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We study the latent heat of the liquid-gas phase transition in symmetric nuclear matter using self-consistent
mean-field calculations with a few Skyrme forces. The temperature dependence of the latent heat is rather
independent of the mean-field parametrization and it can be characterized by a few parameters. At low
temperatures, the latent heat tends to the saturation energy. Near the critical point, the latent heat goes to
zero with a well-determined mean-field critical exponent. A maximum value of the latent heat in the range
l ∼ 25–30 MeV is found at intermediate temperatures, which might have experimental relevance. All these
features can be explained from very basic principles.
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I. INTRODUCTION

The study of the liquid-gas phase transition in homogeneous
symmetric nuclear matter provides interesting links among
statistical mechanics, quantum physics, and nuclear dynamics
[1–3]. The liquid-gas phase transition picture can, in principle,
be applied to nuclear systems [4]. The nucleon-nucleon
(NN) interaction has a qualitatively similar structure to the
interatomic one: It is repulsive at short relative distances
and attractive at intermediate and long distances [5]. At zero
temperature, this structure drives the particles to stay at a
given distance from each other, thus leading to a structured
liquid phase. As temperature increases, thermal fluctuations
overcome the interaction effects and the system tends to gasify,
thus causing a phase transition [6].

The only way to study thermodynamical properties of
nuclear systems on Earth is via intermediate and heavy
ion collisions [1,4], which unfortunately are particularly fast
(∼10−21 s) processes and very difficult to model. Unlike
in other branches of physics, one cannot define or prepare
samples for a thermodynamical experiment. Furthermore, in
a collision the state of the system changes continuously in
time, and it is difficult to establish whether or not the system
has actually reached a state of equilibrium [7,8]. Finally, the
fact that we are dealing with finite nuclear matter causes
additional difficulties on the thermodynamical interpretation
of the results [9].

Experimentally, the challenge lies in being able to control
the equilibrium, i.e., in determining the state variables of
the system, such as the temperature, the pressure, or the
density of the system [10,11]. Moreover, one also needs to
find suitable observables that help to identify the liquid-gas
phase transition. Candidates include, among others, the critical
behavior of fragment partitions [12–14], energy fluctuations on

an event-by-event basis [15], nuclear calorimetry [16,17], and
the bimodality of the largest fragment distribution [18,19].
The evidence gathered with these different experimental
techniques points toward the existence of a liquid-gas phase
transition for nuclear systems at densities below the empir-
ical saturation density, ρ0 = 0.16 fm−3, and at temperatures
around 5–10 MeV.

From the theoretical side, symmetric nuclear matter at
finite temperature provides a first qualitative picture of the
thermodynamics of nuclear systems and, particularly, of
the liquid-gas phase transition [2,3]. Because of its relative
simplicity, nuclear matter has been the subject of numerous
investigations. From a microscopic perspective, different
many-body techniques (including Dirac-Brueckner [20] and
Brueckner-Hartree-Fock (BHF) [21], self-consistent Green’s
functions [22,23], or variational calculations [24]) have been
used to compute the thermodynamical properties of nuclear
matter starting from basic nucleonic degrees of freedom and
phase-shift-equivalent realistic NN interactions. So far, very
different predictions for critical properties have been obtained
using different approaches or even different interactions within
the same approach [22]. A more efficient way to get insight
into the thermal behavior of nuclear matter is by means
of effective interactions in the framework of a Hartree-
Fock approximation, either relativistic [25] or nonrelativistic
[26,27]. Mean-field calculations are much faster to implement
numerically and give access to a wider range of phenomena
(critical exponents, for instance). Moreover, the mean-field
parametrizations are directly connected to nuclear structure
[28]. Recently, one of us has studied systematically the
dependence on the effective interaction of the liquid-gas phase
transition of nuclear matter with Skyrme and Gogny mean
fields [29].

024308-10556-2813/2011/83(2)/024308(10) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.83.024308
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In the context of homogeneous nuclear matter, one gen-
erally assumes that thermodynamical equilibrium takes place
between two infinite pieces of nuclear matter, one of them
belonging to the liquid phase and the other to a gaseous state.
This is quite a crude approximation that can only provide an
average, qualitative understanding of the thermal properties of
the liquid-gas phase transition. As a matter of fact, one should
consider that the low-density phase of dense nuclear matter is
not necessarily homogeneous [30]. Its description should allow
also for the formation of light clusters of nucleons, including
deuterons, tritons, helions (3He), or α particles [31–34].
Moreover, finite size and Coulomb effects are very important
for determining the thermal properties and the critical behavior
of finite fermionic systems [35].

Very little attention has been paid so far to the study of the
latent heat of nuclear matter, which is the main goal of this
work. This is a very interesting quantity, since it can provide
a further characterization of the liquid-gas phase transition,
and it can be potentially extracted both from experiments and
theory. Experimentally, the latent heat might be, in principle,
read out from the length of the plateau in the caloric curve
(i.e., in the temperature versus excitation energy curve). This
would suggest values of l ∼ 4–8 MeV [16,17,36]. Note,
however, that this plateau can also be explained in other terms,
rather than in a phase transition picture [37–39]. Alternatively,
the latent heat can also be obtained from the heat capacity
versus excitation energy, as shown in Ref. [15], in which case
l ∼ 2–4 MeV. Recently, the bimodality in the charge distri-
bution of the heaviest fragments has been used to extract a
latent heat value of l ∼ 8 MeV [19]. In any case, one has to
be aware of the fact that, for the latent heat to be defined,
the reaction employed to extract it should not be an isentropic
process [40].

In the case of infinite nuclear matter, the latent heat per
particle accounts for the amount of heat needed to take a
nucleon from the liquid to the gas phase. In this work,
we want to study this quantity and provide estimates for
its typical values in nuclear matter. We will, in particular,
describe its basic temperature dependence with different
Skyrme mean-field parametrizations. We also want to link the
behavior of this quantity to the properties of the underlying NN
interaction. Ultimately, our aim is to understand the behavior
of the latent heat from basic quantum statistical mechanics
arguments.

In the next section, we discuss very briefly the formalism
needed for the calculation of the latent heat within the
Skyrme-Hartree-Fock approximation. After that, in Sec. III,
we present and discuss the self-consistent results, which
is followed by a section devoted to the analysis of the
low-temperature and critical behavior of the latent heat. A
summary and final conclusions are presented in the last
section.

II. FORMALISM

To describe efficiently finite nuclei and nuclear matter at the
same time, one generally relies on phenomenological interac-
tions, adequate for the Hartee-Fock (HF) approximation. The
effective forces used in the following are of the Skyrme type.

They were introduced in the 1950s [41,42], and they have been
intensively used in the literature [43]. Alternatively, one can
obtain equivalent results by formulating the problem in terms
of density functionals [28,44].

In this work we deal with a Skyrme effective interaction:

v̂ij = t0(1 + x0Pσ )δ(−→r ) + 1
2 t1(1 + x1Pσ )[δ(−→r )

−→
k

2

+←−
k

2
δ(−→r )] + t2(1 + x2Pσ )

←−
k δ(−→r )

−→
k

+ 1
6 t3(1 + x3Pσ )[ρ( �R)]αδ(−→r ), (1)

where
−→
R = (−→ri + −→rj )/2, −→r = −→ri − −→rj ,

−→
k = (

−→∇i −−→∇j )/2i is acting on the right;
←−
k = −(

←−∇i − ←−∇j )/2i, acting on
the left; Pσ = (1 + −→σ1 · −→σ2 )/2 is the spin-exchange operator
(with �σ being Pauli matrices;), and ρ = N/�, the total
baryonic density. The parameters t0, t1, t2, t3, x0, x1, x2, x3, α

are numerical constants fitted to reproduce, in general,
the saturation properties of nuclear matter and structure
properties of closed-shell nuclei [43]. Three-body interactions
are effectively accounted for by the last density-dependent
term. Mean-field calculations with effective Skyrme forces
reproduce in a satisfactory way the structure of a wide range
of nuclei [28].

Due to the translational invariance of uniform nuclear
matter, single-particle (s.p.) states are appropriately described
by plane waves, and the relevant quantum numbers are the
s.p. momentum, �k, as well as the spin and isospin projections.
At finite temperature within the Hartree-Fock approximation,
momentum states are occupied according to the Fermi-Dirac
distribution,

n(�k, T ) = 1

1 + e[ε(�k)−µ]/T
, (2)

where T is the temperature of the system, µ is its chemical
potential, and ε(�k) is the s.p. energy. By including the
rearrangement term arising from the density dependence of
the effective interaction, the latter is written as

ε(�k) = h̄2k2

2m∗ + 1

16
T (3t1 + 5t2 + 4t2x2)

+ 3

4
ρ

[
t0 + 1

12
(α + 2)t3ρ

α

]
, (3)

where the effective mass,

m∗

m
= 1

1 + 2m

h̄2
1

16 (3t1 + 5t2 + 4t2x2) ρ
, (4)

and the kinetic energy density,

T = ν

(2π )3

∫
d3k k2 n(�k, T ), (5)

have been introduced. The integral of n(�k, T ) over the available
phase space at finite temperature T gives the total density, ρ:

ρ = ν

(2π )3

∫
d3k n(�k, T ), (6)

where ν is the degeneracy (ν = 4 for spin and isospin saturated
nuclear matter). This condition determines the chemical
potential at a fixed external density. The calculation of the
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single-particle energy and the density normalization condition
defines a self-consistent process. Note, however, that due to the
simple structure of the Skyrme interaction, self-consistency at
the HF level is already achieved at the first iteration.

Having fixed the chemical potential, we have that the
momentum distribution and the kinetic energy density are also
fixed. From these quantities, one can immediately compute the
total HF energy per particle as

e(ρ, T ) = h̄2

2m∗
T
ρ

+ 3

8
ρ

[
t0 + 1

6
t3ρ

α

]
(7)

and the entropy per particle as

s(ρ, T ) = ν

(2π )3ρ

∫
d3k[n(�k, T ) ln n(�k, T )

+ (1 − n(�k, T )) ln (1 − n(�k, T ))]. (8)

In turn, these give access to the free energy, f = e − T s,
from which all the remaining thermodynamical properties
can be computed. In addition to the chemical potential, µ,
the pressure, P , is also necessary to study the liquid-gas
phase transition. One should take into account that this
procedure is thermodynamically consistent, in the sense that
the chemical potential extracted from the normalization of the
density, Eq. (6), coincides with the chemical potential derived
from the free energy, µ = f + ρ (∂f/∂ρ), provided that the
rearrangement term is properly included.

The Clausius-Clapeyron formula,

l = T

(
1

ρg

− 1

ρl

)(
dP

dT

)
coex

, (9)

gives access to the latent heat per particle [6,45]. This
is expressed in terms of the product of the temperature,
the difference between the volume per particle of the two
phases, and the derivative of the pressure with respect to the
temperature along the coexistence curve. Alternatively, the
latent heat can also be computed as the amount of heat that is
needed, at a fixed temperature, to transfer one nucleon from
the ordered (liquid) to the disordered (gas) phase. Since this
process happens at constant chemical potential and pressure,
the heat change only involves the difference in entropy per
particle of the two phases:

l = T (sg − sl). (10)

For nuclear matter calculations, this formula is numerically
more stable than the Clausius-Clapeyron one. Values of the
vaporization specific latent heat for common liquids and gases
are in the region of 10–5000 kJ/kg when measured at the
normal boiling point. In contrast, as we shall see in the
following, nuclear matter has a maximum specific latent heat
of the order of ∼30 MeV, i.e., ∼3 × 1012 kJ/kg, which is
orders of magnitude higher and among the highest in nature
(an exception being the quark-gluon plasma). The origin of
this extremely large value can be traced back to the strong
force, which binds the nucleons tightly.

A qualitative model that justifies these relatively high values
and provides insight into the temperature dependence of the
latent heat can be obtained using basic ingredients. From
Eq. (10), we see that the latent heat can be computed from

the difference of entropies times the temperature. On the one
hand, let us take a classical approximation for the entropy of
the gas,

sg = 5

2
− µg

T
. (11)

This approximation should be valid because the gas coex-
istence density is, in general, quite low, which is also why
interaction effects are neglected. On the other hand, the
liquid phase is closer to saturation density and one could use
the Sommerfeld expansion to compute its thermodynamical
properties. The entropy in the liquid phase would then yield

sl = π2

2

T

ε0
, (12)

where ε0 = h̄2k2
F

2m
. We have ignored interaction effects (which

would appear in the form of an effective mass) and we take kF

at a reference density equal to the saturation density. Within
this approximation, the latent heat becomes

l = −µ(T ) + 5

2
T − π2

2ε0
T 2. (13)

The chemical potential is the same for the liquid and the gas
phases, due to the coexistence conditions [see Eq. (18) below].
One can therefore use the Sommerfeld expansion in the liquid
branch to find the corresponding chemical potential:

µl = ε0

[
1 − π2

12

(
T

ε0

)2]
+ U0. (14)

Note that, again, we fix all densities to be at saturation and that
U0 is the attractive contribution needed so that µl(T = 0) =
e(ρ0, T = 0) ≡ −e0. Using Eq. (14) in Eq. (13), one finds the
following expression for the latent heat:

l = e0 + 5

2
T − 5π2

12ε0
T 2. (15)

Within this very crude model, the latent heat is a quadratic
function of the temperature. Loosely speaking, classical effects
[i.e., those due to Eq. (11)] tend to increase the latent heat
linearly in temperature. Thermal effects arising from the
degenerate expansion compensate this term and lead to a
maximum, occurring at a temperature

Tmax = 3

π2
ε0 ∼ 11 MeV. (16)

The maximum value of the latent heat is then given by the sum
of two terms:

lmax = e0 + 15

4π2
ε0 ∼ 30 MeV. (17)

In addition to the term due to the saturation energy, an equally
important term (in sign and size) appears as a result of the
competition between classical and degeneracy effects. This
increases the value of the maximum latent heat substantially,
up to around 30 MeV. In the following, we will see that the
predictions of this simple model are well fulfilled by Skyrme
mean-field calculations of the liquid-gas phase transition.
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III. RESULTS

The liquid-gas phase coexistence and the critical properties
of nuclear matter studied in a mean-field approximation with
Skyrme forces are well known [29]. Since the emphasis here
is on the latent heat itself, we will only consider a few
representative effective forces. We shall also briefly comment
on some well-known results on the phase coexistence before
considering the latent heat. These will be helpful for our
analysis. As a first example, we choose the Skyrme force
BSk17 [46], which gives a very accurate description of the
masses of nuclei all across the mass table. Four pressure
isotherms calculated with BSk17 are reported in the left panel
of Fig. 1. These include the representative T = 0 (solid line)
and the critical T = Tc (dashed line) isotherms. Two more
isotherms, one below (dotted line) and one above (dash-dotted
line) the critical one, are also displayed. The isotherms show
the well-known shape associated with a liquid-gas phase
transition. At T = 0, the liquid at saturation density has zero
pressure and, therefore, it is in equilibrium with a zero-density
gas. As the temperature rises, the gas coexistence density
shifts to finite values and the coexistence region shrinks until
the critical temperature is reached. Below Tc, all isotherms
present a mechanically unstable region, where the pressure
decreases with density. At Tc, phase coexistence is no longer
possible and the system vaporizes completely. In terms of
isotherms, one finds that, for T > Tc, the pressure becomes a
monotonically increasing function of density. For BSk17, the
critical temperature turns out to be 15.6 MeV, similar to the Tc

of a wide range of modern Skyrme forces [29].
The behavior of these isotherms is reminiscent of the van

der Waals equation of state (EoS) for real gases, which, unlike
the ideal gas EoS, takes into account the nonzero size of the
molecules of the gas [6]. The excluded volume has a repulsive
effect, in contrast to the attractive intermolecular force. This
causes the formation of regions of instability, which result in a
liquid-gas phase transition. To appreciate the similitudes and
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FIG. 1. (Color online) Left panel: Four different isotherms for
the BSk17 Skyrme force, with Tc = 15.6 MeV. Right panel: Reduced
isotherms at T = Tc and T = 0.7 Tc for the BSk17 (solid lines) and
ZR1 (dash-dotted lines) forces. Isotherms of the van der Waals model
(dotted lines) are also shown for comparison.

differences between the van der Waals and the self-consistent
mean-field EoS, we plot in the right panel of Fig. 1 the reduced
isotherms (P/Pc versus ρ/ρc) at T = 0.7 Tc and at Tc. In
addition to the van der Waals case, we consider the EoS
obtained with BSk17 and with the ZR1 [47] forces. The latter
has the highest critical temperature (Tc = 22.98 MeV) among
the large set of effective forces analyzed in Ref. [29].

By studying the pressure in reduced units (P/Pc, instead
of P ) we expect to highlight possible resemblances among
several EoS. The van der Waals model describes the EoS
of monatomic gases and liquids within a reasonable distance
above and below their critical point [6]. Moreover, according to
the principle of corresponding states, if we measure pressure,
volume, and temperature in units of Pc, ρc, and Tc, the EoS
becomes universal, i.e., it is the same for a wide range of
substances [6]. One might wonder whether there is something
like a principle of corresponding states for equations of state
derived from different mean fields. The right panel of Fig. 1
provides an insight into this matter. For T = 0.7 Tc, beyond
the gas phase there is a relatively important disagreement
among all the reduced EoS. It is only close to the critical point
that the equations of state coincide. This is a consequence,
as we will see later, of the fact that the van der Waals and
the self-consistent mean-field models have the same critical
exponents [29].

When nuclear matter is heated, a phase coexistence de-
velops between a relatively high-density liquid phase and a
low-density gas. In order for such an equilibrium to exist, the
chemical potential and the pressure of the two phases should
be equal:

µ(ρg, T ) = µ(ρl, T ), P (ρg, T ) = P (ρl, T ). (18)

At a given temperature T , the solution of this set of
equations provides a density couple, (ρg, ρl), which defines
the coexistence densities of the two phases. In Fig. 2, we
plot the coexistence phase diagram (solid line) in the (ρ, T )
plane for the BSk17 force. As has already been mentioned,
at T = 0 the liquid at saturation density is in coexistence
with a zero-density gas. The gas coexistence density grows
and the liquid coexistence density decreases as temperature
rises. The densities of the gas and liquid phases join at the
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BSk17: liquid-gas phase coexistence

FIG. 2. (Color online) Coexistence line (solid) and spinodal line
(dotted) obtained from the BSk17 force.
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FIG. 3. (Color online) Left panel: Latent heat using four different
Skyrme force parametrizations. Right panel: Latent heat in reduced
dimensionless units using the same forces.

critical point, above which the liquid-gas phase coexistence
disappears. Together with the coexistence line, we also plot the
spinodal line (dotted line), which marks the boundary between
thermodynamically stable and unstable states of matter.

The latent heat corresponding to the liquid-gas phase
transition obtained with BSk17 using Eq. (10) is reported in
the left panel of Fig. 3 (solid line). One can observe that the
latent heat has a characteristic bump shape as a function of
temperature. In the T = 0 limit, l has a finite value. For BSk17
(solid line), it grows with temperature up to a well-defined
maximum at T = 8.7 MeV (with lmax = 29.9 MeV) and
then sharply goes to zero at T = Tc. To appreciate better
the dependence of the latent heat of nuclear matter on the
different Skyrme parametrizations, we have also performed
calculations of the coexistence line and latent heat for various
other forces. In addition to the already mentioned BSk17
and ZR1, we have chosen two more interactions: SLy9
[48,49], which incorporates, by construction, the behavior of a
microscopically derived EoS of neutron matter [50] and has a
very low critical temperature [29], and LNS, which reproduces
the properties of BHF calculations of nuclear matter [51]. The
results obtained for their latent heats are also reported in the
left panel of Fig. 3. Note that all forces produce a latent heat
with a similar qualitative behavior that, as we shall discuss
below, can be understood from basic principles.

Let us start the discussion with the zero-temperature limit
of the latent heat. As mentioned previously, l measures the heat
that needs to be provided to the fluid to transfer a nucleon from
the liquid to the gas phase. Since the equilibrium coexistence
density of the gas asymptotically goes to zero when taking the
T → 0 limit, l becomes the amount of heat needed to extract
a particle from the system in that limit. In other words, for
T → 0, l → −µ. At the saturation density of nuclear matter,
ρ0, one actually finds µ = −e0 and, consequently, the latent
heat is equal in absolute value to the saturation energy, l = e0,
when getting close to T = 0. This result is independent of the
interaction or the many-body approximation used to describe
nuclear matter, as long as thermodynamical consistency is

fulfilled. This suggests that, if one wants to obtain interaction-
independent results for the latent heat, l might be normalized
to e0 (see right panel of Fig. 3).

We observe that for all Skyrme parametrizations the
qualitative behavior of the latent heat is very similar (left
panel of Fig. 3). The latent heat matches the value of the
binding energy at T = 0, then rises for small temperatures.
The initial rise is linear and the slope seems to be independent
of the Skyrme parametrization. As we shall see below, the
slope of l close to T = 0 is a model-independent feature that
can be understood from fundamental arguments. Further up
in temperature, l reaches a maximum and then drops to zero
at the critical point, where the difference between the liquid
and gas phases disappears. The results with this limited set
of forces seem to indicate that the position and magnitude of
the maximum in l depend on the specific value of the critical
temperature. Broadly speaking, higher values of Tc shift the
position and height of the maximum to larger values. This is
particularly clear for the case of the ZR1 mean field, which
has the largest critical temperature. A calculation with a wider
set of mean fields, not shown here for simplicity, confirms this
tendency.

A plot of the latent heat in reduced units, l/e0, as a function
of the reduced temperature, T/Tc, is presented in the right
panel of Fig. 3. Similar to the right panel of Fig. 1, the reduced
plot is helpful in highlighting the dependence of the latent
heat on the different equations of state. In general terms,
we observe that the large dependence on the mean field is
eliminated to a large extent in the dimensionless plot. Close
to T = 0, the linear slope of l is changed because different
mean fields have different saturation energies, e0. Yet, near
the maximum, the reduced latent heats show a much smaller
deviation compared to the absolute ones. For all Skyrme
forces, the latent heat tends to peak within a limited region
of temperatures, T/Tc ∼ 0.5–0.6. Moreover, the peak is also
quite narrowly distributed around the value lmax/e0 ∼ 1.7–2,
which suggests that the latent heat is more determined by
thermal correlations than by effective forces. Finally, as the
temperature reaches the critical value, the latent heat falls to
zero with a very similar temperature dependence for all forces.
This identical behavior can be explained in terms of critical
exponents [see Eq. (31)]. As will be shown later, within the
mean-field approximation, the critical exponents of all latent
heats are the same close to the critical point.

As mentioned in the previous section, the Clausius-
Clapeyron formula requires the evaluation of the derivative
of the pressure with respect to the temperature along the
coexistence line. The pressure along coexistence is commonly
referred to as the vapor pressure. Its behavior in reduced
dimensionless units, Pv/Pc, along the phase transition is shown
in Fig. 4 for the four mentioned Skyrme parametrizations. The
vapor pressure is a well-behaved function of the temperature
that grows from zero to Pc as temperature increases from
zero to Tc. For low temperatures, Pv rises very slowly and
at T = 0.5 Tc it is only 10% of Pc. Above this temperature, a
steady increase brings the vapor pressure very rapidly up to Pc.
Note that the last portion of this increase is basically linear, in
accordance to Eq. (30) below. We have checked the numerical
and thermodynamical consistency between the values of the
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FIG. 4. (Color online) Vapor pressure vs temperature in re-
duced dimensionless units obtained from the equilibrium conditions
[Eq. (18)].

latent heat obtained with the Clausius-Clapeyron equation
[Eq. (9)] and those given by the difference of entropies of
the gas and the liquid phase [Eq. (10)].

A basic ingredient in the evaluation of the latent heat is the
difference between the entropy of the gas and that of the liquid
phase [see Eq. (10)]. This difference, which has to be evaluated
along the coexistence line, is shown in Fig. 5 for the BSk17
interaction. Entropies are plotted on a logarithmic scale. The
difference between the entropy of the gas and that of the liquid
is always a positive quantity that decreases with temperature
and goes to zero as the system reaches the critical temperature.
The low-temperature limit of this difference can be studied
analytically and will be discussed in the next section. Note
that, within this limit, the difference between the gas and liquid

0 5 10 15
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FIG. 5. (Color online) Logarithmic plot of the difference of gas
and liquid entropies (solid line), entropy of the liquid (dashed line),
and entropy of the gas (dotted line) along the coexistence line using
the BSk17 Skyrme force.

entropy is largely dominated by the entropy of the gas. Also
notice that the variation of the liquid entropy, which should
be zero at T = 0, is much smaller than the variation of the
entropy associated with the gas phase (note the logarithmic
scale). While the liquid entropy along the coexistence line
is an increasing function of temperature, the gas entropy is
a decreasing one. Their difference, however, is dominated
by the gas entropy and becomes a decreasing function of
temperature. As a matter of fact, in the context of classical
gases, it is customary to neglect the liquid contribution, since
its entropy [or, in terms of Eq. (9), its inverse volume] is
negligible with respect to that of the gas [45]. In nuclear matter,
this approximation would only be valid up to T/Tc ∼ 1/3,
which would lead to a maximum error in the calculation of
the latent heat of about 10%. For higher temperatures the
error induced by this approximation would already reach 30%
for the maximum of the latent heat. Finally, let us stress that
the maximum that appears in the latent heat at intermediate
temperatures is a subtle result, arising from the product of
the (linearly increasing) temperature times the (decreasing
function of T ) difference of entropies.

IV. ANALYTICAL LIMITS OF THE LATENT HEAT

A. Low-temperature behavior

As we have already discussed, all Skyrme forces produce a
qualitatively similar behavior of the latent heat. The value in
the zero-temperature limit (l = e0) is well understood from
basic arguments. In this limit, the liquid phase is at the
saturation density and therefore has zero pressure. The heat
needed to transfer a nucleon from the homogeneous liquid
nuclear matter phase to the zero density gas (vacuum) is just the
chemical potential of the liquid, which, at saturation, coincides
with the binding energy per particle. In this section we will
show analytically that this intuitive value is the result of a
delicate balance.

In our derivation, we will evaluate not only the value of l

at T = 0 but also its derivative as a function of temperature
at this point. This derivative is basic in understanding the
existence of a maximum in l. The argument goes as follows:
At T = 0, the latent heat is finite and positive. As T → Tc,
however, the latent heat must go to zero, since the liquid-gas
phase transition disappears. The existence of the maximum
is therefore necessarily related to the way l departs from its
T = 0 value. If the slope at T = 0 is positive, the function
will first increase with T and, in order to reach the zero value
at Tc, at least one maximum will have to develop at some
intermediate temperature. We shall also show that the slope of
l at T = 0 is not only positive but also model-independent.

Let us consider the limit of low temperatures of the latent
heat. As shown in Fig. 2, as T approaches zero, the dense
liquid phase is in equilibrium with a very low density gas.
Due to its diluteness, we shall assume that the gas is in the
classical regime and interactions are no longer relevant. The
thermodynamical properties of the gas are then given by ideal
gas expressions [6] and they can be computed analytically for
a given gas density, ρg , and temperature, T . The pressure is
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simply given by

P = ρgT , (19)

while the gas density can be obtained in terms of its chemical
potential by using the following expression:

ρg = ν

(
m

2πh̄2

)3/2

T 3/2eµg/T . (20)

If we substitute the previous expression in the pressure, we
find the vapor pressure of nuclear matter:

Pv(T ) = ν

(
m

2πh̄2

)3/2

T 5/2eµg/T . (21)

Notice that the information on the interactions in nuclear
matter is contained in the chemical potential, µg , which is the
same for the liquid and the gas according to the equilibrium
relation, Eq. (18). In the liquid branch, as T approaches zero,
the chemical potential tends to the energy per particle, and one
has µg = µl → −e0.

According to the Clausius-Clapeyron formula, Eq. (9), to
calculate l we need the temperature derivative of the vapor
pressure along the coexistence curve. By using Eq. (21), this
derivative becomes

dPv

dT
= ν

(
m

2πh̄2

)3/2√
T

[
−µg + T

(
5

2
− dµg

dT

)]
eµg/T

= ρg

T

[
−µg + T

(
5

2
− dµg

dT

)]
. (22)

All temperature derivatives are to be taken as derivatives along
the coexistence line. Because of the equilibrium condition
in Eq. (18), the chemical potential can be computed from
the liquid one, which, close to saturation, should be that
of a degenerate Fermi gas. The Sommerfeld expansion then
guarantees that the temperature dependence of µl is quadratic
in T [52]. Consequently, the temperature derivative in the
last term dµg

dT
∼ O(T ) and thus it can be neglected in the

following considerations. Note that the low-temperature limit
of the previous expression, Eq. (22), is zero. However, when
the latent heat is considered in the zero-temperature limit,
we need to explicitly take into account the prefactors, whose
cancellation leads to

lim
T →0

l(T ) = lim
T →0

T

(
1

ρg

− 1

ρl

)
dPv

dT
= lim

T →0
T

1

ρg

dPv

dT

= −µg = e0. (23)

When taking the limit, we have considered that the term
containing the liquid density goes to zero because the gas
density present in the derivative of the vapor pressure [see
Eq. (22)] goes to zero in this limit and that the linear terms in
temperature within the brackets in Eq. (22) are subleading.

Let us now compute the derivative of l close to zero
temperature:

dl

dT
=

(
1

ρg

− 1

ρl

)
dPv

dT
+ T

(
1

ρg

− 1

ρl

)
d2Pv

dT 2

+ T
dPv

dT

d

dT

(
1

ρg

− 1

ρl

)
. (24)
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FIG. 6. (Color online) Latent heat vs temperature for very low T .
Symbols represent self-consistent mean-field results and lines their
respective linear regression fits.

The T → 0 limit of the first term is obtained from Eq. (22).
The second term involves the second derivative of the vapor
pressure, which is also easily computed from Eq. (22) and
yields

T

(
1

ρg

− 1

ρl

)
d2Pv

dT 2
∼ − 1

T 2

(
µ2 − 4µT + 15

4
T 2

)
. (25)

The third term involves derivatives of the gas density, Eq. (20),
while the liquid density is neglected:

T
dPv

dT

d

dT

(
1

ρg

− 1

ρl

)
∼ 1

T 2

(
µ2 − 3µT + 15

4
T 2

)
. (26)

Collecting the different contributions, one gets

lim
T →0

dl

dT
=

[
5

2
− µ

T

]
+

[
µ2

T 2
− 3µ

T
+ 15

4

]

−
[

µ2

T 2
− 4µ

T
+ 15

4

]
= 5

2
. (27)

The derivative of the latent heat with respect to the temperature
in the limit T → 0 is therefore independent of the interaction.
Moreover, it is positive and equal to 5/2.

In Fig. 6 we show a numerical proof of Eq. (27). For the
different Skyrme force parametrizations considered in Fig. 3,
we focus on the low-temperature behavior of the latent heat
(symbols). The slopes for the linear regression fits (lines) of
these numerical data are in very good agreement with the value
5/2 up to two significant digits.

This result is not only valid regardless of the effective
interaction, but it is also valid no matter which many-body
approximation is considered. The only assumption that has
been made is that the gas equilibrium density enters the
classical regime as the temperature decreases. Consequently,
one should get the same result in approaches that go beyond the
HF approximation. It is also important to note that this result
is independent of the system under study and therefore should
be generically valid for the liquid-gas phase transition of any
extended normal fermionic system. As discussed previously,
the positiveness of this derivative necessarily implies that a
maximum in the latent heat must develop. As a result, we
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expect a maximum in the latent heat of any normal fermionic
system that presents a liquid-gas phase transition.

B. Critical behavior

Critical exponents characterize the properties of phase
transitions [6,45,53]. Close to the critical point, all the thermo-
dynamical properties can be described in terms of a handful
of exponents. Their knowledge facilitates the understanding
of the properties of systems close to criticality. The latent heat
is not an exception and it can also be described, close to the
critical point, in terms of a critical exponent. As shown in
Ref. [45], the critical exponent for l is the same as that of the
order parameter.

This result can be understood in terms of the mean-field
theory of fluctuations as follows. Consider the reduced pres-
sure, π = (P − Pc)/Pc, close to the critical point. Expanding
to first order in the reduced temperature, τ = (T − Tc)/Tc,
and to third order in the reduced density, η = (ρ − ρc)/ρc,
one finds

π = aτ + bτη + cη3 + c′τη2. (28)

Note that the conditions to find the critical point,

∂π

∂η
= ∂2π

∂η2
= 0, (29)

have already been used to eliminate possible explicit linear and
quadratic terms in η. To find the pressure at phase coexistence,
one can use Eq. (18) in Eq. (28) to find the symmetric gas
and liquid coexistence points. One can then show that the
coexistence pressure is given by

π |coex = aτ. (30)

Using the Clausius-Clapeyron relation, the latent heat close to
the critical point becomes

l = aPc

2ρc

(ρl − ρg)(1 + τ ) ∼ (−τ )β. (31)

In this expression, we have considered that the difference in
densities is the order parameter of the phase transition and that
the latter is governed by the β critical exponent, ρl − ρg ∼
(−τ )β . As with any mean-field theory [6,29], self-consistent
Hartree-Fock calculations of the nuclear matter liquid-gas
phase transition yield a critical exponent β = 1/2.

We have checked numerically that the critical exponent of
l is indeed β = 1/2. Figure 7 shows a logarithmic plot of
l versus the reduced critical temperature (symbols). Linear
regression fits have been performed and are shown with lines.
The correlation coefficients are close to 1 to within at least
four digits in all cases. Such a linear behavior of the data
confirms the scaling of l with τ . The slopes of these lines have
also been extracted and agreement with the β derived from
the coexistence line is good up to the third digit. The critical
exponent of the latent heat for nuclear matter is computed and
its equivalence to β is confirmed numerically in the framework
of a Hartree-Fock mean-field theory. However, one should
keep in mind the limitations of the mean-field theory for the
calculation of the critical exponents.

-5 -4 -3 -2 -1
log

10
(−τ)

-1

-0.5
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1
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g 10

( l
)

BSk17
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Critical exponent

FIG. 7. (Color online) Logarithmic plot of the latent heat vs
the reduced temperature. The slope of the different curves gives
the critical exponent. Symbols represent self-consistent mean-field
results and lines their respective linear regression fits.

V. SUMMARY AND CONCLUSIONS

In this work, we have analyzed in detail the latent heat of
the liquid-gas phase transition of symmetric nuclear matter.
The latent heat describes the amount of heat needed to transfer
one nucleon from the liquid to the gas phase, and it can be used
as a further characterization of the phase transition. We have
been motivated by experimental results which suggest that, in
the phase transition occurring in nuclear multifragmentation
collisions, a latent heat of around l ∼ 2–8 MeV can be
observed [4,15,19].

We have used self-consistent Hartree-Fock calculations at
finite temperature to obtain numerical results. Four different
characteristic mean fields have been used to determine the
inherent mean-field dependence of the results. The qualitative
behavior of the latent heat as a function of temperature is
very similar for all effective interactions. Within the Hartree-
Fock approximation, the latent heats derived from different
mean-field parametrizations fall within a narrow band when
the temperature is scaled by Tc and l is scaled by e0.

In the T → 0 limit, the latent heat coincides with the
binding energy per particle at saturation density. The latent
heat can also be computed from the difference in entropies
between the gas and the liquid phases. We have seen that the
gas entropy dominates over the liquid one in a wide range of
temperatures. At finite but low temperatures, the latent heat
rises linearly with temperature. A careful analysis shows that
the slope of this linear trend is 5/2, regardless of the mean-field
parametrization or the many-body approximation. We have
confirmed this trend with numerical finite-temperature HF
calculations. This model-independent result is valid for all
normal fermionic systems.

Knowing that (a) l is positive and finite at T = 0,
(b) it has a positive slope near T = 0, and (c) it goes
to zero at T = Tc necessarily implies the existence of a
maximum in the latent heat. Mean-field numerical calcu-
lations suggest that this maximum is located around T ∼
0.6Tc and that lmax ∼ 1.8e0. While the exact position of the
well-defined maximum can depend on the effective force
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or on the many-body approach used to describe nuclear
matter, its existence is guaranteed independently of the
mean-field parametrization or the many-body approxima-
tion. Moreover, this result should be valid for any normal
fermionic system that presents a liquid-gas phase transi-
tion.

It is not particularly easy to understand physically why
the latent heat should present a maximum as a function
of temperature. One might interpret the presence of this
maximum as a manifestation of the underlying NN inter-
action. At low temperatures, the latent heat rises because
more work is needed to break the attractive part of the
strong interaction when transferring a nucleon from the more
structured liquid to the gas phase. At higher temperatures,
the thermal motion of the particles would provide most
of the work and thus less latent heat is needed to break
the bonding between particles in the liquid. Here, we have
given an analytical demonstration of the existence of the
peak.

Concerning the behavior of the latent heat near the critical
point, we have shown numerically that it can be described
in terms of a single critical exponent. As predicted by the
theory of phase transitions, this critical exponent is the same
as the one associated with the order parameter. In the case
of Hartree-Fock calculations in nuclear matter, β = 1/2, and
there is a very good numerical agreement between both
exponents. All in all, the latent heat can be characterized
in the low-, intermediate-, and (close to) critical-temperature
regimes from very basic principles. It is precisely this generic
nature which might motivate the use of the latent heat as a tool

in analyzing the liquid-gas phase transition in other normal
fermionic systems.

We are well aware that a connection between experimental
observations of multifragmentation collisions and theoretical
results of homogenous nuclear matter is not at all transparent.
Finite-size effects play a capital role in determining the
thermodynamical properties of nuclei and the latent heat is
not an exception [36]. Nuclear matter values at its maximum
suggest that the latent heat is up to 10 times higher than
that extracted from different experimental analysis [15,16,19].
Even at the theoretical level, it is not clear how to define a liquid
and a gas phase in a self-confined system [9]. Nevertheless, one
might naively expect that the appearance of a maximum in the
latent heat might have a substantial suppression effect on the
yields of light particles. We hope that the present study, where
we have highlighted model-independent and basic arguments
for the latent heat, will encourage further experimental analysis
of the latent heat in multifragmentation collisions.
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[33] S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H. H. Wolter,

Phys. Rev. C 81, 015803 (2010).
[34] S. S. Avancini, C. C. Barros Jr., D. P. Menezes, and

C. Providência, Phys. Rev. C 82, 025808 (2010).
[35] F. Gulminelli, P. Chomaz, A. H. Raduta, and A. R. Raduta, Phys.

Rev. Lett. 91, 202701 (2003).
[36] S. J. Lee and A. Z. Mekjian, Phys. Rev. C 56, 2621 (1997).
[37] X. Campi, H. Krivine, and E. Plagnol, Phys. Lett. B 385, 1

(1996).

024308-9

http://dx.doi.org/10.1038/305410a0
http://dx.doi.org/10.1016/j.ppnp.2008.01.003
http://dx.doi.org/10.1016/j.ppnp.2008.01.003
http://dx.doi.org/10.1016/S0146-6410(97)00048-3
http://dx.doi.org/10.1103/PhysRevLett.77.235
http://dx.doi.org/10.1103/PhysRevC.59.2660
http://dx.doi.org/10.1103/PhysRevC.59.2660
http://dx.doi.org/10.1016/0375-9474(84)90086-1
http://dx.doi.org/10.1016/0375-9474(84)90086-1
http://dx.doi.org/10.1103/PhysRevC.52.R2322
http://dx.doi.org/10.1103/PhysRevLett.80.3928
http://dx.doi.org/10.1016/0370-2693(88)90627-2
http://dx.doi.org/10.1103/PhysRevLett.73.1590
http://dx.doi.org/10.1103/PhysRevLett.88.042701
http://dx.doi.org/10.1016/S0370-2693(99)01486-0
http://dx.doi.org/10.1103/PhysRevLett.75.1040
http://dx.doi.org/10.1103/PhysRevC.65.034618
http://dx.doi.org/10.1103/PhysRevC.65.034618
http://dx.doi.org/10.1016/j.nuclphysa.2006.08.008
http://dx.doi.org/10.1103/PhysRevLett.103.072701
http://dx.doi.org/10.1103/PhysRevLett.56.1237
http://dx.doi.org/10.1103/PhysRevC.59.682
http://dx.doi.org/10.1103/PhysRevC.78.044314
http://dx.doi.org/10.1103/PhysRevC.78.044314
http://dx.doi.org/10.1103/PhysRevC.80.025803
http://dx.doi.org/10.1103/PhysRevC.75.035802
http://dx.doi.org/10.1103/PhysRevC.75.035802
http://dx.doi.org/10.1103/PhysRevC.52.2072
http://dx.doi.org/10.1103/PhysRevC.69.014602
http://dx.doi.org/10.1103/PhysRevC.69.014602
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1016/j.nuclphysa.2010.05.057
http://dx.doi.org/10.1016/j.nuclphysa.2006.05.009
http://dx.doi.org/10.1103/PhysRevC.30.851
http://dx.doi.org/10.1103/PhysRevC.30.851
http://dx.doi.org/10.1016/S0370-2693(00)00908-4
http://dx.doi.org/10.1103/PhysRevC.81.015803
http://dx.doi.org/10.1103/PhysRevC.82.025808
http://dx.doi.org/10.1103/PhysRevLett.91.202701
http://dx.doi.org/10.1103/PhysRevLett.91.202701
http://dx.doi.org/10.1103/PhysRevC.56.2621
http://dx.doi.org/10.1016/0370-2693(96)00839-8
http://dx.doi.org/10.1016/0370-2693(96)00839-8
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