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The relation between the monopole transition strength and existence of cluster structure in the excited states
is discussed based on an algebraic cluster model. The structure of 12C is studied with a 3α model, and the wave
function for the relative motions between α clusters are described by the symplectic algebra Sp(2, R)z, which
corresponds to the linear combinations of SU(3) states with different multiplicities. Introducing Sp(2,R)z algebra
works well for reducing the number of the basis states, and it is also shown that states connected by the strong
monopole transition are classified by a quantum number � of the Sp(2,R)z algebra.
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I. INTRODUCTION

Light nuclear systems show many different properties
in the structure. Around the low-lying energy region, the
mean field and the associated shell structure are dominant
properties, however, cluster structures appear close to their
decay thresholds. In this context, an α particle that is strongly
bound and an α-α interaction that is not strong enough to
make a bound state, can be considered as an effective building
block of the structure of light nuclei [1]. One of the typical
examples of cluster structures is the second 0+ (0+

2 ) state of
12C at Ex = 7.65 MeV just above the 3α-threshold energy.
This state is considered to have an exotic cluster structure of
3α in analogy with the so-called “mysterious 0+ state” of 16O
at Ex = 6.06 MeV, which has a 12C + α cluster structure
and is hardly explained by a simple shell-model picture. The
0+

2 state plays a crucial role in synthesis of 12C from three
4He nuclei in stars [2], and the state was proven to contain
a developed 3α configuration by many microscopic cluster
calculations [3,4], which is a gaslike state without a specific
geometrical shape. This state is recently reinterpreted as an
α-condensed state [5–7].

To prove the existence of cluster states, recently it was
proposed that the strong enhancement of isoscalar monopole
(E0) transitions can be a measure of the cluster structure [8].
For instance, the presence of the cluster states in 13C was
suggested by measuring the isoscalar E0 transitions from the
ground 1/2− state induced by the 13C(α,α′)13C reaction [9].
The obtained cross sections are much larger than those of
the shell-model calculations, which suggests that protons
and neutrons are coherently excited and they have spatially
extended distribution in the excited states.

From the theoretical side, the relation between the
monopole transition strength and the cluster structure was also
discussed [10–13]. The basic idea arises from the Bayman-
Bohr theorem [14], which shows that the lowest representation
of the shell model contains a component of the lowest SU(3)

representation of the cluster states. Thus, even cluster states
with spatially extended distribution, such as the second 0+
state of 12C, can be generated by multiplying operators to
the shell-model-like ground state. The monopole operator
is the very one that induces the spatial extension of the
ground state and connects it to cluster states by raising the
quanta of the cluster-cluster relative wave function by two.
The monopole matrix element of 12C (0+

1 → 0+
2 ) calculated

with the cluster model agrees with the experimental value
(5.4 ± 0.2 fm2 for proton part [15]), and this is much larger
than that given in the p-shell single-particle models. This is
one of the supports for the proposal that a strong monopole
transition can be a signature of 4N correlated states from
the theoretical side. It is also discussed that the mixing of
the cluster component in the ground state is another important
factor for the enhancement of the monopole transition strength
to cluster states [13].

In the present study, the relation between the monopole
transition strength and the existence of a well-developed
cluster structure in the excited states is discussed based on
an algebraic cluster model. The structure of 12C is studied
with a 3α model, and the wave functions for the relative
motions between α clusters are described by the harmonic
oscillator (HO) basis states forming symplectic algebra. The
importance of the symplectic structure for light nuclei was
also investigated in Refs. [16,17], and the relation between
the symplectic algebra and the cluster model was discussed.
In our study, we focus on the relation between the symplectic
structure and monopole transition strength. As a final goal
of this study, we aim to treat the solution of the unbound
states in a correct way and explicitly impose the boundary
conditions in the outer region. For this purpose, it is necessary
to introduce basis states with large principal quantum numbers
for the relative motion of clusters, but the number of the basis
states drastically increases with increasing principal quantum
numbers if we adopt SU(3) algebra.

024301-10556-2813/2011/83(2)/024301(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.83.024301
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This problem is overcome by introducing symplectic
algebra Sp(2,R)z, where the basis states correspond to the
linear combinations of SU(3) states with different multi-
plicities. This Sp(2,R)z algebra can be a powerful tool to
create the states corresponding to the excitation modes of
relative motions between α clusters. The cluster states with
SU(3) representations that have different total HO quanta are
connected by a common eigenvalue � of the Sp(2,R)z algebra,
and it will be shown that strong monopole transitions are
classified by this �. It is also discussed that limited values
(small values) of � are enough to achieve good convergence
for the states corresponding to the excitation modes of the
clusters [18]. Because of this effect, we can adopt states with
large values of the HO quanta into the model space in this
study.

The outline of this paper is given as follows. Firstly, we
show the framework of the symplectic model in Sec. II. In
Sec. III, we calculate the energy and the monopole transition
strength of 12C. Here, we discuss the relation between the
symplectic quanta � and the monopole transition strength.
We summarize the discussion in Sec. IV.

II. SP(2,R)z BASIS REPRESENTATION OF THE 3α MODEL

We show how to construct a model space of the 3α system
based on the SU(3) algebra. However, the Sp(2,R)z algebra,
which corresponds to the linear combination of SU(3) basis
states with different multiplicities, is shown to give better
description for the cluster states. The relation between the
SU(3) and Sp(2,R)z model spaces is discussed.

A. SU(3) model space

Here, we show how to construct basis states of the
3α-cluster system based on the SU(3) algebra. The SU(3) state
of the three-α cluster model for 12C is given by a product of
SU(3) states corresponding to the two Jacobi coordinates for
the relative motions of α-α (�r) and (α-α)-α ( �R):

SU(3) = SU(3) ⊗ SU(3). (1)

Using the (λ,µ)ρ representation of SU(3), the basis state with
the principal HO quantum numbers N is expressed as

N (λ,µ)ρ ∼ (N1,0) ⊗ (N2,0), (2)

where N1 and N2 are principal HO quantum numbers (N =
N1 + N2) for the Jacobi coordinates (�r and �R) and ρ is the
multiplicity of the (λ,µ) state. Following Refs. [19,20], the
basis function with the values of N (λ,µ)ρ, N1, N2, J , and K

is given as

V
N(λ,µ),J,K

N1,N2
(�r, �R) =

∑

l1,l2

〈(N1,0), l1, (N2,0), l2||N (λ,µ), J,K〉

× [
uN1,l1 (�r)uN2,l2 ( �R)

]
J
, (3)

where l1 and l2 are angular momenta of each Jacobi coordinate,
J is the total angular momentum, and K is the orthonormalized
K-quantum number of J . We take summation over N1 and N2

in the following way:

UJπ

i (�r, �R) =
∑

N1+N2=N

A
N(λ,µ)ρ
N1,N2

V
N(λ,µ),J,K

N1,N2
(r,R), (4)

where the index i denotes an abbreviation of N (λ,µ)ρ,K . To
take into account the Pauli principle between nucleons belong-
ing to different α clusters, the coefficients A

N(λ,µ)ρ
N1,N2

must be
determined by the orthogonal condition model (OCM) [21,22].
First of all, the value of N1 should be the Pauli-allowed one
(N1 = 4, 6, 8, . . . , N). For N2, instead of directly calculating
the Pauli-allowed state for the Jacobi coordinate �R [23], here
we calculate the overlap with the Pauli-forbidden state of
rearranged Jacobi coordinates. Eventually, the Pauli-allowed
basis states for Jacobi coordinates (�r, �R) are obtained by
orthogonalizing the basis states to the Pauli-forbidden ones
with other (rearranged) sets of Jacobi coordinates (�r ′, �R′) and
( �r ′′, �R′′). Here, it is enough if we only consider the Pauli-
forbidden states for the coordinates �r ′ and �r ′′, which have the
principal quantum number of N ′

1, N
′′
1 = 0, 1, 2, 3, 5, 7, 9, . . ..

This is equivalent to the following condition [24]:
Q̂|N (λ,µ)k〉 = qk|N (λ,µ)k〉. (5)

Here, the operator Q̂ expresses the projection to the Pauli-
forbidden states for all different Jacobi coordinates, and the
Pauli-allowed states are obtained as the eigenstates of qk = 0,
because they have to be orthogonal to all the Pauli-forbidden
states. The index k is needed to distinguish the multiplicity
of the wave function, which has a set of the HO quanta of
N1 and N2. The wave function of the 3α model for 12C is
constructed by superposing Ui(�r, �R) basis states. The size of
the model space is determined by the maximum HO quanta
Nmax as follows:

�Jπ =
∑

i=N(λ,µ)ρ,K

cJπ

i UJπ

i (�r, �R), (6)

where the summation runs under the condition N � Nmax.

B. Hamiltonian

The Hamiltonian H is given in the following form:

H = T�r + T �R +
∑

i>j

Vαα( �rij ) + V J
3by( �r1, �r2, �r3), (7)

where T�r and T �R are relative kinetic energies corresponding
to the Jacobi coordinates. As for the two-body nuclear
interaction, we use the following α-α folding potential:

Vαα(r) = V2 exp(−αr2), (8)

employed by Kurokawa et al. so as to reproduce the observed
α-α phase shifts [25,26]. Here, α = 0.2009 fm−2 and V2 =
−106.1 MeV are used. The Coulomb interaction has the
following form:

V αα
c (r) = 4e2

r
erf(βr), (9)

where β = 0.5972 fm−1. Moreover, we add an inter three-α
interaction:

V J
3by( �r1, �r2, �r3) = V J

3 exp
( − η

{
r2

12 + r2
23 + r2

31

})
, (10)

where η = 0.15 fm−2 and rij = ri − rj . To reproduce the
experimental binding and excitation energies of the ground
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FIG. 1. (Color online) Energy convergence of the 3α system as
a function of the number of basis states. The black (dashed) and red
(solid) lines show the results for the SU(3) and Sp(2,R)z basis sets,
respectively.

band states (0+, 2+ and 4+) of 12C [26], we need to use the
strength of the three-body interaction V J

3 as, 31.7 MeV for
J = 0+, 63.0 MeV for J = 2+, and 150.0 MeV for J = 4+,
respectively.

Energies and their eigenstates [Eq. (6)] are obtained by
diagonalization of the Hamiltonian [Eq. (7)]. In Fig. 1, we
show the convergence of the 0+ states as a function of the
number of basis states (black dotted lines), where Nmax is
gradually increased from 8 to 46 in the SU(3) basis. It is
shown that the ground states has rapid convergence, which
indicates the importance of the shell-model-like configuration.
On the other hand, many excited states show slow convergence,
which means that the SU(3) model space is not suitable for the
description of the well-developed cluster states in the excited
states. This is because of the increase of multiplicity useless
for the convergence as the total HO quanta N increases.

C. Sp(2,R)z model space

To achieve the energy convergence in a more efficient way
especially for the cluster states in the excited states, we need
appropriate truncation for the model space. To describe the
cluster-like configuration, we take into account the major-shell
excitation including many HO N -quanta states. Here, we
intend to correlate different N -quanta states by algebraic
classifications. We perform unitary transformation of the states
specified by ρ to the other basis sets by utilizing the N1 and
N2 degrees of freedom. Here, we use the symplectic algebra,
Sp(2,R)z. According to this algebra, basis states are classified
by a quantum number �, which is an eigenvalue of the Casimir
operator of this algebra [18]. This � specifies the ladder
states; a set of ladder states has definite eigenvalue of �. The
generators of this algebra are given as

�+ = 1√
8

2∑

p=1

a†
z(p)a†

z(p),

�− = − 1√
8

2∑

p=1

az(p)az(p), (11)

�0 = 1

4

2∑

p=1

(a†
z(p)az(p) + az(p)a†

z(p)).

µ=2 states

  . . . . .

Λ= 9/2

Λ=15/2

Λ=21/2

µ=4 states

  . . . . .

Λ= 5/2

Λ=11/2

Λ=17/2

10
12
14
16
18
20
22
24

 N

 8
10
12
14
16
18
20
22

N

FIG. 2. (Color online) Pauli-allowed states generated by
Sp(2,R)z algebra. The red squares, vertical lines, and arrows show
the band head state, the principal quantum number N of HO, and the
ladder states, respectively.

Here, a†
z(p) and az(p) are creation and annihilation operator of

HO, respectively, where p is an index to distinguish the Jacobi
coordinates �r and �R. By using these operators, the ladder
states are created by multiplying a raising operators �+ to
the band head state, which vanishes when a lowering operator
�− is multiplied. Note that each ladder state has a definite
eigenvalue of �, and multiplying �+ and �− does not change
this value. As shown in Fig. 2, a new band head state appears
when the principal quantum number of HO (N ) increases by
six for each µ state [N = λ + 2µ, � = 1

2 (λ + µ) + 1
4 (n − 1),

where n is an integer]. However, we need to orthonormalize
them by the Gram-Schmidt’s procedure, because these new
band states are not always orthogonal to the band states which
have smaller � values.

To select the model space suited for the description of the
excited states, we use of the limited � values. The truncated
model space is expanded by the following basis states as

wJπ

α (�r, �R) =
∑

ρ

C�
ρ UJπ

i (�r, �R), (12)

where the index α denotes an abbreviation of � and N (λ,µ).
The equation to be solved is expressed as

∑

β

Hα,βdJπ

k,β = EdJπ

k,α, (13)

where the matrix element of the Hamiltonian is expressed as

Hα,β = 〈wα|H |wβ〉. (14)

The total wave function of the kth state is expressed as

�Jπ

(k) =
∑

α

dJπ

k,αwJπ

α (�r, �R). (15)

We employ this wJπ

α basis set, which is of the Sp(2,R)z
truncation, and shown as the red solid lines of Fig. 1, the
energy convergence becomes much faster compared with the
case without this truncation (black dotted lines), especially for
the excited states with well-developed cluster configurations.
This good energy convergence can be obtained even if we limit
� values. Here, we use the three lowest � values for each
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FIG. 3. (Color online) Energy convergence of the 0+ states of
the 3α system as a function of the size of the model space (the
number of � band states included in the model space for each
µ state). The left solid dots show the model space used in the present
calculation, whereas the right solid dots show the model space with
all � configurations. The numbers are overlaps with these two wave
functions.

µ state. In return, we take total HO quanta Nmax = 100 and the
µ values up to 30, which is difficult to achieve in the SU(3)
case. This gives a model space large enough to describe the
cluster states. To confirm the validity of the selection of �

values, we show the energy convergence of the 0+ states of
the 3α system as a function of the size of the model space
(the number of � band states included in the model space for
each µ state) in Fig. 3. We find that the model space within the
three lowest � values for each µ state already has enough good
convergence (solid points) at this energy region. Moreover, the
overlaps between these states and the full � band calculation
(right solid points) are almost 100%. Therefore, we use this
truncated model space in the present calculation.

III. RESULTS

A. Relation between monopole transitions
and Sp(2,R)z algebra

Hereafter we employ a model space in the Sp(2,R)z
representation and discuss the relation between the sym-
plectic ladder states and the monopole strengths. Be-
cause the ladder states are created by the operator �+
(= 1√

8

∑2
p=1 a

†
z(p)a†

z(p)), it is considered that they have a
strong relation with the monopole transition, which is excited
by the operator Ê0 ∝ r2 + 4

3R2 with the similar form.
Firstly, we show the ground-state properties obtained within

the present model space. The calculated ground state contains
the component of the lowest Pauli-allowed SU(3) repre-
sentation [(λ,µ) = (0,4)] by 66%. However, the Sp(2,R)z
representation can be a better description; the squared overlap
between the ground state and the � = 5/2 state, whose band
head is (λ,µ) = (0,4), is 93%.

Next, we discuss the monopole transition matrix ele-
ment (proton part) from the ground state to excited states
with the energies of Ef measured from the threshold as
shown in Fig. 4 (left vertical axis). The obtained value of
∼5.9 fm2 to the second 0+ state just above the threshold energy
(calculated as Ef = 0.96 MeV) shows good agreement with
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FIG. 4. (Color online) The relation between the monopole matrix
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states of Sp(2,R)z algebra (right vertical axis) for each 0+ state. The
squares show the eigenvalues of the Hamiltonian within the bound
state approximation.

the experimental value (5.4 ± 0.2 fm2). Furthermore, we find
correlation between the monopole transition strength and a
� component in each excited state (right vertical axis
of Fig. 4).

Here, � = 5/2 (red) and 11/2 (blue) specify the compo-
nents of the lowest and the second ladder states for µ = 4
in each excited state. From this figure, we can find that the
excited states that have large monopole strengths dominantly
contain components of ladder states with the same � value
as the ground state (5/2). On the other hand, we can see
the tendency that the monopole matrix becomes small when
the excited states dominantly have the components of higher
ladder states such as � = 11/2. This is one clue to understand
the correlation between the � value of the excited states and
the monopole transition strength from the ground state.

To understand the previously mentioned behavior of the
monopole transition with respect to �, we expand the
monopole matrix E0(0+

1 → 0+
k ) as

E0(0+
1 → 0+

k ) = 〈�0+
(k)|Ê0|�0+

(gs)〉
=

∑

α

d0+
k,α〈w0+

α |Ê0|�0+
(gs)〉, (16)

where α again shows an abbreviation of N (λ,µ)�. At first, we
take notice on the matrix element Mα ≡ 〈w0+

α |Ê0|�0+
(gs)〉.

In Fig. 5, the contribution of each Sp(2,R)z basis state for Mα

is shown.
For a given µ, the contribution of ladder states with the

smallest � values are shown: (µ,�) = (0,13/2) (red), (2,9/2)
(green), (4,5/2) (blue), (6,7/2) (purple), and (4,11/2) (sky
blue). We find that (µ,�) = (2,13/2, (4,5/2), and (6,7/2)
states have large contribution for Mα . The main reason comes
from the fact that the monopole operator carries only two
quanta and components of the ground state are concentrated in
the � = 5/2 state. The contribution of other µ and � states,
for example, (µ,�) = (0,13/2) (red line) and (4,11/2) (sky
blue) are less than 1.0 fm2 at each HO quanta N .

The overall behavior of the monopole transition strength is
governed by this Mα value. However, the detail structure of
E0(0+

1 → 0+
k ) varies depending on the wave function of the
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excited states. Therefore, next we discuss the relation between
the matrix element Mα and the coefficients dk,α .

In Fig. 6, we depict the wave function of the second 0+
state (calculated at Ef = 0.96 MeV) and monopole strength
from the ground state. The following values,

∑
µ |dk,α|2 (light

blue bars) and |dk,α0 |2 (light blue bars) are shown in Fig. 6(a),
whereas dk,αMα (blue bars), dk,α0Mα0 (red bars), and |Mα0 |
(dot-dashed purple line) are shown in Fig. 6(b). Here, α0 shows
an abbreviation of N (λ,µ)� = N (λ,4)5/2 quanta. Because
the small � states are found to be important (in Fig. 5), here
� (in α and α0) is set to be the smallest for a given µ.

From this figure, we can see which part of the wave function
is important for the monopole transition strength. For example,
the HO quanta N of the second 0+ state (Ef = 0.96 MeV)
ranges up to N ∼ 60 [Fig. 6 (a)]. The important N values can
be determined by dk,αMα (red and blue bars) value, which
shows that the HO quanta up to N ∼ 40 coherently contribute
to the monopole value [Fig. 6(b)].

We can also investigate the transition to even higher excited
states. The transition to the 0+ state at Ef = 5.12 MeV is
analyzed in Figs. 7(a) and 7(b) . This state has only small
contribution of the α0 state (light red bars). Even in such case,
the small contributions of dk,αMα (light blue bars) create a
certain amount of the monopole matrix when they are summed
over the HO quanta N , which is similar to the case of the
second 0+ state. The dk,α0Mα0 value (red bars) and

∑
µ dk,αMα

(blue bars) almost overlap with each other, which suggests the
importance of the α0 configuration [N (λ,µ)�) = N (λ,4)5/2]
for the monopole transition strength.

In some of the excited states (Ef = 3.99, 7.76, 8.69, 10.48,
12.86, 14.61, 15.67, 16.54, 17.21, and 19.43 MeV), the slope of
wave function strongly depends on the HO quanta N . As shown
in Figs. 8(a) and 8(b) , the wave function of the 0+ state at
Ef = 17.21 (MeV) has clear nodes (light red bars) and
they cause cancellation of the monopole strength (red bars).
Therefore, the resultant monopole matrix becomes small. The
transition to the states at the energies of Ef = 8.69, 10.48,
14.61, 15.67, and 19.43 MeV from the threshold also shows
similar behavior (see Fig. 4). These states are related to
the continuum solution, which will be discussed in the next
subsection.
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We notice that N distributions of wave functions are
also calculated by the Fermionic molecular dynamics (FMD)
method [7]. The difference between the peak position of the
second 0+ states of 12C in N (principal quantum number)
between the present result and FMD comes from the definition
of N . Our definition is the total principal quantum number,
whereas the FMD one is the excitation of principal quantum
number from the lowest shell-model state (N = 8). If we take
into account this shift from the difference of the definition of
N , both results are quite consistent. Our peak for the second 0+
state around N = 20 corresponds to the peak around N = 16
in FMD. The state at Ef = 3.99 MeV has double peaks
around N = 16 and N = 58. In the FMD calculation, such
double-peak structure appears for the third 0+ state (around
N = 14–16 and 52–54).

B. Energy levels and properties of each state

In the last subsection, we discussed there is a tendency
that states with components of lowest � are mainly excited
when the monopole operator acts to the ground state. From
this analysis, we can confirm the close relation between the
symplectic structure and the monopole strength. However,
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FIG. 7. (Color online) The same analyses as Fig. 6 for the 0+

state at Ef = 5.12 MeV.

we must keep in mind that not all of the states that have
large monopole transitions survive as resonance states when
we impose the correct boundary condition. The extraction of
the resonance solution can be performed by drawing energy
convergence with respect to the increase of the maximum HO
quanta of the model space, Nmax. As shown in Fig. 9, the
obtained states show the behavior of quasistationary solution
at the energies of Ef = 0.96, 5.12, and 14.00 MeV from the
threshold. These states are candidates for the resonance states.
This is consistent with the previous work in Ref. [26].

TABLE I. Properties of 12C levels. The root mean square
radius [Rr.m.s. (fm)] and squared overlap of each state with (µ,�)
configuration (right column). The states with the parentheses (J π ) are
obtained as bound state approximation but do not show the behavior
of stationary solutions.

(µ,�)

E (MeV) J π Rr.m.s. (fm) (0,13/2) (2,9/2) (4,5/2)

−7.29 0+ 2.39 0.00 0.02 0.93
−3.00 2+ 2.45 0.00 0.03 0.91

6.57 4+ 2.82 0.02 0.05 0.80
0.96 0+ 3.61 0.17 0.21 0.29
2.73 2+ 3.95 0.26 0.22 0.22
5.17 (4+) 4.28 0.26 0.20 0.22
5.12 0+ 3.92 0.45 0.07 0.05
7.13 2+ 4.29 0.30 0.09 0.15
8.19 (4+) 4.30 0.32 0.10 0.12
9.83 (4+) 4.63 0.25 0.12 0.14
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FIG. 8. (Color online) The same analyses as Fig. 6 for the
0+ state at Ef =17.21 MeV.

The obtained candidates for the resonance states after this
treatment are shown in Fig. 10 together with the bound states.
The left and right spectra correspond to the experimental and
theoretical ones, respectively. The location of the theoretical
ground band levels (0+, 2+, and 4+) are fitted to the
experimental ones by adjusting the strength of the three-body
interaction given in Eq. (10).

The excited 0+, 2+, and 4+ states are calculated using the
same strengths of the three-body interaction as those for the
ground band states. We can see a reasonable agreement with
the experiment levels the same as in the previous calcula-
tions [13,26]. Here, the dotted lines with the parentheses (J )
show the levels that are obtained as bound state approximation
but do not show the behavior of stationary solutions by the
analysis of Fig. 9.
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FIG. 9. (Color online) Energy convergence of the 3α system with
respect to the increase of the N quanta for the model space (Nmax).
The dotted line (black) shows the stationary points with respect to N ,
which are candidates for the resonance states.
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FIG. 10. (Color online) Energy spectra of 12C (positive parity)
measured from the threshold.

The property of each level is characterized by red and
blue colors. Above the threshold, the red colored states,
0+ (0.96 MeV), 2+ (2.73 MeV), and 4+ (5.17 MeV), have
a gaslike nature of three α clusters, whereas the blue colored
states, 0+ (5.12 MeV), 2+ (7.12 MeV), and 4+ (8.19 and
9.83 MeV), have a considerable amount of linear-chain
configurations.

These characters are deduced from the calculated root mean
square radii (Rr.m.s.) and probabilities of each (µ,�) configu-
ration listed in Table I. The gaslike states are characterized
by the large Rr.m.s. value, and because the wave function
is dilutely distributed, it has components of various (µ,�)
configurations. For instance, the 2+

2 state (Ef = 2.73 MeV)
is considered to have the gaslike nature. Although a candidate
was reported [27], the excited states of the Hoyle state have
not been experimentally confirmed.

On the other hand, the linear-chain states are characterized
by large overlap with µ = 0 configurations. The 0+ state
at Ef = 5.12 MeV obtained within the present framework
contains the characteristics of linear-chain configuration. We
can see that the amount of the linear-chain component
decreases as J increases. Moreover, the stationary point of
energy convergence indicates that the linear-chain structures
tend to have relatively larger decay widths than the gaslike
states. Therefore, the clear rotational band structure cannot be
seen in the present calculation.

IV. SUMMARY

In this paper, we have studied the relation between the
monopole transition strength of 12C and the special algebraic
structure to investigate the large strength including the one
for 12C (0+

1 → 0+
2 ). Here, we have focused on the similarity

of the monopole operator and the generators of the Sp(2,R)z
algebra. The model space is constructed based on the Sp(2,R)z
algebra, and the ladder states were generated from the band
head states given by the SU(3) representation.

We have found that the large contribution for the monopole
transition strength can be explained from the properties of
the generators of Sp(2,R)z and the ground state. We have
been able to discuss the mechanism that the monopole
strengths are closely related to the � value of the final
states. Here, the importance of the � ladder state, which
is the same as the ground state (α0), was discussed. We
found that the overall behavior of the monopole strength
is given by the amount of α0 configuration. However, the
detailed value is sensitive to the properties of the wave
function, where we have seen these values as a function
of the N quanta of the harmonic oscillator. We have also
seen that the mechanism appears even in the linear-chain-
like 0+ state where the small amount of α0 configuration
exists.

We have also checked the stability of these states to select
the candidates for the resonance states. For this purpose, we
have investigated the behavior of the energy convergence with
respect to the N quanta of the harmonic oscillator. We have also
analyzed whether the obtained states have gaslike or linear-
chain structure, and the candidate for the excited Hoyle state
(2+) was found.

Because our wave functions are constructed from purely
Pauli-allowed states, the applicability for further analyses
is quite large. For instance, applying non-Hermitian for-
malism by taking the correct boundary condition based
on the complex scaling method (CSM) [28,29] is feasible.
In the forthcoming paper, we will construct the formal-
ism that can be combined with CSM. The present anal-
ysis is an important first step for the analysis along this
line.

[1] K. Ikeda, N. Takigawa, and H. Horiuchi, Prog. Theor. Phys.
Suppl. Extra Number, 464 (1968).

[2] F. Hoyle, Astrophys. J. Suppl. 1, 121 (1954).
[3] Y. Fujiwara et al., Prog. Theor. Phys. Suppl. 68, 60

(1980).
[4] Y. Suzuki, K. Arai, Y. Ogawa, and K. Varga, Phys. Rev. C 54,

2073 (1996).
[5] A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Phys. Rev.
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