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Dipole responses in Nd and Sm isotopes with shape transitions
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Photoabsorption cross sections of Nd and Sm isotopes from spherical to deformed even nuclei are systematically
investigated by means of the quasiparticle-random-phase approximation based on the Hartree-Fock-Bogoliubov
ground states using the Skyrme energy density functional. The gradual onset of deformation in the ground states
as the neutron number increases leads to characteristic features of the shape phase transition. The calculations
well reproduce the isotopic dependence of broadening and the emergence of a double-peak structure in the
cross sections without any adjustable parameter. We also find that the deformation plays a significant role for
low-energy dipole strengths. The E1 strengths are fragmented and considerably lowered in energy. The summed
E1 strength up to 10 MeV is enhanced by a factor of 5 or more.
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Density functional theory has been widely used to describe
a variety of quantum many-body systems [1] including nuclear
many-body systems [2]. Recent advances in computing capa-
bility together with highly developed techniques in the nuclear
energy-density-functional (EDF) method allow us to calculate
the ground-state properties of nuclei in the entire mass region
[3]. The nuclear ground-state deformation is one such property,
which is an example of the spontaneous breaking of rotational
symmetry. Experimental evidence of nuclear shape changes is
related to low-lying quadrupole collectivity, such as the ratio
of the excitation energies of 2+ and 4+ states, E4+/E2+, the
reduced transition probability B(E2; 2+ → 0+), etc. However,
it is known that the nuclear deformation also affects the high-
frequency collective modes of excitation, giant resonances
(GRs) [4,5]. For instance, peak splitting of the giant dipole res-
onance (GDR), which is caused by the different frequencies of
oscillation along the long and short axes, has been observed in
experiments [6]. A typical example of the shape phase transi-
tion from spherical to deformed ground states and the evolution
of the deformation splitting in GDRs have been observed in
Nd and Sm isotopes [4–8]. In this Rapid Communication, we
report a first systematic calculation of electric dipole (E1) re-
sponses for these heavy isotopes at the shape phase transition,
using a nonempirical approach with the Skyrme EDF, namely,
the quasiparticle-random-phase-approximation (QRPA) based
on the Hartree-Fock-Bogoliubov (HFB) ground states.

GDRs in heavy deformed systems have been previously
investigated using the separable QRPA with the Skyrme
EDF [9,10]. The separable approximation in the QRPA,
perhaps, provides a good approximation for the GDR. It is,
however, difficult to analyze the low-lying states because
the structure of normal modes is nontrivial and significantly
affected by the detailed shell structure. The low-energy E1
strengths, which are often discussed as the pygmy dipole
resonance (PDR), have attracted considerable interest. A
nonstatistical distribution of the E1 strengths close to the
threshold has a strong impact on the astrophysical r-process
nucleosynthesis [11]. In addition, the PDR is a typical example
of exotic collective modes expected in neutron-rich nuclei and
has been extensively studied with the EDF approaches [12].
However, the effect of deformation on the PDR has been

studied only for light nuclei [13,14], except for a recent study
on Sn isotopes with the relativistic EDF [15].

We have developed a new parallelized computer code of the
HFB + QRPA, which is an extended version of that developed
in Ref. [16], to add the residual spin-orbit interaction. The
residual Coulomb interaction is neglected because of com-
putational limitations. We expect that the residual Coulomb
plays only a minor role [14,17,18]. In Ref. [18], the effects of
neglecting the residual Coulomb interaction are discussed in
detail: The centroid energy of the GDR can be shifted by about
400 keV at maximum. However, this amount of change does
not affect the discussion in the present paper.

To describe the nuclear deformation and the pairing
correlations, simultaneously, with a good account of the
continuum, we solve the HFB equations [19] in the coordinate
space using cylindrical coordinates r = (ρ, z, φ) with a mesh
size of �ρ = �z = 0.6 fm and a box boundary condition at
(ρmax, zmax) = (14.7, 14.4) fm. We assume axial and reflection
symmetries in the ground state. The differential operators
are represented by use of the 11-point formula of the finite-
difference method. Since the parity (π ) and the magnetic
quantum number (�) are good quantum numbers, the HFB
Hamiltonian is in a block diagonal form with respect to each
(�π, q) sector, where q stands for a neutron or proton. The
HFB equations for each sector are solved independently with
48 processors for the quasiparticle (qp) states up to � = 23/2
with positive and negative parities. Then, the densities and
HFB Hamiltonian are updated, which requires communication
among the 48 processors. A modified Broyden method [20] is
utilized to calculate new densities. The qp states are truncated
according to the qp energy cutoff at Eα � 60 MeV.

We introduce an additional truncation for the QRPA
calculation, in terms of the two-quasiparticle (2qp) energy, as
Eα + Eβ � 60 MeV. This reduces the number of 2qp states to,
for instance, about 38 000 for the Kπ = 0− excitation in 154Sm.
The calculation of the QRPA matrix elements in the qp basis is
performed on the parallel computers. In the present calculation,
all the matrix elements are real and we use 512 processors to
compute them. To save computing time for diagonalization
of the QRPA matrix, we employ a technique to reduce
the generalized eigenvalue problems to the diagonalization
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of a real symmetric matrix of half the dimension [21,22].
For diagonalization of the matrix, we use the SCALAPACK

PDSYEV subroutine [23]. To calculate the QRPA matrix
elements and to diagonalize the matrix, it takes about 390 and
135 CPU hours, respectively. Similar calculations using the
HFB + QRPA for axially deformed nuclei have recently been
reported [15,22,24,25]. In particular, the QRPA calculation
by Terasaki and Engel in Ref. [25] is analogous to ours.
They adopt the canonical-basis representation and introduce
a further truncation according to the occupation probabilities
of 2qp excitations. In contrast, we adopt the qp representation
and a truncation simply owing to the 2qp energies.

For the normal (particle-hole) part of the EDF, we employ
the SkM* functional [26]. For the pairing energy, we adopt
the one in Ref. [27], which depends on both the isoscalar and
isovector densities, in addition to the pairing density, with the
parameters given in Table III of Ref. [27].

Since the full self-consistency between the static mean-field
calculation and the dynamical calculation is slightly broken
by the neglected residual terms and the truncation of the
2qp states, spurious states may appear at finite excitation
energies. In the present calculation, the excitation energies
of the spurious states with Kπ = 0− and 1−, corresponding to
the center-of-mass motion, become imaginary in 154Sm, 1.46i

and 1.60i MeV, respectively. A small contamination by the
spurious component does not affect the GDRs because they
are far apart in energy. We have also confirmed that, using the
method in Ref. [14], the residual Coulomb interaction does not
lead to a sizable difference in the dipole strength functions. To
remove the small spurious component of the center-of-mass
motion from the physical excitations, we employ the procedure
in Ref. [28].

Figure 1 shows the ground-state deformation of Nd and Sm
isotopes obtained with the HFB calculation. The calculated
intrinsic electric quadrupole moments are compared with the
experimental values [29]. The calculation well reproduces
the evolution of quadrupole deformation for N � 86. For
spherical nuclei with N = 82 and 84, we also plot the
values deduced from B(E2; 0+ → 2+) obtained by the QRPA
calculation. The collectivity of the 2+ state is apparently
overestimated at N = 84, because these nuclei are so soft with
respect to the quadrupole deformation that the QRPA cannot
describe the 2+ state properly.
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FIG. 1. Intrinsic electric quadrupole moments of Nd and Sm
isotopes. For spherical nuclei, values extracted from calculated B(E2)
are shown by triangles. The experimental values are taken from
Ref. [29].
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FIG. 2. (Color online) Photoabsorption cross sections in (a) Nd
and (b) Sm isotopes as functions of photon energy. The experimental
data [7,8] are denoted by filled squares.

Based on these HFB ground states, we perform the QRPA
calculation to obtain the excitation energies h̄ωi and the
transition matrix elements 〈i|F̂ 1

1K |0〉. The photoabsorption
cross section is calculated as

σabs(E) = 4π2E

h̄c

1∑
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dB
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)

dE
, (1)
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= 2Eγ

π
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Ẽi
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E2 − Ẽ2

i

)2 + E2γ 2
, (2)

where Ẽ2
i = (h̄ωi)2 + γ 2/4 [4]. The smearing width γ is set

to 2 MeV, which is supposed to simulate the spreading effect
�↓ missing in the QRPA. The electric dipole operator F̂ 1

1K is
defined in Eq. (6-175) of Ref. [4].

We show in Fig. 2 the calculated photoabsorption cross
sections in the GDR energy region together with the available
experimental data [7,8]. The GDR peak energies agree well
with the experimental values and produce the deformation
splitting in 150,152Nd and 152,154Sm. Previously, separable
QRPA calculations with SkM* [9,10] produced a significantly
larger second peak for these deformed nuclei, which disagrees
with the experiment. This peak is diminished in the present
full QRPA calculation. The GDR width calculated with γ =
2 MeV is also in good accordance with the experimental
values. The QRPA accounts for the Landau damping, which
is a fragmentation of the GDR strength into nearby 2qp
states, but not for the spreading effect, which corresponds to a
fragmentation into more complex states. The nice agreement
on the broadening indicates that the smearing width γ =
2 MeV has a good correspondence with the spreading width
�↓ in these nuclei.

The isotopic dependence of the peak broadening is well
reproduced, surprisingly, even for the transitional nuclei. The

021304-2



RAPID COMMUNICATIONS

DIPOLE RESPONSES IN Nd AND Sm ISOTOPES WITH . . . PHYSICAL REVIEW C 83, 021304(R) (2011)

width for N = 82 and 84 is calculated as � ≈ 4.5 MeV, and
it gradually increases to about 6 MeV for N = 88; then the
splitting becomes visible for N � 90. Here, the width � is
evaluated by fitting the calculated cross section with a Lorentz
line. This broadening effect is commonly interpreted as mode-
mode coupling effects with the low-lying collective modes [5].
In the present QRPA calculation, the mode coupling is not
explicitly taken into account. However, the QRPA based on
the deformed HFB state may implicitly include a part of the
coupling effect. Figure 2 shows that the isotopic dependence
can be well accounted for by a gradual increase of the ground-
state deformation. However, the small increase of the width
from 142Nd to 144Nd observed in the experiment cannot be
fully reproduced in the calculation. Since the HFB calculation
produces a spherical ground state for 144Nd, this requires an
explicit higher-order calculation beyond the QRPA.

We may notice another small disagreement in the peak
shape: The calculated GDR peak has a shoulder in the
spherical nuclei, and this shoulder becomes a third peak in
the deformed nuclei. This is due to the Landau fragmentation;
however, this feature is not clearly observed in experiments.
As discussed in the following, the detailed properties of the
Landau fragmentation depend on the choice of the Skyrme
EDF. For instance, the fragmentation effect becomes weaker
with the SkP functional, giving a better agreement with the
experiments.

Figure 3 shows photoabsorption cross sections in 144,154Sm
obtained by employing the SLy4 [30] and SkP [19] functionals.
In all the calculations, the energy-weighted strengths summed
up to 60 MeV agree with the calculated sum-rule values within
3% accuracy. However, the magnitude of the enhancement
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FIG. 3. (Color online) Photoabsorption cross sections of 144Sm
and 154Sm obtained by employing the SkM*, SLy4, and SkP
functionals. The Kπ = 0− and Kπ = 1− components are shown by
dotted and thin solid lines, respectively, in 154Sm.

factor (κ) depends on the parameter set: κ = 0.39, 0.18, and
0.25 in the SkM*, SLy4 and SkP functionals, respectively, for
the Sm isotopes under investigation.

The experimental GDR peak structure is reproduced not
only by using the SkM* functional but also by employing
other commonly used Skyrme functionals, though the SLy4
functional gives slightly smaller GDR peak energies and
smaller summed strengths. The SkP reproduces the energy
and the shape best among the three functionals. For spherical
nuclei, the cross section obtained with the SkP functional can
be nicely fitted by a single Lorentzian curve. For deformed
nuclei, the lower (K = 0) peak shows a Lorentz shape for any
of the functionals, while the upper (K = 1) peak shows visible
distortion for SkM* and SLy4. This difference may be due to
different properties of the Landau fragmentation because the
2qp states in the background are more widely spread in energy
with a smaller effective mass. Actually, the effective mass is
largest (m∗/m ≈ 1) in SkP.

Next, we discuss the low-energy E1 strengths. Pho-
ton scattering experiments at Technische Universität
Darmstadt [31] reported the 1− states up to 9.9 MeV and
found the concentration of the dipole strength in N = 82
semimagic nuclei at energies between 5.5 and 8 MeV.
Figures 4 and 5 show the E1 strengths below 10 MeV
calculated with the SkM* functional. The SLy4 and SkP
functionals provide very similar results. In the spherical 142Nd
and 144Sm nuclei, we can see a concentration of the dipole
strength between 8 and 10 MeV. The same concentration can
be seen in the unperturbed strength distribution, which may
suggest a weak collectivity. Apparently, the calculated strength
distribution is too high in energy. Similar disagreements have
also been observed in a relativistic QRPA calculation [32].
However, the B(E1 ↑) value summed up to 10 MeV in
144Sm is 0.27 e2 fm2, which agrees reasonably well with
the experimental value 0.20 e2 fm2. This seems to suggest
that these low-energy E1 strengths are redistributed to two-
phonon (2+ ⊗ 3−) and multiphonon states, which are located
at energies 3–7 MeV, by higher-order coupling effects [31].
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FIG. 4. Calculated low-energy E1 strengths B(E1; 0+ → 1−) as
functions of energy in 142,150,152Nd. The arrow indicates the neutron
emission threshold energy. (d) shows the unperturbed strengths
multiplied by 1/15 in 142Nd. The neutron threshold of 142Nd is
11.6 MeV.
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FIG. 5. As Fig. 4 but in 144,152,154Sm. (d) shows the unperturbed
strengths multiplied by 1/15 in 144Sm. The neutron threshold of 144Sm
is 11.9 MeV.

It is quite challenging to describe such multiphonon states on
the basis of the nuclear EDF method [33,34]; however, it is
beyond the scope of the present analysis.

In contrast to the spherical nuclei, the deformed nuclei
show significant fragmentation of the E1 strength into low-
energy states. For 150,152Nd and 152,154Sm, the calculated
energies of the lowest Kπ = 0− states are 0.97, 1.40, 1.10,
and 1.37 MeV, and those of Kπ = 1− states are 1.80, 1.93,
1.60, and 1.49 MeV. These values agree well with available
experimental values for octupole vibrational states [35]. The
deformation significantly increases the total low-energy E1
strength. Actually, the summed strengths up to 10 MeV,∑

B(E1 ↑) ≈ 1.5 e2 fm2, are about five times larger than
those of spherical nuclei. It may be of significant interest
to study how this low-energy E1 enhancement caused by
deformation affects the element synthesis scenario. In the
deformed nuclei, 150,152Nd and 152,154Sm, there are no exper-
imental data available for the low-lying strengths below the
neutron-emission threshold energy. It would thus be interesting
to investigate experimentally the low-lying dipole strengths in
these nuclei.

The conclusion of the present calculation on the effect of
deformation is opposite to that reached in the study of Sn
isotopes in Ref. [15]. Those authors showed that the low-lying
E1 strength is smaller in deformed nuclei than in spherical
nuclei. To clarify the origin of this difference, we need to
examine several possible effects: First, the effect of neutron
excess should be investigated. From the technical point of
view, the two calculations use different treatments for the
pairing. We adopt the Bogoliubov method and the authors
of Ref. [15] use the BCS approximation. The treatment of
continuum and weakly bound orbitals is also different: The
wave functions are expanded in the harmonic oscillator basis
in Ref. [15], while they are directly expressed in the coordinate
space in the present study. The calculations of Ref. [15] are
fully self-consistent, and they do not have the contamination of
the spurious center-of-mass motion in the physical excitations.
We should, therefore, investigate the roles of deformation,
neutron excess, pairing, and the continuum in the low-lying
strengths in various isotopic chains, paying attention to the
mixing of spurious components, as a future work.
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FIG. 6. (Color online) Calculated transition densities of the
Kπ = 0− state at 7.49 MeV and of the Kπ = 1− state at 7.33 MeV
in 154Sm.

We also confirm that the dipole states around 7 MeV
have a character different from the GDR. In Fig. 6, the
transition densities, approximately projected to the laboratory
frame [36], are shown on arbitrary scales. These dipole states
predominantly have an isoscalar character: The proton and
neutron transition densities have the same sign. Neutron
dominance can be seen at r > 7 fm; however, the proton
contribution does not completely vanish. These characters of
the PDR are consistent with the previous QRPA analysis for
spherical nuclei of N = 82 isotones [32]. As the N/Z ratio
increases away from stability, we expect that the neutron-
dominant character will develop in the surface region.

In summary, we have investigated effects of the shape tran-
sition on the E1 strength distribution in rare-earth nuclei, using
the newly developed parallelized HFB + QRPA calculation
code with the Skyrme EDF. This enables us to simultaneously
study both high-energy GRs and low-energy collective and
noncollective states. The typical characteristics of the GDR in
the shape phase transition from spherical to deformed nuclei,
especially the isotopic dependence of the broadening and
splitting of the GDRs, are extremely well reproduced in the
calculation. We have also found that the deformation plays
a significant role in the low-energy E1 strength distribution:
The E1 strength is distributed to low-energy states and the
total strength at E < 10 MeV is roughly five times enhanced,
compared to the spherical nuclei. The low-energy strengths
in spherical 144Sm as calculated are too high in energy.
Inclusion of the higher-order mode-mode coupling is desirable
for further improvements. Systematic calculations with the
HFB + QRPA for spherical-to-deformed and light-to-heavy
nuclei help us not only to understand and to predict new types
of collective modes of excitation, but also to shed light on the
nuclear EDF of new generations.
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