs. [31,32]).
In general, the existence of an occupation number functional
as well as its form is not straightforward. Here, we give a
proof of the principle that the energy estimated with a PBCS
trial wave can indeed be written as such a functional. Since all
quantities can be written as a functional of {xi}, it is sufficient
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to prove that these parameters can in turn be put as a function
of the {ni} set.

Starting from the expression of ni and taking advantage of
Eq. (17), we first obtain

ni = N
∑
j �=i

|xi |2|xj |2 IN−2(i, j )

IN

. (18)

Then, using the following recurrence relations

IN−1(i) = IN−1(i, j ) + (N − 1)|xj |2IN−2(i, j ),

IN−1(j ) = IN−1(i, j ) + (N − 1)|xi |2IN−2(i, j ),

which are valid for any i �= j , we see that

IN−1(i, j ) = |xj |2IN−1(j ) − |xi |2IN−1(i)

|xj |2 − |xi |2 ,

(19)
IN−2(i, j ) = 1

N − 1

IN−1(i) − IN−1(j )

|xj |2 − |xi |2 ,

from which we deduce

ni(N − 1) =
∑
j �=i

|xi |2|xj |2 |xj |2ni − |xi |2nj

|xj |2 − |xi |2 . (20)

Eventually, it can be transformed as

N (1 − ni) =
∑
j �=i

(nj − ni)
|xj |2

|xj |2 − |xi |2 . (21)

This expression holds for any single-particle state i. This set of
coupled equations between occupation numbers and {xi} is of
particular interest for the present discussion. Indeed, given a set
of occupation numbers ni , one could a priori deduce the values
of the xi through these secular equations. This shows that
these parameters are an implicit functional of the occupation
probabilities (see also discussion in Sec. IV).

D. Energy as an explicit functional of {ni }
In this section, we discuss the main objective of the present

work, i.e., to provide an explicit functional of the occupation
probabilities. The strategy that is followed here is to use the
BCS case as a guidance (see Appendix B). In that case, there is
a direct and simple relation between |xi |2 and ni already given
in Eq. (4). Let us first see how this relation can be generalized
in the PBCS case.

Using the first equation of Eq. (13) for K = N and reporting
in the denominator appearing in ni leads to

ni = |xi |2
|xi |2 + αN (i)

, (22)

where we have introduced the notation αN (i) ≡
IN (i)/[NIN−1(i)]. This expression can easily be inverted and
compared to Eq. (4). In the PBCS case, we have

|xi |2 =
(

ni

1 − ni

)
αN (i). (23)

Therefore, we see that the BCS limit is recovered if αN (i) = 1
and that all the physics beyond the ordinary BCS or HFB
theories is contained in its deviation from unity. This could

also be seen by expressing the correlation in terms of ni and
αN (i). Reporting Eq. (19) into (15) leads to

Cij =
{

ni(1 − ni) for (i = j ),

x∗
i xj

nj −ni

|xj |2−|xi |2 for (i �= j ).
(24)

Taking advantage of Eq. (23) and using the short-hand notation
αi ≡ αN (i) finally gives (for i �= j )

Cij = √
ni(1 − ni)nj (1 − nj )αiαj

× ni − nj

ni(1 − nj )αi − nj (1 − ni)αj

. (25)

In the limit αi = 1, the BCS functional Cij =√
ni(1 − ni)nj (1 − nj ) is recovered. More generally, it

is shown that any of the following quantities, defined through

αK (i1, . . . , iκ ) = 1

K

IK (i1, . . . , iκ )

IK−1(i1, . . . , iκ )
, (26)

identify with 1 in the BCS limit (see Appendix B).

1. 1/N expansion beyond the BCS theory

Since the BCS theory identifies with PBCS in the
large N limit, it is reasonable to seek for a correction to
αK (i1, . . . , iκ ) = 1 written as a 1/N expansion. Such an
expansion can be obtained thanks to the relation

αK (i1, . . . , iK )

= 1

K

�=∑
j �=(i1,...,iK )

|xj |2 αK−1(i1, . . . , iK, j )

|xj |2 + αK−1(i1, . . . , iK, j )
, (27)

connecting αK and αK−1 terms. This expression can be derived
using Eqs. (13) and (17). Due to the presence of a 1/K

prefactor in this relation, any correction of order 1/(K − 1)
in αK−1 will appear as an order 1/K(K − 1) in αK . As an
illustration, assuming that αN−1(i, j ) 	 1, as in BCS, leads to

αN (i) 	 1

N

∑
j

|xj |2
|xj |2 + 1

	 1

N

∑
j

nj

= 1

N
(N − ni) = 1 − 1

N
ni, (28)

which appears as the first-order correction in (1/N) to the BCS
case. Similarly, we can obtain

αN−1(i, j ) 	 1

N − 1
(N − ni − nj )

αN−2(i, j ) 	 1

N − 2
(N − ni − nj − nk)

· · ·
Higher order corrections in αN (i) can be obtained by including
more and more terms in the expansion of all αK (with K < N).
This technique has been used in Ref. [19] to get the expansion

αN (i) = 1 − 1

N
ni + 1

N (N − 1)

∑
j �=i

n2
j [1 − (ni + nj )]
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+ 1

N (N − 1)(N − 2)

�=∑
(k,j )�=i

× n2
j n

2
k[2 − (ni + nj + nk)] + · · · , (29)

which corresponds to αN (i) written as an explicit functional
of the occupation numbers. Note that additional terms tested
numerically as negligible and appearing at the second (or
higher) order approximation are omitted here. This functional
can then be injected into Eq. (25), leading to an explicit
functional of xi in terms of the ni . Accordingly, expectation
values of any operator becomes also a functional of the
projected state occupation numbers.

This approximation was tested numerically in Ref. [19]
and showed a rapid convergence in the strong coupling limit.
However, for small coupling (HF limit), a slow convergence
was found. Indeed, assuming that ni → 1 for the N pairs, we
deduce for one of the occupied state∑

j �=i

n2
j [1 − (ni + nj )] → −(N − 1),

�=∑
(k,j )�=i

n2
j n

2
k[2 − (ni + nj + nk)] → −(N − 1)(N − 2),

· · ·
Therefore, in this limit, all contributions to any order will
participate to the same extent and sum to give αN (i) =
(1 − ni), leading finally to a correlation given by

Cij → √
ninj . (30)

This form, which has been proposed using a completely
different strategy in an electronic system [33], will never
be properly described by the BCS functional. From the
discussion above, difficulties in the application of the present
functional might also be anticipated. Indeed, since all terms
in the expansion should be kept, the functional becomes
rather complicated and its application might become rapidly
intractable.

2. Resummation of the 1/N expansion and simplified functional

The price to pay to correctly describe the weak coupling
limit is to keep all orders in the expansion presented above.
This basically shows that the 1/N expansion approach starting
from the BCS approximation is not appropriate in that case. To
overcome this difficulty a simplified functional can be found
using the following approximation in Eq. (29):

1

N (N − 1)

∑
j �=i

→ 1

N2

∑
j

,

1

N (N − 1)(N − 2)

�=∑
(k,j )�=i

→ 1

N3

∑
jk

· · · ,

while keeping all terms in this expansion. This approximation
leads to a simple linear dependence of the αi coefficient with
respect to the occupation numbers ni :

αi = a0 − a1ni, (31)

where a0 and a1 are given by the expressions

a1 = 1

N

(
1 + s2 + s2

2 + · · · + sN−1
2

)
= 1

N

1 − sN
2

1 − s2
(32)

and

a0 = 1 + (s2 − s3)

N

[
1 + 2s2 + · · · + (N − 1)sN−2

2

]
= 1 + (s2 − s3)

∂a1

∂s2
, (33)

and where the moments sp = 1
N

∑
i(ni)p have been used.

Reporting expression (31) in the correlation matrix elements
of Eq. (25) gives the simple form (for i �= j )

Cij = √
ni(1 − ni)nj (1 − nj )

×
√

(a0 − a1ni)(a0 − a1nj )

a0 − a1(ni + nj − ninj )
, (34)

= C(ni, nj ).

The functional (34) together with Eqs. (32) and (33) represent
the main result of this article. We can already anticipate some
advantages of this functional. (i) In the Hartree-Fock limit sp =
1 for all p > 1. Accordingly, a0 = a1 = 1 and we recover the
HF functional quoted above, i.e., Cij = √

ninj . (ii) The BCS
limit is also easily identified in Eq. (34) by taking the limit a0 =
1 and a1 = 0. The net result of our approach is that the energy
introduced in Eq. (7) that was originally written as a functional
of the density and correlations in the projected state becomes
now a functional of the one-body density matrix components
only. In practice, such a functional approach should be solved
by minimizing Eq. (1) where the energy now reads

ESR[{ϕi}, {ni}] =
∑

i

ti ni + 1

2

∑
ij

v̄
ρρ

iijj ninj

+ 1

4

∑
i �=j

v̄C
iīj j̄

C(ni, nj )

+ 1

4

∑
i

v̄C
iīiī

ni(1 − ni).

First applications of this functional can be found in Ref. [19],
illustrating the predicting power of the functional for energy
and occupation probabilities. In numerical implementation,
sequential quadratic programming leads to very good conver-
gence at any coupling and/or large particle number. Below, the
new functional is further illustrated and benchmarked.

IV. APPLICATION

We consider here a system of A particles interacting through
the pairing Hamiltonian of the form [5–7]

H =
∑
i>0

εi(a
†
i ai + a

†
ī
aī) − g

2

∑
i,j

a
†
i a

†
ī
aj̄ aj , (35)
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where ī denotes the time-reversed state of i, both associated
with single-particle energy εi . The total single-particle Hilbert
space size is assumed to be 
 = 2A. This Hamiltonian can
be solved exactly numerically by making use of the so-called
Richardson equations. The first test of the functional was made
with this model Hamiltonian for an even particle number A =
2N , where N denotes the number of pairs, and for equidistant
single-particle levels, the so-called picket-fence Hamiltonian.
Here, we will further illustrate some of the aspects of the new
functional in that case, and extend the application to even
systems (A = 2N + 1) and/or nonequidistant levels.

A. Illustration in the picket-fence Hamiltonian

Here, we first consider the special case of equidistant
single-particle levels with a level spacing denoted by �ε.
First, we recall that the strategy to design a functional going
beyond the BCS one was made in three steps: (i) The
parameters {xi} were first shown to be implicit functional of
the {ni} through the existence of a set of secular equations
[Eq. (21)]. (ii) Starting from the BCS prescription, systematic
1/N corrections were proposed to obtain a new functional
[Eq. (29)]. (iii) Summing all orders, a simplified functional
was then introduced [Eq. (31)]. Step (ii) has been shown to be
inadequate [19], especially in the weak coupling limit. In the
following, we further illustrate the gain in predicting power of
the form (34) compared to the original BCS prescription.

1. Application of the new functional for equidistant level spacing

We first consider the case of even systems with doubly de-
generated equidistant levels. In the following, the condensation
energy, denoted by ECond, is defined as

ECond = EHF − E, (36)

where EHF = 2
∑

i>0 εi − gN is the Hartree-Fock (HF) energy
while E denotes the energy of the considered theory. ECond

quantifies the predicting power of different approximations.
An illustration of the evolution of this quantity as a function of
the coupling strength has already been given in the Introduction
(Fig. 1). In Fig. 2, we see that the proposed functional is almost
on top of the exact result (and the exact VAP calculation).
A slight difference is observed in the intermediate coupling
regime. Similarly, occupation numbers perfectly match the
exact ones in the strong coupling regime and slightly differ
from them below the BCS threshold. In this regime, while BCS
identifies with HF, here, occupation probabilities different
from 1 and 0 are obtained as soon as the interaction is
switched on.

2. Critical discussion of the linear approximation, Eq. (31)

Figure 3 shows the accuracy of the present approximation
in the model case of a constant two-body interaction g. In
this figure, the approximate αi for different coupling strength
g/�ε = 0.32 (filled circles), 0.64 (crosses), and 0.96 (open
circles) are compared to the exact ones (respectively, dashed,
dotted, and solid lines) as a function of either the orbital
probabilities [Fig. 3(a)] or single-particle energies [Fig. 3(b)]
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12

18
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H
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−
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n
i
(1

−
n
i)
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H
F
−
E)
/ ∆

ε

(a)

n
i
(1

−
n
i)

1×10-1

2×10-1

εi/∆ε

(c)

FIG. 2. (Color online) Evolution of the condensation energy for
the exact (red solid line), BCS (green dashed line), and new functional
(blue filled circles) obtained for the picket-fence pairing Hamiltonian
as a function of the coupling strength for (a) 16 and (b) 8 particles.
On the right, occupation numbers of the different theories are plotted
for (c) g/�ε = 0.82 and (d) g/�ε = 0.22.

at the minimum of energy. The dependency of αi obtained in
the PBCS case for small coupling also shows that a simple
linear approximation cannot fully grasp the physics of weak
coupling. Following the same strategy as above, quadratic
or cubic corrections might eventually be obtained. However,
this will add complexity to the functional while the energy is
already rather well reproduced.

3. Systematic analysis of occupation numbers

In Fig. 2, illustrations of occupation numbers obtained in
different theories are shown for specific couplings. In a DMFT
framework, not only the energy should match the exact energy
at the minimum but also the deduced one-body density matrix,
and a fortiori occupation numbers should also be identical to
the exact one. To systematically compare the gain in predicting
single-particle occupation numbers in the new functional, we

5 10 15

0.5

1

1.5

0 0.4 0.8
εi/∆ε

(b)

α
i

ni

(a)

FIG. 3. (Color online) Evolution of the coefficients αi as a
function of ni (a) or εi (b) at the minimum of energy. The different
curves correspond to the PBCS result for g/�ε = 0.32 (dashed line),
0.64 (dotted line), and 0.96 (solid line). The corresponding results
obtained with the linear approximation [Eq. (31)] are displayed by
filled circles, crosses, and open circles, respectively.
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S
/ h̄

g/∆ε

FIG. 4. (Color online) Evolution of the one-body entropy for
different theories as a function of the coupling strength for 16
particles. The BCS (green dashed line), PAV (open violet triangles),
and PBCS-functional (filled blue circles) ansatz are compared to the
exact result. The inset magnifies the low g/�ε vicinity.

have defined the one-body entropy:

S[ni] = −
∑

i

[ni ln(ni) + (1 − ni) ln(1 − ni)]. (37)

The entropy evolution is shown in Fig. 4 as a function of the
coupling strength. While PAV and BCS are unable to reproduce
the exact result, especially below or in the vicinity of the
threshold, the new functional is in close agreement with it.

4. Simplified functional for the strong coupling regime

One important issue from the practical point of view is the
possibility to further simplify in some regime. In particular, in
the strong coupling regime, we have seen that 1/N perturbation
starting from BCS rapidly converges to the exact solution.
Truncation at second order of Eq. (29) already gives a very
good result [19]. It is therefore legitimate to question whether
a simpler form for Eq. (34) can be found in this regime. Close
to BCS, we expect a0 → 1 and a1 → 0 which justifies an
expansion in orders of (a1/a0). For instance,

Cij = √
ninj (1 − ni)(1 − nj )

×
[

1 − a1

2a0
[ni(1 − nj ) + nj (1 − ni)] + O

(
a1

a0

)]
.

In Fig. 5, leading order (LO) and next to next to leading
order (N2LO) are compared as a function of the pairing
strength for a typical number of particles, A = 16, from 0
and 1 to the exact distribution. It can be inferred that the
full functional solution can only be recovered at low coupling
strength when all terms of the expansion are taken into
account, which agrees with the previous discussion leading
to resummation.

5. Application to odd systems

Similar to the BCS framework, the energy of systems with
an odd number of particles can be obtained by using blocking
techniques. In the PBCS case, this is equivalent to considering
a modified trial wave function given by

|2N + 1〉 ∝ (a†
α + a

†
ᾱ)[	†(α)]N |−〉, (38)

0

2

4

0.2 0.4 0.6

0

2

4

(E
H
F
−
E)
/ ∆

ε

g/∆ε

(b) N2LO

(E
H
F
−
E)
/ ∆

ε

(a) LO

FIG. 5. (Color online) Comparison between leading order (a) and
next to next to leading order (b) of the new functional (blue filled
circles) for 16 particles. Evolution of the condensation energy for
the exact (red solid line) and BCS (green dashed line) are shown as
references.

which does preserve the time-reversal symmetry of the
solution. Here, {α, ᾱ} correspond to the blocked pair and
identify with the last occupied levels in the Hartree-Fock limit.
The particle number conservation implies that occupation of
the blocked states are kept fixed and equal to nb = nb̄ = 0.5.
As an illustration of the odd-even effect, we define the average
gap �̄ through the relation

�̄ = EC∑
i �=b

√
ni(1 − ni)

. (39)

This quantity identifies up to a factor 1/g with the standard
gap in the BCS limit. In Fig. 6, the evolution of �̄/A as a
function of particle number A is presented for different values
of the coupling strength in the exact (solid line), BCS (dashed
line), and new functional (filled circles) cases. Odd particle
numbers (left column) are compared with even ones (right) to
distinguish the odd-even effect. This figure shows that the new
functional predicts well �̄/A for both even and odd number
of particles. Deviations at low coupling strength of the PBCS
from the exact case stem from the small discrepancies in the
occupation numbers between those obtained in the functional
formulation and the exact ones. The insets of Fig. 6 show the
standard deviations from the exact calculation normalized to
unity for the different functionals. It is worth mentioning that
the same accuracy is observed for both even and odd systems
in the case of the PBCS functional, this is in contrast with the
BCS calculations. In the following discussion, the effect of
particle number is further investigated.

6. Accuracy of the functional with respect of particle number

It is known from Ref. [34] that the PBCS state exhibits
slight deviations from the exact solution for medium number
of particles. Since our approach is based on a PBCS trial
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FIG. 6. (Color online) Evolution of �̄/A as a function of particle
number A for even (left) and odd (right) systems. From top to bottom,
the three different coupling constants g/�ε = 0.66, 0.44, and 0.224
are shown. In each case, the BCS (green dashed line) and PBCS
(blue filled circles) functional theories are compared to the exact
calculation (red solid line). Note that g/�ε = 0.224 is below the BCS
threshold for some values A which leads to an equivalent threshold
in the quantity �̄/A. In the insets, the standard deviations to the
exact calculation renormalized to 1 are compared for the different
functionals.

state, we do expect a similar behavior. To systematically
address the quality of the PBCS functional with respect to
both the number of nucleons and the coupling strength, the
condensation energies for odd and even systems are displayed
in Fig. 7 as a function of d/�̃ [34], where

d/�̃ ≡ 2

A
sinh (1/g)

for g/�ε = 0.224 [Fig. 7(a)] and g/�ε = 0.44 [Fig. 7(b)].
In this figure, particle numbers ranging from A = 8 (large d)
to A = 360 (small d) have been used. This figure illustrates
the improvement of the new functional compared to BCS. It
also clearly shows that some deviations from the exact results
persist in the new functional. It should, however, be kept in
mind that the observed deviations correspond to less than 1%
of errors in the total energy. This is illustrated in the insets of
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FIG. 7. (Color online) Condensation energy predicted by the BCS
functional (green dashed line) and the PBCS functional (blue filled
circles) compared to the exact solution (red solid line) for varying
d/�̃ and for g/�ε = 0.224 (a) and g/�ε = 0.44 (b). In each case,
curves corresponding to even and odd particle numbers are shown,
the latter being displayed with additional filled circles. In the insets,
relative error (in percent) on the total energy with respect to the exact
solution made in the BCS and PBCS functionals is shown.

Fig. 7, where the relative error defined as

�E = 100
E − Eexact

Eexact
,

where Eexact is the exact energy, is displayed as a function of
d/�̃. As expected, error tends to zero in all cases as A increases
(d → 0). For intermediate to high coupling [Fig. 7(b)], a good
agreement between the PBCS based functional and the exact
solution is obtained, while at lower coupling strength some
deviations appear. This results both from the approximation
scheme used to design the functional (linear approximation for
the αi , see Ref. [19]) and from the accuracy of PBCS theory
itself as an approximation of the exact trial wave function. It
should indeed be kept in mind that the present functional is
entirely based on the PBCS theory which already deviates
from the exact solution (see, for instance, Refs. [35,36]).
As a consequence, it could only lead to results which are
at most equivalent to the PBCS approximation. From the
comparison between Fig. 7(a) and Ref. [37], it can be inferred
that deviations at low g stem from (i) the deviation of the
PBCS result from the exact solution as A increases and (ii)
the additional approximations made to obtain the functional
that lead to an increase of the deviation compared to PBCS
as A → 0. Nevertheless, we see from this comparison that
the PBCS based functional is much more competitive than the
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FIG. 8. (Color online) Evolution of the average condensation
energy and its statistical fluctuation (displayed by error bars) as a
function of g/�ε for the PBCS based functional (blue filled circles),
the BCS functional (green dotted line) for A = 41 (a) A = 16 (b).
The exact solution (red solid line) for an equidistant level spacing
�εi of unit is shown as reference.

BCS theory and is expected to be much easier to implement
than PBCS itself.

B. Application to randomly spaced levels

As a final illustration of the functional theory application,
we consider here a set of randomly spaced levels. Following
Refs. [37,38], an ensemble of random spectrum is generated
by the central eigenvalues of a 2A × 2A random matrix. Thus,
the set of energy levels belongs to the Gaussian orthogonal
ensemble, see Ref. [39]. The renormalization proposed in
Ref. [38] is performed, where

ε → 1/2π [4A sin−1(ε/
√

4A) − ε
√

4A − ε2], (40)

so that the average level energy spacing is of the order of unity.
As an illustration, the evolution of average condensation
energy and its statistical fluctuation as a function of g/�ε

are shown in Fig. 8 obtained with the PBCS functional (filled
circle) and the BCS functional (dotted line). Again and as
expected, the new functional matches the reference result of
the exact solution for an equidistant level spacing �ε = 1.
This last application illustrates that the method can be applied
to systems with various level densities.

V. CONCLUSION

In this work, quasiparticle states projected onto good
particle numbers are used as a starting point to propose new
functionals dedicated to pairing correlations. The properties of
projected states are first reviewed. These properties are then
used to get a functional of occupation numbers and natural

orbitals of the trial wave function. The new functional is bench-
marked with the pairing Hamiltonian either with equidistant
or with randomly distributed single-particle energies for even
and odd systems. In all cases, a very good agreement with the
exact result is obtained, showing great improvement over the
BCS theory. Origins of the remaining deviations are discussed.

The possibility of using a new functional that accounts for
particle number conservation opens new perspectives for the
study of mesoscopic systems where pairing plays an important
role. One may, for instance, anticipate new applications for
thermodynamics or dynamics where direct projection are too
complex to provide a practical tool. In addition, this might also
be a tool of choice for avoiding recent difficulties encountered
in nuclear structure studies (see, for instance, Ref. [14]).

The application to the picket fence shows that our approach
might be suitable to incorporate both pairing and particle num-
ber projection in a functional approach. It should, however,
be noted that the present framework gives a specific role to
the canonical basis. Indeed, the functional form only holds
in this basis. Therefore, the use of our method implies the
need to develop codes for realistic application in this basis,
which is at variance with respect to most of the standard
methods used presently to perform particle number restoration
and might lead to practical difficulties. While the present
application clearly shows that the method is successful for
rather general single-particle energy spectra or rather large
particle numbers, the search for and use of a canonical basis in
up-to-date realistic applications of an energy density functional
to nuclei is a much more difficult task. In particular, new
aspects emerge such as the necessity to treat correlations not
only in the particle-particle or hole-hole channel but also
in the particle-hole channel or the strategy to be followed
to use density-dependent effective interactions. It turns out
that we recently made important progress in addressing these
questions and applied density matrix functional theory to
nuclei showing that the present approach might be a valuable
tool for nuclei. An extensive discussion of the application to
realistic nuclei including practical aspects related to the use of
a canonical basis will be given elsewhere [40].
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APPENDIX A: FURTHER PROPERTIES OF IK , IK (i), . . .

In this appendix, properties of the overlaps defined in
Eqs. (11) are further developed. The discussion below is
especially useful to make the connection with recent works
and between PBCS and BCS states. Using expression (17) for
IK and taking advantage of the recurrence relation (13) gives

IK =
∑

i

|xi |2IK−1 − (N − 1)
∑

i

|xi |4IK−2(i).
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In a similar way, IK−2(i) can be expressed in terms of IK−2

through

IK−2(i) = IK−2 − (K − 2)|xi |2IK−3(i),

leading to

IK =
∑

i

|xi |2IK−1 − (K − 1)
∑

i

|xi |4IK−2 + · · ·

Iterating this procedure K times leads to

IK =
K∑

n=1

(−1)n+1 (K − 1)!

(K − n)!
IK−nXn, (A1)

where only overlaps IL (with L < K) appear in the right-hand
side and where the coefficients

Xn ≡
∑

j

|xj |2n

are introduced. According to the above expression (A1), any
IK can be written in a determinant form as

IK =

X1 1 0 0 · · · 0

X2 X1 2 0 · · · 0

X3 X2 X1 3 · · · 0

· · ·
XK−1 XK−2 XK−3 XK−4 · · · (K − 1)

XK XK−1 XK−2 XK−3 · · · X1

.

(A2)

The same expression was obtained by Rowe [25,26] using a
completely different starting point, making connection with
the elementary symmetric Schur polynomial. Besides this
expression, similar to transformation between elementary
symmetric polynomials and power sums XK , it is worth
mentioning that other relations exist linking other bases of
the symmetric polynomial algebra [41].

The same procedure can also be followed for the different
quantities IK (i), IK (i, j ), . . . , leading to a form similar to
Eq. (A2) where the Xn have been respectively replaced by
Xn(i), Xn(i, j ), . . . , with

Xn(i) ≡
∑
j �=i

|xj |2n,

Xn(i, j ) ≡
∑

k �=(i,j )

|xj |2n,

· · ·

APPENDIX B: GUIDANCE FROM THE BCS THEORY

The BCS or HFB framework has played an important role
in developing the new functional proposed in this work. We

give here highlights of some aspects discussed in the text. Let
us start with a state given by Eq. (3). To connect with the PBCS
notation, we write

|N〉 ≡
∏
k

(1 + xkb
†
k)|−〉, (B1)

keeping in mind that, in the quasiparticle many-body case, the
particle number N is only conserved in average and has only
a meaning in the thermodynamics limit. In analogy with the
PBCS case, we introduce the set of states |N − 1 : i〉 such that

〈N |N〉 = 〈N : i|N : i〉 + |xi |2〈N − 1 : i|N − 1 : i〉,
〈N |a†

i ai |N〉 = |xi |2〈N − 1 : i|N − 1 : i〉,
〈N |b†i bj |N〉 = x∗

i xj 〈N − 1 : i|N − 1 : j 〉.
Starting from Eq. (B1), we directly see that states verifying
the above relations also verify

|N : i〉 = |N − 1 : i〉 = · · ·
=

∏
k �=i

(1 + xkb
†
k)|−〉.

Using similar analogies between relations that hold in both
PBCS and BCS cases, we can also deduce

|N : i, j 〉 = |N − 1 : i, j 〉 = · · ·
=

∏
k �=(i,j )

(1 + xkb
†
k)|−〉, (B2)

· · ·
Noting that the coefficient αK introduced in the text also verify

αK (i) = 〈K : i|K : i〉
〈K − 1 : i|K − 1 : i〉 ,

αK (i, j ) = 〈K : i, j |K : i, j 〉
〈K − 1 : i, j |K − 1 : i, j 〉 , (B3)

· · ·
We directly see that any of these coefficients identifies to 1 in
the BCS case. With this in mind, let us now give some intuition
on how the BCS relation (4) can eventually be seen as a special
limit of the PBCS case. Using different recurrence relations, it
can be shown that

ni = N |xi |2 IN−1

IN

− N (N − 1)|xi |4 IN−2

IN

+ · · · + (−1)N−1N !|xi |2N I0

IN

.

Assuming that all αK are equal to 1 gives

ni = |xi |2{1 − |xi |2 + · · · + |xi |2(N−1)},
which identifies with the BCS case, i.e., ni = |xi |2/(1 + |xi |2)
as N → ∞.
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