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Polarization observables in π 0η photoproduction on the proton
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For π 0η photoproduction on the nucleon formal expressions are developed for the fivefold differential cross
section and the recoil polarization including beam and target polarizations. The polarization observables are
described by various beam, target, and beam-target asymmetries for polarized photons and/or polarized nucleons.
They are given as bilinear Hermitian forms in the reaction matrix elements divided by the unpolarized cross
section. Numerical results for the linear and circular beam asymmetries for γp → π0ηp are obtained within an
isobar model and are compared with existing data. Predictions are also given for the target asymmetry T11, and
the beam-target asymmetries T c

10 and T c
11 for circularly polarized photons.
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I. INTRODUCTION

Polarization observables are known to be an essential
ingredient in the interpretation of photon-induced meson
production reactions, especially if the production process
proceeds predominantly via resonance excitations. Their study
provides further insight into the details of the underlying
reaction mechanisms and possible structure effects. Thus,
such observables will serve as an additional critical test for
theoretical models.

Today special interest is focused to processes with more
than a single pseudoscalar meson in the final state. These
reactions constitute a rather new object in particle physics. At
present most of the efforts are directed toward an understand-
ing of their general dynamical content. In such a situation,
experiments with polarized particles are therefore of special
use. Different analyses clearly demonstrate their importance,
primarily because the unpolarized data are usually unable to
impose sufficient constraints on the model parameters.

Experiments for ππ and π0η photoproduction have become
a center of attention in recent research programs discussed at
the European Laboratory for Structural Assessment (ELSA)
and Mainz Microtron (MAMI) facilities [1–5]. A major
point of these programs is a study of those resonances for
which only a weak evidence exists. It is therefore timely to
investigate in detail the polarization structure of double meson
photoproduction. Some important steps toward this goal have
already been done in Ref. [6], where, in particular, a set of
polarization experiments, needed to determine the reaction
amplitude, is discussed.

With the present work we want to provide a complete solid
basis for the formal expressions of all possible polarization
observables that determine the general differential cross
section and the proton recoil polarization for π0η production
on a polarized proton target with polarized photons in a
compact and suggestive notation.

Our second goal is to study the properties of those
observables for which experimental results already exist or
are expected to be measured in the near future. Recently,
polarization measurements of different beam asymmetries
in π0η photoproduction were performed at ELSA [7,8] for
the first time. Furthermore, new MAMI results for the target

asymmetry T 0
11 and the beam-target asymmetry T c

11 are now
expected. Here, we pay some attention to the properties
of the circular beam asymmetry measured at MAMI [9].
The analysis of this observable for the similar reaction,
ππ photoproduction [10–12], confirms a strong sensitivity
of the data to the dynamical content of the amplitude. As will
be shown in the present paper, the information contained in the
circular asymmetry provides constraints on the contribution of
positive parity resonances to π0η photoproduction.

The paper is organized as follows. In the next three
sections we develop the basic formalism for the differential
cross section with inclusion of polarization observables. In
Sec. V, the most essential ingredients for the calculation of the
T matrix in the isobar model are described. Here we also
present and discuss the results on some beam, target, and
beam-target asymmetries, which are also compared to the
existing data. In several appendixes we describe in detail some
ingredients of our formal developments. One should note that
throughout this paper π meson always means π0 meson.

II. KINEMATICS

As a starting point, we first will consider the kinematics of
the photoproduction reaction

γ (k, �εµ) + Ni(pi)→π (qπ ) + η(qη) + Nf (pf ), (1)

defining the notation of the four-momenta of the participating
particles

k = (ωγ , �k), pi = (Ei, �pi), qπ = (ωπ, �qπ ),
(2)

qη = (ωη, �qη), pf = (Ef , �pf ).

As a coordinate system we choose a right-handed one with
the z axis along the photon momentum �k and the other axis
perpendicular. As is illustrated in Fig. 1 for the laboratory
frame, we distinguish three planes:

(i) The reaction plane, spanned by the momenta of incom-
ing photon �k and �q1 of particle “1,” called the active
particle, which usually is detected. This plane intersects
the x-z plane along the z axis with an angle φ1.
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FIG. 1. Kinematics of πη photoproduction on the nucleon in the
laboratory system. The active particle is denoted by “1” and defines
the reaction plane. The nonrelativistic relative momentum is denoted
by �p23 = (m3 �q2 − m2 �q3)/(m2 + m3).

(ii) The polarization or photon plane, spanned by the
photon momentum and the direction of maximal linear
photon polarization, which intersects the x-z plane
along the z axis with an angle φγ and the reaction
plane along the z axis with an angle |φ1 − φγ |.

(iii) The decay plane, spanned by the momenta of the other
two outgoing particles “2” and “3,” intersecting the
reaction plane along the total momentum �p2 + �p3 of
the latter two particles. In case that the linear photon
polarization vanishes, one can choose φ1 = φγ = 0 and
then polarization and reaction planes coincide.

The following formal developments will not depend on
whether one chooses as a reference frame the laboratory
or the center-of-momentum (c.m.) frame. Furthermore, we
will consider the η meson as particle “1” (�q1 := �qη) defining
the reaction plane, while pion and proton constitute particles
“2” and “3,” respectively, in the decay plane, i.e., �q2 := �qπ

and �q3 := �pf . Besides the incoming photon momentum �k,
we choose as independent variables for the description of
cross section and polarization observables the angle φγ char-
acterizing the polarization plane, the outgoing η momentum
�qη = (qη, θη, φη), and the spherical angles �πp = (θπp, φπp)
of the relative momentum �pπp of the outgoing pion and
nucleon as given by

�pπp = (Mp �qπ − mπ �pf )/(Mp + mπ ) = (pπp,�πp). (3)

Then the momenta of outgoing pion and nucleon are fixed. For
example, the pion momentum reads

�qπ = �pπp + mπ

Mp + mπ

(�k + �pi − �qη). (4)

In Sec. V we will also consider configurations where
either the outgoing pion or proton is the active particle,
i.e., constituting the reaction plane, while the decay plane is
spanned by the momenta of the other two particles in the final
state, i.e., either eta and proton or pion and eta, respectively.

III. THE T MATRIX

To be specific, we take in this section the outgoing eta as
the active particle. The corresponding expressions for the pion
as the active particle are obtained simply by the interchange

η ↔ π . For the outgoing proton as the active particle, detailed
expressions are listed in Appendix D.

All observables are determined by the T -matrix elements of
the electromagnetic πη production current �Jγπη between the
initial proton and the final outgoing πηNf scattering states
[indicated by a superscript “(−)”]. In a general frame, it is
given by

Tmf µmi
= −(−)〈�qη, �qπ ; �pf mf | �εµ · �Jγπη(0)| �pi mi〉, (5)

where mf denotes the proton spin projection on the relative
momentum �pπp of the outgoing pion and proton, and mi de-
notes correspondingly the initial proton spin projection on the
z axis as a quantization axis. The circular polarization vector
of the photon is denoted by �εµ with µ = ±1. Furthermore,
a transverse gauge has been chosen. The knowledge of the
specific form of �Jγπη is not needed for the following formal
considerations.

The general form of the T matrix after separation of the
overall c.m. motion and insertion of the multipole expansion
of the current operator is given in terms of the relative πp

momentum and the η momentum by

Tmf µmi
( �pπp, �qη) = −(−)〈 �pπp mf ; �qη |Jγπη, µ(�k )|mi〉

=
√

2π
∑
L

iLL̂(−)〈 �pπp mf ; �qη |OµL
µ |mi〉,

(6)

with µ = ±1, L̂ = √
2L + 1, and transverse multipoles

O
µL

M = EL
M + µML

M. (7)

It is convenient to introduce a partial-wave decomposition of
the final outgoing scattering state

(−)〈 �pπpmf | = 1√
4π

∑
lπpjπpmπp

l̂πp

(
lπp0

1

2
mf |jπpmf

)
×D

jπp

mf ,mπp
(φπp,−θπp,−φπp)

× (−)

〈
pπp

(
lπp

1

2

)
jπpmπp

∣∣∣∣ , (8)

(−)〈�qη| = 1√
4π

∑
lηmη

l̂ηD
lη
0,mη

(φη,−θη,−φη)(−)〈qηlηmη|, (9)

where mπp and mη such as mi refer to the photon momentum
�k as quantization axis. Here, the rotation matrices D

j

m′m are
taken in the convention of Rose [13]. Using the Wigner-Eckart
theorem, one obtains

(−)

〈
pπp

(
lπp

1

2

)
jπpmπp; qηlηmη

∣∣OµL
µ

∣∣1
2
mi

〉
=
∑
JMJ

(−1)jπp−lη+J Ĵ

(
jπp lη J

mπp mη −MJ

)(
J L 1

2−MJ µ mi

)

×
〈
pπp qη;

[(
lπp

1

2

)
jπplη

]
J‖OµL‖1

2

〉
, (10)
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with the selection rule mπp + mη = MJ = µ + mi . The angu-
lar dependence can be rewritten according to

D
jπp

mf ,mπp
(φπp,−θπp,−φπp)D

lη
0,mη

(φη,−θη,−φη)

= d
jπp

mf ,mπp
(−θπp)d

lη
0,mη

(−θη)ei[(mπp−mf )φπp+mηφη], (11)

where d
j

mm′ denotes a small rotation matrix [13]. Rearranging

(mπp − mf )φπp + mηφη

= (mπp − mf )φpq + (µ + mi − mf )φη (12)

with φpq = φπp − φη, one finds that the dependence on φη can
be separated, i.e.,

Tmf µmi
(�πp,�η) = ei(µ+mi−mf )φη tmf µmi

(θπp, θη, φpq),

(13)

where the small t matrix depends only on θπp, θη, and the
relative azimuthal angle φpq .

Explicitly, one obtains

tmf µmi
(θπp, θη, φpq )

= 1

2
√

2π

∑
LlπpjπpmπplηmηJMJ

iL L̂ Ĵ l̂η l̂πp ĵπp

× (−1)J+lπp+jπp− 1
2 +mf −lη

(
lπp

1
2 jπp

0 mf −mf

)
×
(

jπp lη J

mπp mη −MJ

)(
J L 1

2−MJ µ mi

)
×
〈
pπp qη;

[(
lπp

1

2

)
jπplη

]
J‖OµL‖1

2

〉
× d

jπp

mf ,mπp
(−θπp) d

lη
0,mη

(−θη) ei(mπp−mf )φpq . (14)

In the case that parity is conserved, it is quite straightfor-
ward to show that the following symmetry relation holds for
the inverted spin projections of the small t-matrix elements:

t−mf −µ−mi
(θπp, θη, φpq)

= (−1)−mf +µ+mi tmf µmi
(θπp, θη,−φpq ). (15)

Besides the phase factor, one should note the sign change of
φpq on the right-hand side. In the derivation of this relation,
one has made use of the parity selection rules for the multipole
transitions to a final partial wave |pq[(lπps)jπplη]J 〉 with
parity πJ (lπp,lη) = (−1)lπp+lη , which read

EL : πiπJ (lπp,lη)(−1)L = 1 → (−1)lπp+lη+L = 1,
(16)

ML : πiπJ (lπp,lη)(−1)L = −1 → (−1)lπp+lη+L = −1.

Therefore, invariance under a parity transformation results in
the following property of the reduced matrix element:

(−1)lπp+lη+L
〈
pπpqη;

[(
lπp

1
2

)
jπplη

]
J‖O−µL‖ 1

2

〉
= 〈pπpqη;

[(
lπp

1
2

)
jπplη

]
J‖OµL‖ 1

2

〉
. (17)

A corresponding relation for the T -matrix elements follows
from the symmetry property (15):

T−mf −µ−mi
(θπp, φπp, θη, φη)

= (−1)−mf +µ+mi Tmf µmi
(θπp,−φπp, θη,−φη). (18)

These symmetry properties are valid for all three choices of
the active particle.

Because the small t-matrix elements are the basic quantities
that determine the general differential cross section and the
recoil polarization in terms of bilinear hermitean forms in the
t-matrix elements, the developments of the next section are
independent of which particle is chosen as active.

IV. DIFFERENTIAL CROSS SECTION AND RECOIL
POLARIZATION

The starting point for the formal derivation of polarization
observables is the evaluation of the following trace with respect
to the spin degrees of freedom:

AI ′M ′ = c(qη, θη,�πp) tr
(
T †τf,[I ′]

M ′ Tρi

)
, (19)

for I ′ = 0, 1 and M ′ = −I ′, . . . , I ′, folded between the
density matrix ρi for the spin degrees of the initial system
and a spin operator τ

f,[I ′]
M ′ with respect to the final nucleon spin

space. The latter is defined by its reduced matrix element〈
1
2‖τ [I ′]‖ 1

2

〉
=

√
2Î ′ for I ′ = 0, 1. (20)

Note that τ [1] corresponds to the conventional Pauli spin
operator �σ . The trace refers to all initial and final state
spin degrees of freedom of the incoming photon, target,
and recoiling nucleon. The kinematic factor c(qη, θη,�πp)
comprises the final-state phase space and the incoming flux.
In an arbitrary frame one has

c(qη,�q,�πp)

= 1

(2π )5

M2
p

Ei + pi

1

8ωγ ωη

× p2
πp

pπp(ωπ+Ef ) + (�qπ + �pf )· �pπp

pπp(Mp + mπ ) (Ef mπ − ωπMp)
. (21)

The general expression for the differential cross section is
given by

dσ

d �qη d�πp

= A00, (22)

and the final nucleon polarization component PM with respect
to a spherical basis,

PM

dσ

d �qη d�πp

= (−1)MA1−M. (23)

With respect to a Cartesian basis, one has as polarization
components

Px

dσ

d �qη d�πp

= 1√
2
B−

1 , Py

dσ

d �qη d�πp

= i√
2
B+

1 ,

(24)

Pz

dσ

d �qη d�πp

= B+
0 ,

where for M = 0, 1 we have introduced

B±
M = (−1)M

1 + δM0
(A1M ± A1−M ). (25)
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The density matrix ρi in (19) is a direct product of the
density matrices ργ of the photon and ρp of the nucleon

ρi = ργ ⊗ ρp. (26)

For the chosen reference frame, the photon density matrix has
the form

ρ
γ

µµ′ = 1
2 (δµµ′ + �P γ · �σµµ′) (27)

with respect to the circular polarization basis (µ = ±1). Here,
| �P γ | describes the total degree of polarization, P γ

z = P
γ
c is the

difference of right to left circularly polarized photons, i.e., |P γ
c |

describes the degree of circular polarization being right or left
according to whether P

γ
c > 0 or < 0, respectively, and P

γ

l =√
(P γ

x )2 + (P γ
y )2 describes the degree of linear polarization.

By a rotation around the photon momentum by an appropriate
angle φγ , it is possible to have the new x ′ axis pointing in
the direction of maximum linear polarization. Then one has
P

γ

x ′ = −P
γ

l and P
γ
y = 0 and finds explicitly

ρ
γ

µµ′ = 1
2

[(
1 + µP γ

c

)
δµµ′ − P

γ

l δµ,−µ′e−2iµφγ
]
. (28)

Furthermore, the nucleon density matrix ρp can be ex-
pressed in terms of irreducible spin operators τ [I ] (I = 0, 1)
with respect to the initial nucleon spin space, defined in
analogy to (20),

ρ
p

mimi
′ = 1

2

∑
IM

(−1)M
〈

1
2mi

∣∣τ [I ]
M

∣∣ 1
2m′

i

〉
P

p

I−M, (29)

where P
p

00 = 1, and P
p

1M describes the sperical polarization
components of the nucleon.

We can assume that the nucleon density matrix is diagonal
with respect to an orientation axis �s having spherical angles
(θs, φs) with respect to the chosen coordinate system. Then
one has with respect to �s as a quantization axis,

ρ
p

mm′ = pm δmm′ , (30)

where pm denotes the probability for finding a nucleon spin
projection m on the orientation axis. With respect to this axis,
one finds from (29) P

p

IM (�s) = P
p

I δM,0, where the orientation
parameters P

p

I are related to the probabilities {pm} by

P
p

I =
√

2 Î
∑
m

(−1)
1
2 −m

(
1
2

1
2 I

m −m 0

)
pm

= δI0 + (p1/2 − p−1/2) δI1. (31)

The polarization components in the chosen laboratory frame
are obtained from the P

p

I by a rotation, transforming the
quantization axis along the orientation axis into the direction
of the photon momentum, i.e.,

P
p

IM (�z) = P
p

I eiMφs dI
M0(θs). (32)

Thus the initial nucleon density matrix becomes finally

ρ
p

mimi
′ = (−1)

1
2 −mi

√
2

∑
IM

(
1
2

1
2 I

m′
i −mi M

)
P

p

I e−iMφs dI
M0(θs).

(33)

This means the nucleon target is characterized by three
parameters, namely, the polarization parameter P

p

1 and by
the orientation angles θs and φs . If one chooses the c.m. frame

as a reference frame, one should note that the nucleon density
matrix undergoes no change in the transformation from the
laboratory to the c.m. system, because the boost to the c.m.
system is collinear with the nucleon quantization axis [14].

The evaluation of the general trace in Eq. (19) can be
done analogously to pion photoproduction on the deuteron,
as described in detail in Ref. [15]. In fact, one can follow
the same steps except for the use of the symmetry relation of
Eq. (12) in Ref. [15], which is different in the case of eta-pion
production on the nucleon [see Eq. (15)] because of the two
pseudoscalar particles in the final state. In terms of the small
t-matrix elements, one finds, inserting the density matrices of
photon and nucleon, for the general trace,

AI ′M ′ = 1

2

∑
µ′µIM

P
p

I eiMφηs dI
M0(θs) u

µ′µ
I ′M ′;IM

[(
1 + µP γ

c

)
δµµ′

−P
γ

l δµ,−µ′e2iµφηγ
]
, (34)

with φηs = φη − φs and φηγ = φη − φγ . Furthermore, we have
introduced the quantities

u
µ′µ
I ′M ′;IM (qη, θη, θπp, φpq)

= c(qη,�q,�πp)Î ′Î
∑

mf m′
f mim

′
i

(−1)m
′
f −mi

×
(

1
2

1
2 I ′

mf −m′
f M ′

)(
1
2

1
2 I

m′
i −mi M

)
× t∗m′

f µ′m′
i
(qη, θη, θπp, φpq)tmf µmi

(qη, θη, θπp, φpq ).

(35)

It is straightforward to prove that they behave under a complex
conjugation as[

u
µ′µ
I ′M ′;IM (qη, θη, θπp, φpq)

]∗
= (−1)M

′+Mu
µµ′
I ′−M ′;I−M (qη, θη, θπp, φpq). (36)

Furthermore, with the help of the symmetry in (15), one finds

u
−µ′−µ

I ′M ′;IM (qη, θη, θπp, φpq)

= (−1)I
′+M ′+I+M+µ′+µ u

µ′µ
I ′−M ′;I−M (qη, θη, θπp,−φpq),

(37)

which yields in combination with (36)

u
−µ′−µ

I ′M ′;IM (qη, θη, θπp, φpq)

= (−1)I
′+I+µ′+µ

[
u

µµ′
I ′M ′;IM (qη, θη, θπp,−φpq )

]∗
. (38)

This relation is quite useful for a further simplification of the
semiexclusive differential cross section later on.

Separating the polarization parameters of the photon (P γ

l

and P
γ
c ) and the target nucleon (P p

I ), it is then straightforward
to show that the trace can be brought into the form

AI ′M ′ = 1

2

∑
I=0,1

P
p

I

I∑
M=−I

eiMφηs dI
M0(θs)

[
v1

I ′M ′;IM + v−1
I ′M ′;IM

+P γ
c

(
v1

I ′M ′;IM − v−1
I ′M ′;IM

)
+P

γ

l

(
w1

I ′M ′;IMe2iφηγ + w−1
I ′M ′;IMe−2iφηγ

)]
, (39)
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where we have introduced for convenience the quantities

v
µ

I ′M ′;IM (qη, θη, θπp, φpq) = u
µµ

I ′M ′;IM (qη, θη, θπp, φpq), (40)

w
µ

I ′M ′;IM (qη, θη, θπp, φpq) = −u
µ−µ

I ′M ′;IM (qη, θη, θπp, φpq).

(41)

According to Eqs. (36) and (38), they have the following
properties under complex conjugation:

v
µ

I ′M ′;IM (qη, θη, θπp, φpq)∗

= (−1)M
′+Mv

µ

I ′−M ′;I−M (qη, θη, θπp, φpq ), (42)

w
µ

I ′M ′;IM (qη, θη, θπp, φpq)∗

= (−1)M
′+Mw

−µ

I ′−M ′;I−M (qη, θη, θπp, φpq ), (43)

v
µ

I ′M ′;IM (qη, θη, θπp, φpq)∗

= (−1)I
′+I v

−µ

I ′M ′;IM (qη, θη, θπp,−φpq), (44)

w
µ

I ′M ′;IM (qη, θη, θπp, φpq)∗

= (−1)I
′+Iw

µ

I ′M ′;IM (qη, θη, θπp,−φpq ). (45)

From Eq. (42), it follows in particular that v
µ

I ′0;I0 is real.

A. The differential cross section

For the differential cross section we consider the case I ′ = 0
and M ′ = 0, i.e., A00, for which we will use the following
simplified notation:

v
µ

IM = v
µ

00;IM, (46)

w
µ

IM = w
µ

00;IM. (47)

The sum over M in Eq. (39) can be rearranged with the
help of the relations in Eqs. (42) and (43) and dI

−M0(θs) =
(−1)MdI

M0(θs):

I∑
M=−I

eiMφηs dI
M0(θs)

(
v1

IM ± v−1
IM

)
=

I∑
M=0

dI
M0(θs)

1 + δM0

[
eiMφηs

(
v1

IM ± v−1
IM

)
+ e−iMφηs (−1)M

(
v1

I−M ± v−1
I−M

)]
=

I∑
M=0

dI
M0(θs)

1 + δM0

[
eiMφγs

(
v1

IM ± v−1
IM

)+ c.c.
]
, (48)

and furthermore with

ψM = Mφηs − 2φηγ = (M − 2)φη − Mφs + 2φγ , (49)

we get

I∑
M=−I

eiMφηs dI
M0(θs)

(
w1

IMe−2iφηγ + w−1
IMe2iφηγ

)
=

I∑
M=−I

dI
M0(θs)

[
eiψM w1

IM + e−iψM (−1)Mw−1
I−M

]
=

I∑
M=−I

dI
M0(θs)

(
eiψM w1

IM + c.c.
)
. (50)

This then yields for the differential cross section

dσ

d �qηd�πp

=
∑
I=0,1

P
p

I

{
I∑

M=0

1

1 + δM0
dI

M0(θs)Re
[
eiMφηs

(
v+

IM

+P γ
c v−

IM

)]+P
γ

l

I∑
M=−I

dI
M0(θs)Re

(
eiψM w1

IM

)}
,

(51)

where we have defined

v±
IM = v1

IM ± v−1
IM. (52)

Now, introducing various beam, target, and beam-target
asymmetries by

τ
0/c

IM (qη, θη, θπp, φpq)

= 1

1 + δM0
Re v±

IM (qη, θη, θπp, φpq ), M � 0, (53)

σ
0/c

IM (qη, θη, θπp, φpq)

= −Im v±
IM (qη, θη, θπp, φpq ), M > 0, (54)

τ l
IM (qη, θη, θπp, φpq) = Re w1

IM (qη, θη, θπp, φpq ), (55)

σ l
IM (qη, θη, θπp, φpq) = −Im w1

IM (qη, θη, θπp, φpq), (56)

where we took into account that v
µ

I0 is real.
One obtains as a final expression for the general five-

fold differential cross section, including beam and target
polarization,

dσ

d �qη d�πp

= dσ0

d �qη d�πp

[
1+P γ

c T c
00+P

γ

l

(
T l

00 cos 2φηγ −Sl
00 sin2φηγ

)
+P

p

1

([
T c

10+P γ
c T c

10 +P
γ

l

(
T l

10 cos 2φηγ −Sl
10 sin2φηγ

)]
cos θs

− 1√
2

{
T 0

10 cos φηs + S0
10 sin φηs

+P γ
c

(
T c

10 cos φηs + Sc
10 sin φηs

)+ P
γ

l [T l
11 cos(φηs − 2φηγ )

− T l
1−1 cos(φηs + 2φηγ ) + Sl

11 sin(φηs − 2φηγ )

+ Sl
1−1 sin(φηs + 2φηγ )]

}
sin θs

)]
, (57)

where the unpolarized differential cross section is given by

dσ0

d �qη d�πp

= τ 0
00, (58)

and the various beam, target, and beam-target asymmetries

T α
IM = τα

IM

τ 0
00

, Sα
IM = σα

IM

τ 0
00

, for α ∈ {0, c, l}. (59)

The corresponding derivation of the recoil polarization of
the outgoing nucleon is presented in Appendix B.

B. The semiexclusive differential cross section �p ( �γ , η)π p

We will now turn to semiexclusive reactions where one
has to integrate over all variables that are not measured. As
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an example, we consider the case �p ( �γ , η)πN , where only
the produced eta is detected. This means integration of the
fivefold differential cross section dσ/d �qη d�πp over �πp.
The derivation of the resulting cross section is presented in

detail in Appendix A. The cross section is governed by the
partially integrated asymmetries

∫
d�πpτα

IM and
∫

d�πpσα
IM

(α ∈ {0, c, l}), of which quite a few vanish, either
∫

d�πpτα
IM

or
∫

d�πpσα
IM . The final expression is

dσ

d �qη

= dσ0

d �qη

{
1 + P

γ

l �̃l cos 2φηγ + P
p

1

[
P

γ

l

1∑
M=−1

T̃ l
1M sin(Mφηs − 2φηγ )d1

M0(θs)

+
1∑

M=0

(− T̃ 0
1M sin Mφηs + P γ

c T̃ c
1M cos Mφηs

)
d1

M0(θs)

]}
, (60)

where the unpolarized cross section and the asymmetries are
given by

dσ0

d �qη

=
∫

d�πp τ l
00(qη, θη, θπp, φpq) = V00(qη, θη), (61)

�̃l(qη, θη)
dσ0

d �qη

=
∫

d�πp τ l
00(qη, θη, θπp, φpq )

= W00(qη, θη), (62)

T̃ 0
1M (qη, θη)

dσ0

d �qη

=
∫

d�πp σ 0
1M (qη, θη, θπp, φpq )

= −(2 − δM0)Im [V1M (qη, θη)],

for M = 0, 1, (63)

T̃ c
1M (qη, θη)

dσ0

d �qη

=
∫

d�πp τ c
1M (qη, θη, θπp, φpq)

= (2 − δM0)Re [V1M (qη, θη)],

for M = 0, 1, (64)

T̃ l
1M (qη, θη)

dσ0

d �qη

=
∫

d�πp σ l
01M (qη, θη, θπp, φpq)

= iW1M (qη, θη), for M = 0,±1. (65)

Here, the quantities VIM and WIM are related to the small v1
IM

and w1
IM by

VIM (qη, θη) =
∫

d�πp v1
IM (qη, θη, θπp, φpq), (66)

WIM (qη, θη) =
∫

d�πp w1
IM (qη, θη, θπp, φpq). (67)

Because VI0 is real according to Eq. (42), the asymmetries
T̃ c

00and T̃ 0
10 vanish identically. Furthermore, one should note

that W1M is purely imaginary. This is shown in Appendix A
[see Eq. (A7)]. More explicitly one has

dσ

d �qη

= dσ0

d �qη

[
1 + P

γ

l �̃l cos 2φηγ + P
p

1

(
P

γ

l

{
−T̃ l

10 cos θs

× cos 2φηγ − 1√
2

[
(
T̃ l

1−1 + T̃ l
11

)
sin φηs cos 2φηγ

+ (T̃ l
1−1 − T̃ l

11

)
cos φηs sin 2φηγ ] sin θs

}

+ 1√
2
T̃ 0

11 sin φηs sin θs − P γ
c

(
T̃ c

11 cos φηs sin θs

− 1√
2
T̃ c

10 cos θs

))]
. (68)

We would like to point out that in forward and backward eta
emission, i.e., for θη = 0 and π , the following asymmetries
have to vanish:

�̃l = 0, T̃
0,c

11 = 0, and T l
1M = 0, (69)

because in that case the differential cross section cannot depend
on φη, because at θη = 0 or π the azimuthal angle φη is
undefined or arbitrary. This feature can be shown also by
straightforward evaluation of VIM and WIMusing the explicit
representation of the T matrix in Eq. (14). One finds

VIM (qη, θη = 0/π, θπp, φpq) = 0 for M �= 0,

WIM (qη, θη = 0/π, θπp, φpq) = 0 for all M. (70)

The formulas above can be extended readily to the other cases
of an active pion or proton through a simple replacement of
the appropriate angles with a corresponding redefinition of the
various planes in Fig. 1.

C. The total cross section

The general total cross section is obtained from Eq. (60) by
integrating over d3qη, resulting in

σ = σ0
(
1 + P γ

c P
p

1 T
c

10 cos θs

)
, (71)

where the unpolarized total cross section and the only beam-
target asymmetry T

c

10 are given by

σ0 = 2π

∫
d cos θη

∫ qmax
η

qmin
η

q2
η dqη

dσ0

d �qη

, (72)

σ0T
c

10 = 2π

∫
d cos θη

∫ qmax

qmin

q2 dqη

dσ0

d �qη

T c
10. (73)

The integration limits qmin
η and qmax

η are determined by energy
and momentum conservation. There is no dependence on the
linear photon polarization as expected.
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V. RESULTS AND DISCUSSION

In this section we present our results for those asymmetries
of the reaction γp → π0ηp for which data already exist or are
expected to be measured in the near future. The observables are
calculated in the overall γp c.m. frame. The main ingredients
of our model are described in detail in Refs. [17,18]. Here we
limit ourselves to a brief overview of the model needed for the
discussion. The calculation is based on a conventional isobar
model as used, for example, for double pion photoproduction
in Refs. [19–23]. The model parameters were fitted to the
angular distributions of pions in the πp c.m. system, as well as
to the distribution over the polar angle of η in the overall c.m.
frame. The corresponding data were presented in Refs. [5]
and [18] in the region up to a photon laboratory energy
ωγ = 1.4 GeV. The present results are obtained in the same
energy interval.

The reaction amplitude comprises background and reso-
nance terms

tmf λ = tBmf λ +
∑

R(Jπ ;T )

tRmf λ. (74)

An individual resonance state R(Jπ ; T ) is determined by its
spin-parity Jπ and isospin T . Instead of the spin projections
of the initial particles mi and µ, respectively, we use their
sum λ = mi + µ = ±1/2, ±3/2, which in our coordinate
system with the quantization axes along the incident photon
momentum corresponds to the initial state helicity.

The resonance sector includes only states with isospin
T = 3/2. As already noted, analysis of the existing data for
γp → π0ηp are in agreement with the assumption that in the
energy region studied here the reaction is dominated by the
D33 wave. In the present model, the latter is populated by
the D33(1700) and D33(1940) states. The one-star resonance
D33(1940) was first introduced into the reaction γp → π0ηp

in Ref. [1] based on a partial-wave analysis (PWA). In our
model the status of this baryon is still not very clear. Primarily
we need it in order to maintain the importance of the D33 wave
at energies above 1.3 GeV, which otherwise would rapidly
decrease with increasing energy. Other T = 3/2 resonances
entering the amplitude are P33(1600), P31(1750), F35(1905),
and P33(1920). Their parameters resulting from a fit are listed
in Table II of Ref. [18].

As is shown in Refs. [16] and [18], the background
contribution is small, so that we can focus our attention
on the resonance sector alone. According to the isobar
model concept, each resonance term is given by a coherent
sum of individual amplitudes corresponding to intermediate
transitions to η�(1232) and πS11(1535) configurations,

tRmf λ = t
R(η�)
mf λ + t

R(πN∗)
mf λ , (75)

where the resonances �(1232) and S11(1535) are denoted as
� and N∗, respectively. The πη system is assumed not to
resonate in our energy interval. The validity of this assumption
is confirmed by the results of Ref. [1], where the contribution
of the resonance a0(980) at energies ωγ < 1.4 GeV is shown
to be less than 1%.

Each term in Eq. (75) has the form

t
R(α)
mf λ (W, �qπ , �qη, �pf )

= c
(α)
R AR

λ f
R(α)
mf λ (�qπ , �qη, �pf ), α ∈ {η�, πN∗}, (76)

with W being the total c.m. energy. The quantities AR
λ , which

in general depend on W , are helicity functions determining the
transition γp → R. The factor c

(α)
R absorbs all quantities that

are independent of the quantum numbers mf and λ. Its exact
form is irrelevant for the formalism to follow. The angular-
dependent part f

R(α)
mf λ describes the decay of the resonance R

into πηN via intermediate formation of an η� or πN∗ state.
In the actual calculation we adhere to the nonrelativistic

concept of angular momentum so that the angular dependence
of the amplitudes (76) is described by means of spherical
harmonics

f
R(η�)
mf λ ∼

∑
m,mη,m�

(
1 1

2
3
2

m mf −m�

)(
lη

3
2 J

mη m� −λ

)

×Y1m(�πp)d
lη
mη0(θη), (77)

f
R(πN∗)
mf λ ∼

∑
mπ

(
lπ

1
2 J

mπ mf −λ

)
Ylπ mπ

(�π )

∼
∑
mπ

(
lπ

1
2 J

mπ mf −λ

)
lπ∑

l=0

A
lπ
l

×
∑
m

(
lπ − l l lπ

mπ − m m −mπ

)
×Ylm(�πp)dlπ −l

mπ −m0(θη). (78)

The coefficients A
lπ
l , determined as

A
lπ
l =

[
mπqη

(mπ + Mp)pπp

]l
√

(2lπ − 1)(2lπ )!

(2l − 1)(2lπ − 2l)!(2l)!
, (79)

stem from the expansion of the function Ylπmπ
(�π )with respect

to products of spherical functions depending on �πp and �η.

A. The semiexclusive asymmetries for circularly polarized
photons and polarized protons

Now we will turn to the case where the active particle (π, η

or p) is measured for a fixed invariant mass of the other two
final particles, irrespective of the direction θα with α = π, η

or p, respectively, for a fixed reaction plane. The resulting
semiexclusive differential cross section is obtained by an
additional integration over the polar angles θα , respectively. It
is given by an expression formally analogous to Eq. (60) with
the following replacements (for the eta as an active particle as
an example):

dσ0

d �qη

→ dσ0

dMπp dφη

=
∫

d cos θηK
dσ0

d �qη

, (80)

dσ0

d �qη

�̃l(qη, θη) → dσ0

dMπp dφη

�̂l(Mπp)

=
∫

d cos θηK
dσ0

d �qη

�̃l(qη, θη), (81)
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dσ0

d �qη

T̃ α
IM (qη, θη) → dσ0

dMπp dφη

T̂ α
IM (Mπp)

=
∫

d cos θηK
dσ0

d �qη

T̃ α
IM (qη, θη),

α ∈ {0, l, c}. (82)

The factor K takes into account the transformation of the
differential, i.e., q2

η dqη = K dMπp. In the γp c.m. frame, this
factor is independent of θη and reads

K = qηωηMπp

W
. (83)

For the case of an active pion or proton, one simply has to
make the following replacements: η → π or p and πp → ηp

or πη, respectively.
We now consider circularly polarized photons and allow

for polarized protons, i.e., P
γ
c �= 0, P

p

1 �= 0, and P
γ

l = 0.
Furthermore, we set the azimuthal η angle to φη = 0. Then
one obtains explicitly

dσ

dMπp dφη

∣∣∣
φη=0

= dσ0

dMπp dφη

∣∣∣
φη=0

{
1 + P

p

1

[
1√
2
T̂ 0

11 sin φs sin θs

+P γ
c

(
T̂ c

10 cos θs − 1√
2
T̂ c

11 cos φs sin θs

)]}
. (84)

As a side remark, angular distributions irrespective of the
energy of the active particle may be obtained in a similar
manner via appropriate integration of the cross section in (60)
over the energy of the active particle.

Figure 2 demonstrates our predictions for the semiinclusive
target asymmetry T̂ 0

11 as well as for the double-polarization
observables T̂ c

11 and T̂ c
10. In the single D33 resonance model,

including only D33(1700) and D33(1940), both asymmetries
T̂ 0

11 and T̂ c
11 should vanish completely. The corresponding

angular distributions (in Fig. 3 we show the dependence
of T̂ c

11 on cos θη and cos θπ ) are odd functions of cos θη/π ,
so that they vanish after integration over the polar angle.
The full model, in which also positive parity resonances are
included, gives an even component in both asymmetries, thus
leading to a rather intricate energy dependence, as is shown
in Fig. 2.

It is also worth noting that for the active pion, the
dependence of T̂ c

11 on θπ is rather similar to that observed
for single π0 photoproduction in the � region. This may be
owing to the dominance of the s wave in the η� channel
and to the relatively large η mass, so that the � decay is not
contaminated by the presence of an η meson.

Of special interest is the observable T̂ c
10. In the single D33

model, its value is almost independent of Mπp (or Mηp). For
example, if only the D33(1700) resonance is retained in the
amplitude, it is approximately equal to

T̂ c
10 ≈ 1 − a2

2(1 + a2)
, with a = A3/2

A1/2
, (85)

where Aλ is a helicity function corresponding to the transition
γN → D33(1700) [see our ansatz (76) for the resonance
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FIG. 2. The target asymmetry T̂ 0
11 [(a) and (b)], and the beam-

target asymmetries for circularly polarized photons T̂ c
11 [(c) and (d)]

and T̂ c
10 [(e) and (f)] for the η as the active particle (left-hand panels)

as a function of the πp invariant mass spectrum Mπp, and for the
pion as the active particle (right-hand panels) as a function of Mηp ,
calculated at a laboratory photon energy of 1.3 GeV. The solid line
presents the full calculation. The dashed line is obtained including
the D33(1700) resonance only. The asymmetries T̂ 0

11 and T̂ c
11 vanish in

the single D33 model. The vertical dotted lines mark the boundaries
of the available kinematical region.

amplitudes]. Taking a = 1.1 from the analysis of Ref. [5]
(see Fig. 6 of Ref. [5] at Eγ = 1.3 GeV), we will have,
according to Eq. (85), T̂ c

10 = −0.05, in general agreement
with the result shown by the dashed line in Fig. 2. If both
resonances D33(1700)and D33(1940) are included, T̂ c

10 remains
constant, but its value is no longer determined by a simple
relation analogous to (85). As we can see, inclusion of other
resonances, resulting in a strong interference with the leading
partial wave, changes crucially the shape of T̂ c

10.
It is also interesting to note that, in contrast to single

pseudoscalar meson photoproduction, T̂ c
10 does not approach

unity at very forward and backward η angles [see panel (c) in
Fig. 3]. The reason for this behavior lies in the spin 3/2 of the
� resonance, so that angular momentum conservation does not
require λ = 1/2 at θη = 0(π ), as in the case of a single meson.

B. The semiexclusive asymmetries for linearly polarized
photons and polarized protons

For only linearly polarized photons the semiexclusive cross
section is again obtained from Eq. (60) for P

γ
c = 0 and φη = 0
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FIG. 3. The beam-target asymmetries for circularly polarized
photons T̂ c

11 and T̂ c
10 at a laboratory photon energy of 1.3 GeV

as function of the polar angles of active eta [left-hand panels (a)
and (c)] and active pion [right-hand panels (b) and (d)] in the
γp c.m. frame. The solid curve is the full model calculation.
The dashed curve includes only the D33(1700) and D33(1940)
resonances.

with the replacements of Eqs. (80)–(82):

dσ

dMπpdφη

∣∣∣∣
φη=0

= dσ0

dMπpdφη

∣∣∣∣
φη=0

[
1 + P

γ

l

(
�̂l cos 2φγ P

p

1

+
{
−T̂ l

10 cos θs cos 2φγ + 1√
2

[(
T̂ l

1−1 + T̂ l
11

)
sin φs

× cos 2φγ + (T̂ l
1−1 − T̂ l

11

)
cos φs sin 2φγ

]
sin θs

})]
,

(86)

where φγ measures the angle between the reaction and the
photon plane. The gross features of the beam asymmetry
for linearly polarized photons �̂l as a function of the πN

or ηN invariant energies were already discussed in detail
in Ref. [18]. Therefore, we show here only the additional
beam-target asymmetries T̂ l

1M in Fig. 4.
Furthermore, we present results for the asymmetries called

I c and I s , which were recently measured at ELSA [8]. In this
experiment, the direction of the eta meson was detected in
the reaction plane in coincidence with the pion proton pair
for a fixed orientation of the decay plane integrated over the
direction within this plane of �pπp as function of the angle
between the reaction plane and the decay plane. The initial
proton was unpolarized. For the comparison of our results with
the data, we have adjusted the calculation to the experimental
kinematic conditions of these measurements. First of all, we
changed the coordinate system as defined in Fig. 1 for the
x-z plane coinciding with the reaction plane, i.e., φη = 0
(z axis parallel to �k and y axis parallel to �k × �qη) by rotating
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FIG. 4. The beam-target asymmetries for linearly polarized pho-
tons T̂ l

1−1, T̂ l
10, and T̂ l

11 at a laboratory photon energy of 1.3 GeV as
function of the polar angles of an active eta [left-hand panels (a), (c),
and (e)] and an active pion [right-hand panels (b), (d), and (f)] in the
γp c.m. frame.

it around the y axis such that the new z∗ axis is aligned along
the vector �qπ + �pf . With respect to the rotated coordinate
system, the relative momentum �pπp has the spherical angles
�∗

πp = (θ∗
πp, φ∗

πp), and the decay plane intersects the reaction
plane with the azimuthal angle φ∗

πp. This is illustrated in
Fig. 5 for the c.m. system. In the rotated γp c.m. system,
the corresponding expressions for the amplitudes f

R(α)
mf λ can be

obtained easily from Eqs. (77) and (78) via a positive rotation
of Ylm(�p) by an angle θR = θη + π around the y axis. With
respect to the new variables, one obtains a set of new structure
functions τ/σ

(∗)α
IM (qη, θη, θ

∗
πp, φ∗

pq ), which are related to the old

φ

ηθ

η

y
x

z

x

z

γ

pf

q +p

q
reaction planephoton plane

pi

*

p

fπpπφ*

*

π

qπ

θ* p
π

p
decay plane

γ

FIG. 5. Kinematics of πη photoproduction on the nucleon
for an active eta in the c.m. system with a rotated coordinate
system.
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ones by the Jacobian

J (cos θπp, φπp; cos θ∗
πp, φ∗

πp) =
∣∣∣∣∂(cos θπp, φπp)

∂(cos θ∗
πp, φ∗

πp)

∣∣∣∣ (87)

according to

τ
/
σ

(∗)α
IM (qη, θη, θ

∗
πp, φ∗

pq) = τ
/
σα

IM (qη, θη, θπp, φpq )

× |J (cos θπp, φπp; cos θ∗
πp, φ∗

πp)| for α ∈ {0, l, c}.
(88)

From the relations between (θπp, φπp) and (θ∗
πp, φ∗

πp),

cos θπp = cos θ∗
πp cos θR − sin θ∗

πp cos φπp sin θR, (89)

cot φπp = cot φ∗
πp cos θR + cot θ∗

πp

sin φ∗
πp

sin θR, (90)

with θR denoting the rotation angle, one can see that θπp

and φπp are, respectively, even and odd functions of φ∗
πp

(what may also be obvious from the geometric considerations).
Explicitly, one finds for the Jacobian

J (cos θπp, φπp; cos θ∗
πp, φ∗

πp)

= sin2 φπp

sin2 θ∗
πp sin2 φ∗

πp

[(sin θ∗
πp cos θR

+ cos φ∗
πp cos θ∗

πp sin θR)2 + sin2 φ∗
πp sin2 θR]. (91)

The above found symmetry of the angle transformation is re-
flected by the invariance of the Jacobian under a simultaneous
sign change of φπp and φ∗

πp, i.e.,

J (cos θπp,−φπp; cos θ∗
πp,−φ∗

πp)

= J (cos θπp, φπp; cos θ∗
πp, φ∗

πp), (92)

which will be used later on.
As mentioned in the formal part, we also consider partitions

π + (ηN ) and p + (πη) in which the decay plane is spanned
in the former case by the vectors �qη and �pf , formally replacing
�∗

πp by �∗
ηp = (θ∗

ηp, φ∗
ηp), and in the latter case by �qπ and �qη

with �∗
πη = (θ∗

πη, φ
∗
πη).

In order to evaluate the corresponding semiexclusive
observables, one has to integrate over dqη and d cos θ∗

πp the
general expression for the differential cross section, which
reads for φη = 0, P

γ
c = 0, and P

p

1 = 0,

dσ

d �qη d�∗
πp

= dσ0

d �qη d�∗
πp

[
1 + P

γ

l

(
T

(∗)l
00 cos 2φγ + S

(∗)l
00 sin 2φγ

)]
.

(93)

This then yields in the notation of Ref. [6] (one should note
that φ′ in Ref. [8] is related to φγ by φγ = φ′ − π/2)

dσ

dφη dφ∗
πp

= dσ0

dφη dφ∗
πp

{
1 − P

γ

l

[
I c(φ∗

πp) cos 2φγ

+ I s(φ∗
πp) sin 2φγ

]}
, (94)

where the linear beam asymmetries I c and I s are determined
by the coefficients S

(∗)l
00 and T

(∗)l
00 in Eq. (93):

I c(φ∗
πp)

dσ

dφη dφ∗
πp

= −
∫

d cos θ∗
πp

∫ qmax
η

qmin
η

q2
η dqη

dφη dσ0

dφ∗
πp

× T
(∗)l

00 (qη, θη; θ∗
πp, φ∗

πp)

= −
∫

d cos θ∗
πp

∫ qmax
η

qmin
η

q2
η dqη

× τ
(∗)l
00 (qη, θη; θ∗

πp, φ∗
πp), (95)

I s(φ∗
πp)

dσ

dφη dφ∗
πp

= −
∫

d cos θ∗
πp

∫ qmax
η

qmin
η

q2
η dqη

dφη dσ0

dφ∗
πp

× S
(∗)l
00 (qη, θη; θ∗

πp, φ∗
πp)

= −
∫

d cos θ∗
πp

∫ qmax
η

qmin
η

q2
η dqη

× σ
(∗)l
00 (qη, θη; θ∗

πp, φ∗
πp). (96)

Using Eqs. (45), (55), and (56), one can easily show that
I c(φ∗

πp) and I s(φ∗
πp) are, respectively, even and odd functions

of the angle φ∗
πp, i.e.,

I c(−φ∗
πp) = I c(φ∗

πp), I s(−φ∗
πp) = −I s(φ∗

πp). (97)

Indeed, from the symmetry relation (45) with φη = 0 and thus
φpq = φπp and the definitions (55) and (56) follows

τ l
00(qη, θη, θπp,−φπp) = τ l

00(qη, θη, θπp, φπp), (98)

σ l
00(qη, θη, θπp,−φπp) = −σ l

00(qη, θη, θπp, φπp). (99)

Furthermore, from Eq. (88) and the invariance in Eq. (92) of
the Jacobian, one finds

τ
(∗)l
00 (qη, θη, θ

∗
πp,−φ∗

πp)

= τ l
00(qη, θη, θπp,−φπp)|J (cos θπp,−φπp; cos θ∗

πp,−φ∗
πp)|

= τ l
00(qη, θη, θπp, φπp)|J (cos θπp, φπp; cos θ∗

πp, φ∗
πp)|

= τ
(∗)l
00 (qη, θη, θ

∗
πp, φ∗

πp), (100)

σ
(∗)l
00 (qη, θη, θ

∗
πp,−φ∗

πp)

= σ l
00(qη, θη, θπp,−φπp)|J (cos θπp,−φπp; cos θ∗

πp,−φ∗
πp)|

= − σ l
00(qη, θη, θπp, φπp)|J (cos θπp, φπp; cos θ∗

πp, φ∗
πp)|

= − σ
(∗)l
00 (qη, θη, θ

∗
πp, φ∗

πp). (101)

From these relations the noted symmetries of Eq. (97)
follow directly with the help of the definitions in
Eqs. (95) and (96).

In Figs. 6 and 7 we compare our results with the data. In
view of the fact that the data were not included in the fit of the
model parameters, the agreement is reasonable. Already the
single D33 model [including only D33(1700) and D33(1940)]
reproduces the experimentally observed shape and magnitude
of the observables, so that admixtures of other terms leads
to relatively small corrections. Our results are in general
agreement with those obtained in Ref. [24], except, maybe,
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FIG. 6. The beam asymmetry I c calculated for two total c.m.
energies W . The data are from Ref. [8] (only the statistical errors are
shown). The upper two panels (a) and (b) refer to an active proton,
the two middle panels (c) and (d) refer to an active eta, and the two
lower panels (e) and (f) refer to an active pion as function of the
angle between the corresponding reaction plane and decay planes as
counted from the reaction plane (see Fig. 5). Notation of the curves
as in Fig. 3.

I s
π , for which the model [24] predicts vanishingly small values

(see Fig. 4 of the cited paper).
At the end of this section we will briefly return to circularly

polarized photons. Without target polarization, one has as
a semiexclusive cross section for the same experimental
conditions as above,

dσ

dφη dφ∗
πp

= dσ0

dφη dφ∗
πp

(
1 + P γ

c T
(∗)c

00

)
, (102)

where only one beam asymmetry appears. In Ref. [6] this
circular photon asymmetry was introduced with the notation
I�, i.e.,

dσ0

dφη dφ∗
πp

T
(∗)c

00 (φ∗
πp)

= dσ0

dφη dφ∗
πp

I�(φ∗
πp) = 1

2

dσ+ − dσ−

dφη dφ∗
πp

=
∫

d cos θ∗
πp

∫ qmax
η

qmin
η

q2
η dqη τ

(∗)c
00 (qη, θη; θ∗

πp, φ∗
πp), (103)
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FIG. 7. Same as in Fig. 6 for the beam asymmetry I s .

where dσ± denotes the cross section corresponding to the
photon beam with a helicity P

γ
c = λγ = ±1, respectively.

Furthermore, as in Ref. [9], instead of I�, we will consider
an observable whose definition slightly differs from Eq. (103),
namely,

Wc(φ∗
πp) = 2π

σ

dσ

dφη dφ∗
πp

T
(∗)c

00 = π

σ

dσ+ − dσ−

dφη dφ∗
πp

, (104)

with σ being the unpolarized total cross section. According
to the definitions in Eqs. (52) and (53), and the symmetry
property in Eq. (44), Wcis an odd function of the argument
φ∗

πp and therefore may be expanded into a sine series

Wc(φ∗
πp) =

∑
n

An sin nφ∗
πp. (105)

For further analyses it is convenient to have an analytic
expression for Wc(φ∗) of Eq. (104), and we neglect for
simplicity the small background. Furthermore, as already
noted, in our energy region the reaction seems to be dominated
by the D33 wave accompanied by relatively small admixtures
of resonance states in other waves, in our case, P33, P31, and
F35. The latter contribute mainly as long as the corresponding
amplitudes can interfere with that coming from the D33

excitation. In this connection, we will retain in further relations
only those terms that are linear in the “weak” amplitudes. Then
the integrand in Eq. (85), calculated up to the first order in tP31 ,

015503-11
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FIG. 8. Coefficients An (n = 1, 2, 3) of the sine expansion (105). Notations as in Fig. 3. The data are from Ref. [9].

tP33 , and tF35 , reads

τ
(∗)c
00 � ∣∣tD33

mf λ

∣∣2 + 2 Re
{
t
∗D33
mf λ t

P31
mf λ + t

∗D33
mf λ t

P33
mf λ + t

∗D33
mf λ t

F35
mf λ

}
− (λ → −λ). (106)

Using Eqs. (76)–(78) in (106), one obtains for the asymmetry
in Eq. (104)

Wc(φ∗
πp) = A1 sin φ∗

πp + A2 sin 2φ∗
πp, (107)

where the coefficients A1 and A2 are expressed in terms of
resonance parameters and are given in Appendix C. Of key
importance is the fact that the first term in (107) is almost
exclusively determined by the D33 wave. The contributions
of other waves into A1 are quadratic in the corresponding
amplitudes and may therefore be neglected. As a result,
the “weak” resonances enter only into the second term of
Eq. (107), which is owing to an interference of the amplitudes
tP31 , tP33 , and tF35 with the dominant tD33 . In this respect, the
sin 2φ∗

πp admixture in the asymmetry Wc(φ∗
πp) may be viewed

as a signature of positive parity states in π0η photoproduction.
In Fig. 8 we compare our calculation for An, n = 1, 2, 3,

with the results obtained from the measurements of Ref. [9].
As one can see, the single D33 resonance model reproduces
rather well the coefficient A1 in the whole energy interval.
As expected, addition of other resonances does not visibly
change its value, because, as already noted, the corresponding
contributions are of second order in the “small” amplitudes.
For A2 the agreement is worse. In particular, the model gives
a wrong sign of this coefficient. It is also worth noting that
A2 has a rather small value at ωγ � 1.3 GeV. Unfortunately,
the data do not allow us to find the reason for this fact,
whether it is a consequence of a general smallness of individual
contributions, or whether it is caused by an accidental
cancelation between different terms. The last coefficient A3

is comparable with zero, which is in line with our discussion
above as well as with the model predictions. In the general
case, the term with sin 3φ∗

πp would be owing to an interference
of D33 with negative parity resonances such as S31, D35, etc. In
this respect, its smallness may be considered as an indication
of an insignificant role of these states in this reaction.

VI. CONCLUSION

In this work we have derived formal expressions for the
differential cross section and the recoil polarization of πη

photoproduction on the nucleon, including various polar-
ization asymmetries with respect to polarized photons and
nucleons.

A general analysis allowing the determination of the moduli
and relative phases of the four independent photoproduction
amplitudes requires a complete set of polarization experi-
ments, which for photoproduction of two pseudoscalar mesons
is discussed, e.g., in Ref. [6]. However, in the πη case, owing
to the assumed dominance of the D33 wave, the information
on bilinear combinations of the amplitudes may require much
smaller parameters. The situation is similar to that existing in
η photoproduction, which is known to be dominated by the
S11 wave in a wide energy region. Making use of this fact has
allowed, e.g., an almost model-independent extraction of the
parameters of the resonance D13(1520) in a much cleaner way,
than in π photoproduction, where it overlaps with a multitude
of other resonance states.

As noted above, according to the analyses of Refs. [1]
and [18], in the energy region below ωγ = 1.4 GeV, the
main contribution beyond the D33 resonance should come
from the positive parity states P33, P31, and F35, which reveal
themselves through their interference with the dominant D33

amplitude. Our results show that the corresponding “small”
amplitudes may be identified, e.g., through their contribution to
the second Fourier coefficient A2 in the sine series for Wc(φ∗

πp)
in Eq. (105).

It is also important to note that the D33 resonance decays
predominantly into an s-wave η� state. As a result, in the
single D33 model (only the D33 wave is included into the
amplitude) most of the polarization observables vanish. There-
fore, the results of polarization measurements are expected to
be sensitive to even small admixtures of “weak” resonances.

A comprehensive program for single- and double-
polarization measurements of the reaction γp → π0ηp is
planned for the near future at MAMI and ELSA. The
information obtained by these new experiments will provide
stringent constraints on the quantum numbers of the resonance
states entering the reaction amplitude.
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APPENDIX A: SEMIEXCLUSIVE DIFFERENTIAL
CROSS SECTION �p ( �γ , η)π p

To derive the general expression for the semiexclusive cross
section, we first introduce the quantities

WIM (qη, θη) =
∫

d�πp w1
IM (qη, θη, θπp, φpq ) = − Î√

2

∫
d�πp c(qη, θη,�πp)

∑
mim

′
i

(−1)
1
2 −mi

×
(

1
2

1
2 I

m′
i −mi M

)∑
mf

t∗mf 1m′
i
(qη, θη, θπp, φpq)tmf −1mi

(qη, θη, θπp, φpq), (A1)

V ±
IM (qη, θη) = V 1

IM (qη, θη) ± V −1
IM (qη, θη), (A2)

with

V
µ

IM (qη, θη) =
∫

d�πp v
µ

IM (qη, θη, θπp, φpq) = Î√
2

∫
d�πp c(qη, θη,�πp)

×
∑
mim

′
i

(−1)
1
2 −mi

(
1
2

1
2 I

m′
i −mi M

) ∑
mf

t∗mf µm′
i
(qη, θη, θπp, φpq)tmf µmi

(qη, θη, θπp, φpq). (A3)

Using now the property (44), one finds with the help of∫ 2π

0
dφπp f (−φpq) =

∫ 2π

0
dφπp f (φpq) (A4)

for a periodic function f (φpq + 2π ) = f (φpq) (please note
φpq = φπp − φη), the relation

V −1
IM (qη, θη) =

∫
d�πp v−1

IM (qη, θη, θπp, φpq )

= (−1)I
∫

d�πp v1
IM (qη, θη, θπp,−φpq )∗

= (−1)IV 1
IM (qη, θη)∗, (A5)

and thus

V ±
IM (qη, θη) = V 1

IM (qη, θη) ± (−1)IV 1
IM (qη, θη)∗. (A6)

Correspondingly, using (45), one obtains

WIM (qη, θη)∗ = (−1)I
∫

d�πp w1
IM (qη, θη, θπp,−φpq )

= (−1)IWIM (qη, θη). (A7)

From the two foregoing equations, we can conclude that V +
IM

and WIM are real for I = 0 and imaginary for I = 1, whereas
V −

IM is imaginary for I = 0 and real for I = 1. Therefore,
according to (53)–(56), the following integrated asymmetries
vanish:∫

d�πp τα
IM = 0 for

{
α ∈ {0, l} and I = 1,

α ∈ {c} and I = 0

}
, (A8)

∫
d�πp σα

IM = 0 for

{
α ∈ {0, l} and I = 0,

α ∈ {c} and I = 1

}
. (A9)

Instead of using these results for deriving from (57) the
threefold semiexclusive differential cross section, we prefer

to start from the expression in (51), and obtain

d3σ

dqη d�η

=
∑
I=0,1

P
p

I

{
I∑

M=0

1

1 + δM0
dI

M0(θs)

× Re [eiMφηs (V +
IM + P γ

c V −
IM )]

+P
γ

l

I∑
M=−I

dI
M0(θs)Re (eiψM WIM )

}
. (A10)

This expression can be simplified using the fact that iδI1 WIM ,
iδI1 V +

IM , and i1−δI1 V −
IM are real according to (A6) and (A7).

The latter two quantities can be written as

iδI1V +
IM = 2 Re

(
iδI1V 1

IM

)
, (A11)

i1−δI1V −
IM = 2 Re

(
i1−δI1V 1

IM

) = −2 Im
(
i−δI1V 1

IM

)
.

(A12)

Now using

Re (eiMφηs V +
IM ) = Re [ei(Mφηs−δI1 π/2)iδI1V +

IM ]

= 2 Re
(
iδI1V 1

IM

)
cos(Mφηs − δI1 π/2),

(A13)

Re (eiMφηs V −
IM ) = Re

[
1

i
ei(Mφηs+δI1 π/2)i1−δI1V −

IM

]
= −2 Im

(
i−δI1V 1

IM

)
sin(Mφηs + δI1 π/2),

(A14)

Re (eiψM WIM ) = Re [ei(ψM−δI1 π/2)iδI1WIM ]

= iδI1WIM cos(ψM − δI1 π/2), (A15)

we find as the final form for the threefold semiexclusive
differential cross section (60).
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APPENDIX B: THE RECOIL POLARIZATION

For the recoil polarization, we have to evaluate according
to (24) the quantities B±

M ′ of (25). From (39) we obtain for
M ′ = 0, 1,

B±
M ′ = (−1)M

′

2(1 + δM ′0)

∑
I=0,1

P
p

I

I∑
M=−I

eiMφηs dI
M0(θs)

× [̃v1±
M ′;IM + ṽ−1±

M ′;IM + P γ
c

(̃
v1±

M ′;IM − ṽ−1±
M ′;IM

)
+P

γ

l

(
w̃1±

M ′;IMe−2iφηγ + w̃−1±
M ′;IMe2iφηγ

)]
, (B1)

where for convenience we have defined

ṽ
/
w̃

µ;±
M ′;IM = v

/
w

µ

1M ′;IM ± v
/
w

µ

1−M ′;IM. (B2)

One should note that

ṽ
/
w̃

µ; +
0;IM = 2 v

/
w

µ

10;IM and ṽ
/
w̃

µ; −
0;IM = 0. (B3)

These quantities obey the obvious property

ṽ
/
w̃

µ;±
−M ′;IM = ±ṽ

/
w̃

µ;±
M ′;IM. (B4)

Then one obtains as a final expression for the Cartesian
nucleon recoil polarization components as defined in (24),
including beam and target polarization contributions,

Pxi

dσ

d �qη d�πp

=
∑
I=0,1

P
p

I

( I∑
M=0

dI
M0(θs)

{
τ 0
xi ;IM cos (Mφηs)

+ σ 0
xi ;IM sin (Mφηs) + P γ

c

[
τ c
xi ;IM cos (Mφηs)

+ σ c
xi ;IM sin (Mφηs)

]}+P
γ

l

I∑
M=−I

dI
M0(θs)

(
τ l
xi ;IM cos ψM

+ σ l
xi ;IM sin ψM

))
, (B5)

where the various beam, target, and beam-target asymmetries
are given by

τ
/
σ 0

x/y;IM = ∓ 1√
2(1 + δM0)

Re/Im
(̃
v

1;−
1;IM + ṽ

−1;−
1;IM

)
,

(B6)

τ
/
σ c

x/y;IM = ∓ 1√
2

Re/Im
(̃
v

1;−
1;IM − ṽ

−1;−
1;IM

)
, (B7)

τ
/
σ l

x/y;IM = ∓ 1√
2

Re/Im
(
w̃

1;−
1;IM

)
. (B8)

τ
/
σ 0

z;IM = 1

2(1 + δM0)
Re/Im

(̃
v

1;+
0;IM + ṽ

−1;+
0;IM

)
= 1

1 + δM0
Re/Im

(
v1

10;IM + v−1
10;IM

)
, (B9)

τ
/
σ c

z;IM = 1
2 Re/Im

(̃
v

1;+
0;IM − ṽ

−1;+
0;IM

)
= Re/Im

(
v1

10;IM − v−1
10;IM

)
, (B10)

τ
/
σ l

z;IM = 1
2 Re/Im

(
w̃

1;+
0;IM

) = Re/Im
(
w1

10;IM

)
,

(B11)

where we have used (B3) for Pz.

APPENDIX C: THE EXPANSION COEFFICIENTS

The first two coefficients in the Fourier expansion of Wc

in Eq. (105) may be derived from the general expressions in
Eqs. (76), (77), and (78). Using the actual resonance quantum
numbers, one obtains after straightforward manipulations

A1 = π

σ

[(
A

D33
3/2

)2 + 1

3

(
A

D33
1/2

)2] ∫
Im
(
c
∗(1)
D33

c
(2)
D33

)
× sin2 θ∗

πp dθ∗
πp dωη, (C1)

A2 = −π

σ

(
FD33P31 + FD33P33 + FD33F35

)
. (C2)

The individual terms on the right-hand side of Eq. (C2) read

FD33P31 = − 4

3
√

3
A

D33
1/2 A

P31
1/2

∫
Im
(
c
∗(1)
D33

c
(η�)
P31

)
× sin2 θ∗

πp dθ∗
πp dωη, (C3)

FD33P33 = 8

3
√

15

(
A

D33
3/2 A

P33
3/2 − A

D33
1/2 A

P33
1/2

) ∫
Im

[
c
∗(1)
D33

c
(η�)
P33

+
√

2

3

(
c
∗(2)
D33

c
(πN∗)
P33

p2
πp − c

∗(1)
D33

c
(πN∗)
P33

Xπqηpπp

)]
× sin2 θ∗

πp dθ∗
πp dωη, (C4)

FD33F35

= − 1√
15

(√
6A

D33
3/2 A

F35
3/2 + A

D33
1/2 A

F35
1/2

)
×
∫

Im

[
c
∗(1)
D33

c
(η�)
F35

− 2
(
c
∗(2)
D33

c
(πN∗)
F35

p2
πp

− c
∗(1)
D33

c
(πN∗)
F35

Xπqηpπp

)]
sin2 θ∗

πp dθ∗
πp dωη, (C5)

where Xπ = mπ/(Mp + mπ ). In the expressions above, �pπp

is, as previously, the relative πp momentum. The factors c
(α)
R

α ∈ {η�, πN∗} appear in the general ansatz for the resonance
amplitudes in Eq. (76). For convenience we have introduced in
Eqs. (C3)–(C5) the following notations for the combinations
of the coefficients c

(α)
D33

:

c
(1)
D33

= c
(η�)
D33

+ p

qπ

c
(πN∗)
D33

, c
(2)
D33

= − qη

qπ

Xπc
(πN∗)
D33

. (C6)

APPENDIX D: THE T -MATRIX FOR AN ACTIVE PROTON

For an active proton, the partial-wave decomposition of the
final state reads

(−)〈�qπη | = 1√
4π

∑
lπηmπη

l̂πη D
lπη

0,mπη
(φπη,−θπη,−φπη)

× (−)〈qπηlπηmπη|, (D1)

(−)〈 �ppmf | = 1√
4π

∑
lpjpmp

l̂p

(
lp0

1

2
mf |jpmf

)

×D
jp

mf ,mp
(φp,−θp,−φp)(−)

〈
pp

(
lp

1

2

)
jpmp

∣∣∣∣ ,
(D2)
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where again mπη and mp refer to the photon momentum �k
as the quantization axis. Then we follow the same steps as in
Eqs. (10)–(14). With the help of the multipole decomposition
and the Wigner-Eckart theorem, one obtains

(−)

〈
qπη lπηmπη; pp

(
lp

1

2

)
jpmp

∣∣∣∣OµL
µ

∣∣∣∣12mi

〉
=
∑
JMJ

(−1)lπη−jp+J Ĵ

(
lπη jp J

mπη mp −MJ

)(
J L 1

2−MJ µ mi

)

×
〈
qπη pp; [lπη(lps)jp]J‖OµL‖1

2

〉
, (D3)

with the selection rule mp + mπη = MJ = µ + mi . Rewriting
the angular dependence,

D
jp

mf ,mp
(φp,−θp,−φp)D

lπη

0,mπη
(φπη,−θπη,−φπη)

= d
jp

mf ,mp
(−θp)d

lπη

0,mπη
(−θπη)ei[(mp−mf )φp+mπηφπη], (D4)

and rearranging

(mp − mf )φp + mπηφπη = mπηφpq + (µ+ mi − mf ) φp

(D5)

with φpq = φπη − φp, one finds that the dependence on φp can
be separated, i.e.,

Tmf µmi
(�p,�πη) = ei(µ+mi−mf )φp tmf µmi

(θp, θπη, φpq ) ,

(D6)

where the small t matrix depends only on θp, θπη, and the
relative azimuthal angle φpq .

The explicit form for the t matrix in the case of an active
proton then reads

tmf µmi
(θπη, θp, φpq )

= 1

2
√

2π

∑
LlπηmπηlpjpmpJJMJ

iLL̂Ĵ l̂pĵp̂lπη

× (−1)J+lπη− 1
2 +mf −lp−jp

(
lp

1
2 jp

0 mf −mf

)

×
⎛⎝ lπη jp J

mπη mp −MJ

⎞⎠⎛⎝ J L 1
2

−MJ µ mi

⎞⎠
×
〈
pπηpp;

[
lπη

(
lp

1

2

)
jp

]
J‖OµL‖1

2

〉
× d

lπη

0,mπη
(−θπη)d

jp

mf ,mp
(−θp)eimπηφpq . (D7)

Parity transformation leads to the following property of the
reduced matrix element:

(−1)lπη+lp+L
〈
pπηpp;

[
lπη

(
lπp

1
2

)
jπp

]
J‖O−µL‖ 1

2

〉
= 〈

pπppp;
[
lπη

(
lπp

1
2

)
jπp

]
J‖OµL‖ 1

2

〉
, (D8)

which in turn gives the symmetry property of
Eq. (15).
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