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Polarization observables in 7%y photoproduction on the proton
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For %5 photoproduction on the nucleon formal expressions are developed for the fivefold differential cross
section and the recoil polarization including beam and target polarizations. The polarization observables are
described by various beam, target, and beam-target asymmetries for polarized photons and/or polarized nucleons.
They are given as bilinear Hermitian forms in the reaction matrix elements divided by the unpolarized cross
section. Numerical results for the linear and circular beam asymmetries for yp — 7 %)p are obtained within an
isobar model and are compared with existing data. Predictions are also given for the target asymmetry 7, and
the beam-target asymmetries T}, and 7] for circularly polarized photons.
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I. INTRODUCTION

Polarization observables are known to be an essential
ingredient in the interpretation of photon-induced meson
production reactions, especially if the production process
proceeds predominantly via resonance excitations. Their study
provides further insight into the details of the underlying
reaction mechanisms and possible structure effects. Thus,
such observables will serve as an additional critical test for
theoretical models.

Today special interest is focused to processes with more
than a single pseudoscalar meson in the final state. These
reactions constitute a rather new object in particle physics. At
present most of the efforts are directed toward an understand-
ing of their general dynamical content. In such a situation,
experiments with polarized particles are therefore of special
use. Different analyses clearly demonstrate their importance,
primarily because the unpolarized data are usually unable to
impose sufficient constraints on the model parameters.

Experiments for 777 and 77 °n photoproduction have become
a center of attention in recent research programs discussed at
the European Laboratory for Structural Assessment (ELSA)
and Mainz Microtron (MAMI) facilities [1-5]. A major
point of these programs is a study of those resonances for
which only a weak evidence exists. It is therefore timely to
investigate in detail the polarization structure of double meson
photoproduction. Some important steps toward this goal have
already been done in Ref. [6], where, in particular, a set of
polarization experiments, needed to determine the reaction
amplitude, is discussed.

With the present work we want to provide a complete solid
basis for the formal expressions of all possible polarization
observables that determine the general differential cross
section and the proton recoil polarization for 7%y production
on a polarized proton target with polarized photons in a
compact and suggestive notation.

Our second goal is to study the properties of those
observables for which experimental results already exist or
are expected to be measured in the near future. Recently,
polarization measurements of different beam asymmetries
in 7% photoproduction were performed at ELSA [7,8] for
the first time. Furthermore, new MAMI results for the target
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asymmetry Tlo1 and the beam-target asymmetry 7, are now
expected. Here, we pay some attention to the properties
of the circular beam asymmetry measured at MAMI [9].
The analysis of this observable for the similar reaction,
mrr photoproduction [10-12], confirms a strong sensitivity
of the data to the dynamical content of the amplitude. As will
be shown in the present paper, the information contained in the
circular asymmetry provides constraints on the contribution of
positive parity resonances to 77 photoproduction.

The paper is organized as follows. In the next three
sections we develop the basic formalism for the differential
cross section with inclusion of polarization observables. In
Sec. V, the most essential ingredients for the calculation of the
T matrix in the isobar model are described. Here we also
present and discuss the results on some beam, target, and
beam-target asymmetries, which are also compared to the
existing data. In several appendixes we describe in detail some
ingredients of our formal developments. One should note that
throughout this paper  meson always means w° meson.

II. KINEMATICS

As a starting point, we first will consider the kinematics of
the photoproduction reaction

y(k, €,) + Ni(pi)—= 7(qz) + 1(qy) + Ny (py), (1)

defining the notation of the four-momenta of the participating
particles
k= (@, k),

pi Z(Eia ﬁi)’ qn Z(wﬂaqn’)a

. 2
pr=(Es, py).

qy = (a),’, 5777),
As a coordinate system we choose a right-handed one with
the z axis along the photon momentum k and the other axis
perpendicular. As is illustrated in Fig. 1 for the laboratory
frame, we distinguish three planes:

(1) The reaction plane, spanned by the momenta of incom-
ing photon k and g1 of particle “1,” called the active
particle, which usually is detected. This plane intersects
the x-z plane along the z axis with an angle ¢;.
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polarization plane .
N

FIG. 1. Kinematics of 77 photoproduction on the nucleon in the
laboratory system. The active particle is denoted by “1” and defines
the reaction plane. The nonrelativistic relative momentum is denoted
by poz = (magy — mags)/(ma + m3).

(ii)) The polarization or photon plane, spanned by the
photon momentum and the direction of maximal linear
photon polarization, which intersects the x-z plane
along the z axis with an angle ¢, and the reaction
plane along the z axis with an angle |¢; — ¢, |.

(iii) The decay plane, spanned by the momenta of the other
two outgoing particles “2” and “3,” intersecting the
reaction plane along the total momentum p; + p3 of
the latter two particles. In case that the linear photon
polarization vanishes, one can choose ¢; = ¢, = 0 and
then polarization and reaction planes coincide.

The following formal developments will not depend on
whether one chooses as a reference frame the laboratory
or the center-of-momentum (c.m.) frame. Furthermore, we
will consider the n meson as particle “1” (g; := g,) defining
the reaction plane, while pion and proton constitute partlcles
“2” and “3,” respectively, in the decay plane, i.e., g := q]r
and g3 := p. Besides the incoming photon momentum k,
we choose as independent variables for the description of
cross section and polarization observables the angle ¢, char-
acterizing the polarization plane, the outgoing n momentum
qy = (qy, 0y, ¢), and the spherical angles Q;, = (0, ¢rp)
of the relative momentum p,, of the outgoing pion and
nucleon as given by

ﬁnp = (Mpqrr — Mg ﬁf)/(Mp +my) = (pnp’ Q?‘[[))' 3)

Then the momenta of outgoing pion and nucleon are fixed. For
example, the pion momentum reads

my

m(k + pi — Gy)- 4

6771 = ﬁn[) +

In Sec. V we will also consider configurations where

either the outgoing pion or proton is the active particle,

i.e., constituting the reaction plane, while the decay plane is

spanned by the momenta of the other two particles in the final
state, i.e., either eta and proton or pion and eta, respectively.

III. THE T MATRIX

To be specific, we take in this section the outgoing eta as
the active particle. The corresponding expressions for the pion
as the active particle are obtained simply by the interchange
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n <> . For the outgoing proton as the active particle, detailed
expressions are listed in Appendix D.

All observables are determined by the 7 -matrix elements of
the electromagnetic 77 production current fyﬂn between the
initial proton and the final outgoing mwnN, scattering states
[indicated by a superscript “(—)”]. In a general frame, it is
given by

T,

mppmg =

TyanO) B mi),  (5)

where m ; denotes the proton spin projection on the relative
momentum py, of the outgoing pion and proton, and m; de-
notes correspondingly the initial proton spin projection on the
Z axis as a quantization axis. The circular polarization vector
of the photon is denoted by &, with u = £1. Furthermore,
a transverse gauge has been chosen. The knowledge of the
specific form of jym, is not needed for the following formal
considerations.

The general form of the T matrix after separation of the
overall c.m. motion and insertion of the multipole expansion
of the current operator is given in terms of the relative mp
momentum and the  momentum by

(_)(énv én; 5fmf | gu :

~NBop 5 Gy | Ty, (k) m;)

V2w ZiLZ(_)(ﬁnp my; gy |05L|m,»),
L

Tmfumi(ﬁnp’ an) =

(6)
with u = %1, L = /2L + 1, and transverse multipoles
oL = EY + uMk,. (7)

It is convenient to introduce a partial-wave decomposition of
the final outgoing scattering state

(_)<ﬁnpmf|

«/_ Z ﬂp<lﬂpo mf|]ﬂpmf>

n/)]vymnp

J;
X Dn:?,m,p(qbﬂps - ﬂps ¢rrp)

1
x () <pnp (lrrpi) jr[pmr[p > 3

Tl = \/_ZZDOm,,(‘/’n’ 6,60 (@ylym, . ©)

where m, and m, such as m; refer to the photon momentum

k as quantization axis. Here, the rotation matrices D,J;l,m are
taken in the convention of Rose [13]. Using the Wigner-Eckart
theorem, one obtains

_ 1Y . 1
) <p7rp (lnp 5) ]npmrrp; qunmn | OﬁL | Eml>

— Z(_l)jnpflﬁlf Jrp Iy J J L %
Myp My, —M; —Mj; u m;

M,

1
x<pnpqn;[(z Z)an }Juo“Ln > (10)
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with the selection rule m, + m, = M; =  + m;. The angu-
lar dependence can be rewritten according to

jrp Iy
Dz”,m,,p (¢ﬂp1 _Qﬂpv _¢7rp)D0’mﬂ (¢77» _977» _d)n)

Jxp l i -
— dm/’,mﬂp(_enp)d07mn(_9n)el[(m”]) mf)¢np+mn¢n] , (1 1)

where d;flm/ denotes a small rotation matrix [13]. Rearranging
(mr[p - mf)¢np + mn¢ﬂ
= (mrrp - mf')¢pq + (u+m; — mf')¢n (12)

with ¢,, = ¢, — ¢,, one finds that the dependence on ¢, can
be separated, i.e.,
T (R Q) = €008, O, O P
(13)

where the small ¢ matrix depends only on 60,, 6,, and the

relative azimuthal angle ¢, .
Explicitly, one obtains

tmfum, (971177 9?]7 ¢[7L])
1 PPN
= > LLT 1y lap jmp

221 1

1 .
x (= 1)/ Har+inp=3+m =y (176,; 3 Jap )
my —myg

(i b J L }
My, my —M;J\-M; n m;

< pmp | () | 7107415

X di"f:lnj{,’mnp (—0xp) d(l)’Zm.,(_Qn) ¢! M =m )y (14)

n[}jnpmm)lnmn JIM;

In the case that parity is conserved, it is quite straightfor-
ward to show that the following symmetry relation holds for
the inverted spin projections of the small #-matrix elements:

Ty —p—m;Orp, Oy, Ppq)
= (_1)7mf+ﬂ+m'tmfp_m,-(0ﬂps 917’ _¢pq)‘ (15)

Besides the phase factor, one should note the sign change of
¢pq on the right-hand side. In the derivation of this relation,
one has made use of the parity selection rules for the multipole
transitions to a final partial wave |pq[(z,s)jzpl,]J) with
parity 7,1, = (—1) ", which read

EL . T[in—](lnl,,ln)(_l)l‘ =1 (_l)lnp+ly]+L — 1’

(16)

M*E : 7ti7Tj(1np71”)(—l)L = —1 - (_1)1”,,+IU+L — _1

Therefore, invariance under a parity transformation results in
the following property of the reduced matrix element:

(=Dt s [(Lep %) Japly] TIOTE113)
= (Prpdn: [(lp3) jrpln] JNIO*F115). (17)

A corresponding relation for the 7-matrix elements follows
from the symmetry property (15):

Tfmff,ufm,v(enps ¢nps 9;17 ¢n)
= (_1)7mf+u+m,- Tmfum,» (97'[[)’ _¢7rp’ Qna _d)n)- (18)
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These symmetry properties are valid for all three choices of
the active particle.

Because the small 7-matrix elements are the basic quantities
that determine the general differential cross section and the
recoil polarization in terms of bilinear hermitean forms in the
t-matrix elements, the developments of the next section are
independent of which particle is chosen as active.

IV. DIFFERENTIAL CROSS SECTION AND RECOIL
POLARIZATION

The starting point for the formal derivation of polarization
observables is the evaluation of the following trace with respect
to the spin degrees of freedom:

A = c(qy, by L) te(TT S ' Tp), (19)

for I'=0,1 and M'=-1I',...,I’, folded between the
density matrix p; for the spin degrees of the initial system
and a spin operator o1 with respect to the final nucleon spin

space. The latter is defined by its reduced matrix element
<%||r“’1||%> — V2T for I'=0,1. (20)

Note that !!! corresponds to the conventional Pauli spin
operator o. The trace refers to all initial and final state
spin degrees of freedom of the incoming photon, target,
and recoiling nucleon. The kinematic factor c(g,, 6, 2x,)
comprises the final-state phase space and the incoming flux.
In an arbitrary frame one has

C(qﬂ» qu Q?tp)
2
_ 1M 1
(27)3 E; + pi 8w, w,
2
x _ P . 2D

x + Drp
pnp(wn+E_f) + %(Efmn - wnMp)

The general expression for the differential cross section is
given by
do
dg, dQx),
and the final nucleon polarization component P,, with respect
to a spherical basis,

= Ago, (22)

Py (-1 A (23)
M=o = (= 1-M-

dq, dQ,
With respect to a Cartesian basis, one has as polarization
components

p do _ 1 B- do B+

TGy dQuq, V2 F dgy dQup \/E 24)

do +

P,—— = By,

dqg, dQy,
where for M = 0, 1 we have introduced
By, = CUT A Aran. (25)
1+ dmo
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The density matrix p; in (19) is a direct product of the
density matrices p” of the photon and p” of the nucleon

pi =p’ ®p’. (26)

For the chosen reference frame, the photon density matrix has
the form

'OZW = %(SMM' + P o) @7

with respect to the circular polarization basis (u = =+1). Here,
|P 7| describes the total degree of polarization, P} = P/ isthe
difference of right to left circularly polarized photons, i.e., | P! |
describes the degree of circular polarization being right or left
according to whether P/’ > 0 or < 0, respectively, and P} =

(P + Py )? describes the degree of linear polarization.
By a rotation around the photon momentum by an appropriate
angle ¢,, it is possible to have the new x’ axis pointing in
the direction of maximum linear polarization. Then one has
P! = —P/and P} = 0 and finds explicitly

) =
S+ 1 PY)8y — P8y e

Furthermore, the nucleon density matrix p” can be ex-
pressed in terms of irreducible spin operators t!/! (I =0, 1)
with respect to the initial nucleon spin space, defined in
analogy to (20),

1
Db = 53 2D (| 3m) PPy 29)
IM

“Huer] o (28)

A
Pupw =

where Pj, =1, and P/, describes the sperical polarization
components of the nucleon.

We can assume that the nucleon density matrix is diagonal
with respect to an orientation axis s having spherical angles
(6, ¢s) with respect to the chosen coordinate system. Then
one has with respect to § as a quantization axis,

pyI;m/ = Pm Smm's (30)

where p,, denotes the probability for finding a nucleon spin
projection m on the orientation axis. With respect to this axis,
one finds from (29) P/,,(5) = P} 8.0, where the orientation
parameters P, are related to the probabilities {p,,} by

R 11
ermne( &
=680+ (Pl/z — p-1/2)011. 3D

The polarization components in the chosen laboratory frame
are obtained from the P/ by a rotation, transforming the
quantization axis along the orientation axis into the direction
of the photon momentum, i.e.,

P}, () = Ple™Pd;, (6)). (32)

Thus the initial nucleon density matrix becomes finally
(=i~ ( Lo ) :
p -~ 7 2 2 PP 1M¢’d’ 9
Py / ().
o V2 o i T Mo
(33)

This means the nucleon target is characterized by three
parameters, namely, the polarization parameter P;’ and by
the orientation angles 6; and ¢;. If one chooses the c.m. frame
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as a reference frame, one should note that the nucleon density
matrix undergoes no change in the transformation from the
laboratory to the c.m. system, because the boost to the c.m.
system is collinear with the nucleon quantization axis [14].
The evaluation of the general trace in Eq. (19) can be
done analogously to pion photoproduction on the deuteron,
as described in detail in Ref. [15]. In fact, one can follow
the same steps except for the use of the symmetry relation of
Eq. (12) in Ref. [15], which is different in the case of eta-pion
production on the nucleon [see Eq. (15)] because of the two
pseudoscalar particles in the final state. In terms of the small
t-matrix elements, one finds, inserting the density matrices of
photon and nucleon, for the general trace,
Arm = % Z Pl eMPrdy 60, ul, st [ (1 18 P )81

wplM
— P8, _pe’ron], (34)

with ¢, = ¢, — ¢sand ¢, = ¢,
introduced the quantities

97]7971[77 ¢pq)
Q)T Y (=1

)
mym'pmim;

1 1 ’ 1 1
<z 2 'Yz 31 !
my —m/f M| \m;, —m; M

X tm’ wm (Qm en, an’ ¢pq)tm,»;/,m;(CIna Gn, 9:117’ ¢pq)-
(35)

— ¢, . Furthermore, we have

W
Wy (s

= c(gy, 24

It is straightforward to prove that they behave under a complex
conjugation as

[ 101 O O D))

— (_1)M’+Mu/‘4‘d

11— s Ons Onps @pg).  (36)

Furthermore, with the help of the symmetry in (15), one finds

U (G Oy O Do)
mim\dns> Uns Unps Ppg

_ UM AT+MAp e W 1
=(-1) S s mrsi—m @y Oy, Onps

—Ppq)
(37

which yields in combination with (36)

ul_’l;l:;LM(qﬂ’eﬂ’gﬂpv ¢pq)
- ( 1)1+1+M+M[ IM’ IM(qﬂ’eﬂ’eﬂpv ¢pq)]*- (38)

This relation is quite useful for a further simplification of the
semiexclusive differential cross section later on.

Separating the polarization parameters of the photon (P
and P!) and the target nucleon (P,p ), it is then straightforward
to show that the trace can be brought into the form

iMby, 1
Apy = = Z Pp Z e ¢"d 0(9 )[UIM’1M+U1M’1M
S
-1
+ P (UI’M’;IM - UI/M’;IM)
B (Wi €™+ wing e )], (39)
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where we have introduced for convenience the quantities

U?’M’;IM(qﬂ’ Oy, Onp, Ppg) = ulIL’lll\/[’;IM(q’l’ Oy, Onp, Ppq),  (40)

_ullL/;/IIf;IM(qu’ Ons Onps Bpq)-
(41)

According to Eqgs. (36) and (38), they have the following
properties under complex conjugation:

"
Wi @ns Ony Orps Ppg) =

U?M' 10 (s O Orp, Ppg)”

= D"l s
Wi m @ Ons O $pg)”

= (- 1)M+Mw1 M- m(@ns Op, Orp, pg),  (43)

U],M/;IM(qm 67]5 erpv ¢pq)*

Oy Onp Ppq).  (42)

= (=" v 0@y O O —Bpg). (44)
w;LM/ M(‘]nven’eﬂp"ﬁpq)*
= (=D w00 (@ O O — D) (45)

From Eq. (42), it follows in particular that Uro;lo is real.

A. The differential cross section

For the differential cross section we consider the case I’ = 0
and M’ =0, i.e., Agy, for which we will use the following
simplified notation:

"

Vim = Yoo;m> (46)

wh,, = wh 47)
M 00,7 M-

The sum over M in Eq. (39) can be rearranged with the
help of the relations in Eqs. (42) and (43) and d’ woBs) =
(=DMd};0(6,):

I
Z eiM¢’7fd1{40(05)(v11M + U;A},)

M=—1I
- z )
1+ SMO
e Mo (=DM (vy_y £ 07 y)]
Z diy(65)
1+ 8M0

and furthermore with

wM = M¢ns - 2¢ny = (M - 2)¢n -

we get

e (o £ 7

[eMPr(v]y £ viyy) +cc],  (@48)
Mes +2¢,, (49)

I
Z ™M dyyo(0) (e P + wyy e h)
M=—1

Pl +e (=DM w ! ]

1
> dio)]e
M=—1

1
3 (et

M=—1

+ c.c.). 50)
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This then yields for the differential cross section

1
1
dq,’dQﬂp Z { Z 1+ dmo

1=0,1 M=0

dj;0(05)Re [eMP (v},

1
+ PYvp ) [+ P Y digg00)Re (¢ w) )
M=—1I

(51)
where we have defined
vE, = vhy £ o (52)

Now, introducing various beam, target,
asymmetries by

and beam-target

0
7711{/;(%1 Qr]a 07[p9 ¢pq)

= Re v7,(qns Oy Onps bpg)s M =0,  (53)
1+ 6umo0
(s O Onps D)
= —Imv},(qy, 0y, Onps Gpg)s M >0, (54)

T;M(qﬂ’ Oy, Oxp, Ppg) = Re w}M(qﬂ’ Oy, Oxps Dpg)s (55
UIIM(QT], Gr]’ 97'[])5 ¢pq) = —Im w}M(qna 0,], 97'[[)5 ¢pq)a (56)

where we took into account that vfo is real.

One obtains as a final expression for the general five-
fold differential cross section, including beam and target
polarization,

do
dg, dS2,
= d—[1+PV T+ P/ (Tiy c0s 26, — Shy sin2¢p,, )

dq,, dQy,

+ P} ([Tfy+ PY T, + P} (T}, cos 26, — S, sin2¢,, )] cos 0,
— L { T1% cOS ¢y + S?O sin ¢y,
V2
+ PY (T, cos ¢ys + S5y sinys) + P/ [T], cos(gys
— T}y cos(¢ys + 20 + Sy sin(¢ys — 26
+ S1_y Sin(gys + 26,1} sin )], (57)

where the unpolarized differential cross section is given by

- 2¢ny)

dO'() 0

— =0 (58)
dgydQ, °

and the various beam, target, and beam-target asymmetries

5 o
Thy =%, Sty =-22 for aef0,cl}. (59
Too Too

The corresponding derivation of the recoil polarization of
the outgoing nucleon is presented in Appendix B.

B. The semiexclusive differential cross section p (¥, n)xp

We will now turn to semiexclusive reactions where one
has to integrate over all variables that are not measured. As
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an example, we consider the case p (¥, n)m N, where only
the produced eta is detected. This means integration of the
fivefold differential cross section do/dg, dS2;, over Qy.
The derivation of the resulting cross section is presented in

do
dc},7

dO’o
dq,,

!
+ Z T} sin Mgy + P'TS, cos M) dy0(6y ):| }
M=0

where the unpolarized cross section and the asymmetries are
given by

dO’Q

= / Ay (s 6 Oms p0) = Vooldns ), (61)
n

>~ dU()
El(qn’ Qn)ﬁ =

/ Ay TGy O O D)
n

= Woo(qy, On), (62)
o~ dO’o
TIOM(‘]’I’ Qn)ﬁ = [dQﬂp UIOM(q']’ Oy, Onps Ppq)
n
= —(2 = dyo)Im [Viy(qy, 0,)],
for M =0,1, (63)
~e dO'() c
TlM(qn, Qn)ﬁ = /dan T1M(qnv 977, enpa ¢pq)
n
= (2 —dmo)Re [VIM(an 977)],
for M =0,1, (64)
~ do
TIIM(‘In’ 90)# = /errp U(l)lM(CIr]s 97;, 97rp7 ¢pq)
n
=iWiu(g,,0y), for M =0,%1. (65)

Here, the quantities V;j; and Wy, are related to the small v} o
and w} u by

VIM(Qna Or;) = /dan U}M(qna 9,’, enps ¢pq)v (66)

WIM(aneﬂ) = /dan w}M(quenaenpv(ppq)- (67)

Because Vm is real according to Eq. (42), the asymmetries

Oand T10 vanish identically. Furthermore, one should note
that Wy, is purely imaginary. This is shown in Appendix A
[see Eq. (A7)]. More explicitly one has

do doy

- 14 P/ %! cos2 Pl P/ { =T}, cosb,
dqn dqn[ + ¢7]V+ ( 10 N

[ TN o
[(T{_, + T,) sin g5 cos 26,

V2

+ (TLI — Tlll) COS @y 5in 2¢y,,, | sin GS}

X €0S2¢,, —

{1 + P/ S cos 29y, +PP[
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detail in Appendix A. The cross section is governed by the
partially integrated asymmetries [ dQ,,7%, and [ dQ2,07,
(¢ € {0, c, 1}), of which quite a few vanish, either f dQpTiy
or [ dQy,0f,. The final expression is

P/ Z Tl sin(M s — 26,,)d10(65)

M=-1
(60)
[
+— ! — TV sing 0, — TS, 10} 0,
sin ¢, sin COS ¢, Sin
N n 11 n
1 ~
— —T cos b . (68)
il ))}

We would like to point out that in forward and backward eta
emission, i.e., for ¢, = 0 and 7, the following asymmetries
have to vanish:
$'=0, TH*=0, and T, =0, (69)
because in that case the differential cross section cannot depend
on ¢,, because at 6, =0 or m the azimuthal angle ¢, is
undefined or arbitrary. This feature can be shown also by
straightforward evaluation of V), and Wjusing the explicit

representation of the 7" matrix in Eq. (14). One finds

VIM(qn’eﬂ :0/7[7 97'[[)1 ¢pq)=O fOr
Win(qy, 0y = 0/7,6zp, ppg) =0 for

M 0,

al M. (70)

The formulas above can be extended readily to the other cases
of an active pion or proton through a simple replacement of
the appropriate angles with a corresponding redefinition of the
various planes in Fig. 1.

C. The total cross section

The general total cross section is obtained from Eq. (60) by
integrating over d3 qy, resulting in

o =oo(l + PY PT)ycosb), (71)

where the unpolarized total cross section and the only beam-
target asymmetry TlcO are given by

max

a
00=271/d0056,7/_
g

—ec Gmax ) do—o .
ool p =2 | dcosb, q dqnﬁTlo. (73)
1

‘min

dO’o
q; dq, 7 (72)

min max

The integration limits ¢,™" and g,* are determined by energy
and momentum conservatlon There is no dependence on the
linear photon polarization as expected.
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V. RESULTS AND DISCUSSION

In this section we present our results for those asymmetries
of the reaction yp — m%np for which data already exist or are
expected to be measured in the near future. The observables are
calculated in the overall yp c.m. frame. The main ingredients
of our model are described in detail in Refs. [17,18]. Here we
limit ourselves to a brief overview of the model needed for the
discussion. The calculation is based on a conventional isobar
model as used, for example, for double pion photoproduction
in Refs. [19-23]. The model parameters were fitted to the
angular distributions of pions in the 7 p c.m. system, as well as
to the distribution over the polar angle of 7 in the overall c.m.
frame. The corresponding data were presented in Refs. [5]
and [18] in the region up to a photon laboratory energy
w, = 1.4 GeV. The present results are obtained in the same
energy interval.

The reaction amplitude comprises background and reso-
nance terms

i = s+ Y (74)
R(J™:T)

An individual resonance state R(J™;T) is determined by its
spin-parity J” and isospin 7. Instead of the spin projections
of the initial particles m; and p, respectively, we use their
sum A =m; + pu = £1/2, £3/2, which in our coordinate
system with the quantization axes along the incident photon
momentum corresponds to the initial state helicity.

The resonance sector includes only states with isospin
T = 3/2. As already noted, analysis of the existing data for
yp — m'np are in agreement with the assumption that in the
energy region studied here the reaction is dominated by the
D33 wave. In the present model, the latter is populated by
the D33(1700) and D33(1940) states. The one-star resonance
D33(1940) was first introduced into the reaction yp — 7%np
in Ref. [1] based on a partial-wave analysis (PWA). In our
model the status of this baryon is still not very clear. Primarily
we need it in order to maintain the importance of the D33 wave
at energies above 1.3 GeV, which otherwise would rapidly
decrease with increasing energy. Other T = 3/2 resonances
entering the amplitude are P33(1600), P3;(1750), F35(1905),
and P33(1920). Their parameters resulting from a fit are listed
in Table II of Ref. [18].

As is shown in Refs. [16] and [18], the background
contribution is small, so that we can focus our attention
on the resonance sector alone. According to the isobar
model concept, each resonance term is given by a coherent
sum of individual amplitudes corresponding to intermediate
transitions to nA(1232) and 7 S1;(1535) configurations,

R R(nA) R(TN™)
tm/)» tmf)\. + th)\. ’ (75)

where the resonances A(1232) and S;;(1535) are denoted as
A and N*, respectively. The wn system is assumed not to
resonate in our energy interval. The validity of this assumption
is confirmed by the results of Ref. [1], where the contribution
of the resonance ay(980) at energies w, < 1.4 GeV is shown
to be less than 1%.
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Each term in Eq. (75) has the form

R
i W, G Gy Pr)

= AR G Gy Bp)e @ € A, TNTY,(T6)
with W being the total c.m. energy. The quantities AR, which
in general depend on W, are helicity functions determining the
transition yp — R. The factor c(lg‘) absorbs all quantities that
are independent of the quantum numbers m ; and A. Its exact
form is irrelevant for the formalism to follow. The angular-
dependent part f,R(“) describes the decay of the resonance R
into TN via 1ntermediate formation of an nA or # N* state.

In the actual calculation we adhere to the nonrelativistic
concept of angular momentum so that the angular dependence
of the amplitudes (76) is described by means of spherical
harmonics

1 1 3 [ 3y
FROY) 3 p 3 n 3
myh m my —mp) \m, max —X

m,my,ma
l’]
X Yim(Qrp)d,, o(Oy), )
: l T |
R(TN*) T 3
Fur ;(m . _k> Yi,m, ()
L L T\
0 > SRR ot
o \Mx My —A P
- 11

X Yim Q) (6,). (78)

My —

The coefficients Ai”, determined as

A,,,:[ Mgy }’ (2l — D(2y)!
' Lo+ Mp)psy |\ Q= D@L - 2012n!

stem from the expansion of the function Y;_,, (€2, )with respect
to products of spherical functions depending on €2, and £2,.

(79)

A. The semiexclusive asymmetries for circularly polarized
photons and polarized protons

Now we will turn to the case where the active particle (i, n
or p) is measured for a fixed invariant mass of the other two
final particles, irrespective of the direction 6, with o = 7, n
or p, respectively, for a fixed reaction plane. The resulting
semiexclusive differential cross section is obtained by an
additional integration over the polar angles 6, respectively. It
is given by an expression formally analogous to Eq. (60) with
the following replacements (for the eta as an active particle as
an example):

d d d
dog  __dop _ fdcosen/c@, (80)
dg, dMy,d¢, dqy
% K1 40s 6,) 9% _ S0,
i - —
dg, I dM,, d$,
/dcos@ K— E (qy, O, 8D
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A0 Fa (4.6,) — —220 (M)
g, Tiw(an, M, d¢,7 T (M
O~
= [ dcosO KTT“ (g4, 0n),
/ n dqn M n n
« €{0,1,¢c). (82)

The factor K takes into account the transformation of the
differential, i.e., q% dgq, = KdMy,. In the yp c.m. frame, this
factor is independent of 6, and reads

Gnwn Mz
v

For the case of an active pion or proton, one simply has to
make the following replacements: n — w or p and mp — np
or mn, respectively.

We now consider circularly polarized photons and allow
for polarized protons, i.e., P/ #0, P/ #0, and P/ =0.
Furthermore, we set the azimuthal 7 angle to ¢, = 0. Then
one obtains explicitly

K= (83)

do ‘
dMy, do, l¢,=0
d(fo { |: 1 =0 - .
= — 1+ PP| —T sin ¢, sin 6,
errpd(bn =0 ! \/E " ¢

~ 1 ~
+ P/ (T” cos By — —=T, cos ¢ sin05> :“ (84)
10 N ¢

As a side remark, angular distributions irrespective of the
energy of the active particle may be obtained in a similar
manner via appropriate integration of the cross section in (60)
over the energy of the active particle.

Figure 2 demonstrates our predictions for the semiinclusive
target asymmetry Tll as well as for the double-polarization
observables Tf, and Tfo. In the single D33 resonance model,
iAncluding iny D33(1700) and D33(1940), both asymmetries
Tlo1 and T}, should vanish completely. The corresponding
angular distributions (in Fig. 3 we show the dependence
of T}, on cos®, and cosf;) are odd functions of cos6,x,
so that they vanish after integration over the polar angle.
The full model, in which also positive parity resonances are
included, gives an even component in both asymmetries, thus
leading to a rather intricate energy dependence, as is shown
in Fig. 2.

It is also worth noting that for the active pion, the
dependence of Tf1 on 0 is rather similar to that observed
for single 7% photoproduction in the A region. This may be
owing to the dominance of the s wave in the nA channel
and to the relatively large n mass, so that the A decay is not
contaminated by the presence of an 7 meson.

Of special interest is the observable Tl‘0 In the single D33
model, its value is almost independent of M, (or M,,). For
example, if only the D33(1700) resonance is retained in the
amplitude, it is approximately equal to

2
?fowl—a, with a= 232 (85)
2(1 4 a?) Alp
where A, is a helicity function corresponding to the transition
y N — D33(1700) [see our ansatz (76) for the resonance
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FIG. 2. The target asymmetry TO [(a) and (b)], and the beam-
target asymmetries for circularly polarized photons Tl‘1 [(c) and (d)]
and Tfo [(e) and (f)] for the 7 as the active particle (left-hand panels)
as a function of the 7p invariant mass spectrum M,,, and for the
pion as the active particle (right-hand panels) as a function of M,,,
calculated at a laboratory photon energy of 1.3 GeV. The solid line
presents the full calculation. The dashed line is obtained including
the D33(1700) resonance only. The asymmetries i"\lol and 7"\1‘1 vanish in
the single D33 model. The vertical dotted lines mark the boundaries
of the available kinematical region.

amplitudes]. Taking a = 1.1 from the analysis of Ref. [5]
(see Fig. 6 of Ref. [5] at E, = 1.3 GeV), we will have,
according to Eq. (85), T"fo = —0.05, in general agreement
with the result shown by the dashed line in Fig. 2. If both
resonances D33(1700)and D33(1940) are included, Tfo remains
constant, but its value is no longer determined by a simple
relation analogous to (85). As we can see, inclusion of other
resonances, resulting in a strong interference with the leading
partial wave, changes crucially the shape of T10

It is also interesting to note that, in contrast to single
pseudoscalar meson photoproduction, 77, does not approach
unity at very forward and backward 5 angles [see panel (c) in
Fig. 3]. The reason for this behavior lies in the spin 3/2 of the
A resonance, so that angular momentum conservation does not
require A = 1/2 at 6, = 0(r), as in the case of a single meson.

B. The semiexclusive asymmetries for linearly polarized
photons and polarized protons

For only linearly polarized photons the semiexclusive cross
section is again obtained from Eq. (60) for P/ = 0 and ¢, =0
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FIG. 3. The beam-target asymmetries for circularly polarized
photons ?fl and ffo at a laboratory photon energy of 1.3 GeV
as function of the polar angles of active eta [left-hand panels (a)
and (c)] and active pion [right-hand panels (b) and (d)] in the
yp c.am. frame. The solid curve is the full model calculation.
The dashed curve includes only the Ds33(1700) and D;3(1940)
resonances.

with the replacements of Eqs. (80)—(82):

do

dMzpdy |, _
_ doy

- dM,,dg,

|:1 + P/ <§l cos2¢, P
¢n=0

L EE
+{ =T}, cos b cos 2¢, + —[(T{_, + T},) sin ¢

V2
X c0s 2¢, + (/T\ll—l - /T\lll) cos ¢y sin 2 | sin 6, })i|’
(86)

where ¢, measures the angle between the reaction and the
photon plane. The gross features of the beam asymmetry
for linearly polarized photons X! as a function of the 7 N
or nN invariant energies were already discussed in detail
in Ref. [18]. Therefore, we show here only the additional
beam-target asymmetries T{M in Fig. 4.

Furthermore, we present results for the asymmetries called
I¢ and I°, which were recently measured at ELSA [8]. In this
experiment, the direction of the eta meson was detected in
the reaction plane in coincidence with the pion proton pair
for a fixed orientation of the decay plane integrated over the
direction within this plane of p,, as function of the angle
between the reaction plane and the decay plane. The initial
proton was unpolarized. For the comparison of our results with
the data, we have adjusted the calculation to the experimental
kinematic conditions of these measurements. First of all, we
changed the coordinate system as defined in Fig. 1 for the
x-z plane coinciding with the reaction plane, i.e., ¢, =0
(z axis parallel to k and y axis parallel to k x gn) by rotating

0 ® 0.06 ©
a
-0.0002 0.05 ¢
_-0.0004 0.04 1
_x 0.03 t
= .
0.0006 0.02 |
-0.0008 001 |
-0.001 : ‘ : 0 : ] :
-1 05 0 05 1 1 05 0 05
0 : ; : 0.02 : : :
(©) (d)
-0.01 0.01 t
(=1
=
-0.02 0 \/
-0.03 ‘ -0.01 ‘ ] ‘
1 05 0 05 1 -1 05 0 05 1
0.3 : : : : :
©
0.2
(_[._:
0.1
0 : : : 0 : : :
-1 05 0 05 1 -1 05 0 05 1
cos Sn cos 0

FIG. 4. The beam-target asymmetries for linearly polarized pho-
tons 7\’1’71, 7?110’ and T"l’l at a laboratory photon energy of 1.3 GeV as
function of the polar angles of an active eta [left-hand panels (a), (c),
and (e)] and an active pion [right-hand panels (b), (d), and (f)] in the
yp c.m. frame.

it around the y axis such that the new z* axis is aligned along
the vector g, + py. With respect to the rotated coordinate
system, the relative momentum p,, has the spherical angles
Q7 , = (07,. #7,), and the decay plane intersects the reaction
plane with the azimuthal angle ¢7 . This is illustrated in
Fig. 5 for the c.m. system. In the rotated yp c.m. system,

the corresponding expressions for the amplitudes n’f ;i) can be

obtained easily from Eqs. (77) and (78) via a positive rotation
of ¥;,,(€2,) by an angle 6z = 6, + 7 around the y axis. With
respect to the new variables, one obtains a set of new structure

(0)a

functions v /oy, (g, 0y, 67,

I’; q ), which are related to the old

reaction plane

q

photon plane

FIG. 5. Kinematics of w7 photoproduction on the nucleon
for an active eta in the c.m. system with a rotated coordinate
system.
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ones by the Jacobian

0(coS Ozp, Prp)

(87)
d(cos 0;;1,, ;’;p)

J(cO8 Onp, Prp3cos Oy, b7,) = ‘

according to

T/O—I(;/)[a(qn’ 9”’ 9;:17’ ¢I>§‘1) = T/G?M(qm 97]’ 97‘[[)7 ¢pq)
@i, for a€{0.1.c}.
(83)

X |J(cos Orp, Prp; cOS 9;,),

From the relations between (0, ¢x),) and (9;[,, * o)
€08 6, = cos 9;[, cos Og — sin 9;:[, Cos ¢rp sinbg, (89)
Y

0
P sin Oy, (90)

*
np

. cot
Cotyp, = cot¢>ﬂp cosOg + "

with 0r denoting the rotation angle, one can see that 0,
and ¢, are, respectively, even and odd functions of ¢7,
(what may also be obvious from the geometric considerations).
Explicitly, one finds for the Jacobian

J(c08 Onp, Prp3cos Oy, d7,)

)
sin” ¢ .
= ﬁ[(sm@n"‘p COSGR
sin® 0% sin” ¢,

+ cos qﬁj‘[p cos 0;[, sin6g)* + sin? gb;;p sin®6g].  (91)

The above found symmetry of the angle transformation is re-
flected by the invariance of the Jacobian under a simultaneous
sign change of ¢, and d);’;p, ie.,

J(COS an» _¢T[[7; cos 9;[,» _¢:;p)

= J(coSOrp, Prpicosty,, ¢r ), 92)

which will be used later on.

As mentioned in the formal part, we also consider partitions
7 + (nN) and p + (7n) in which the decay plane is spanned
in the former case by the vectors g, and p 7, formally replacing
Q;, by Q5 = (6;,, ¢;,), and in the latter case by g, and g,
with Q7 = (67, ¢7,)-

In order to evaluate the corresponding semiexclusive
observables, one has to integrate over dg, and d cos 6, the
general expression for the differential cross section, which

reads for ¢, = 0, P/ = 0,and P/ =0,
do
dq,d,
dO’()

= W[l + P/ (TO(S)Z cos 2¢, + S sin 2¢,)].
n wp

93)

This then yields in the notation of Ref. [6] (one should note
that ¢’ in Ref. [8] is related to ¢, by ¢, = ¢’ — 7/2)

do  doy I
de,des,  d, d¢;;p{1 P/[I°(¢},) cos 29,
+ I (¢} ,) sin 29, |}, 04)

PHYSICAL REVIEW C 83, 015503 (2011)

where the linear beam asymmetries /¢ and /° are determined
by the coefficients S5 and 7. in Eq. (93):

max

d n
—0* = —/dcosO;p/ quq
d(,bn d¢ﬂp q'r7nin

[
X T()((;F) (qn’ 977; e;rkp’ ¢;p)

max

q
= —/dcose;:p/ ' q,zldqn
q;"i“

(G

d(ﬁ,] dO’O
n d¢;;p

1@,

X TOO (qu’ 9'7; 9;17, ¢;‘Frp)’ (95)
d ™ do, d
IJ(¢;p)—G = —/dcosejp/ q, dqy %y doo
d¢’7 d¢7>";[7 q,‘}‘i" d¢7>";[7

!
X S(())(k)) (q’l’ 0'7; 9:;19’ ¢;p)

max

4
= —/dcosejp/ _7 q,qu,,
gmin

X 030 (@, 003030 B3,). (96)
Using Egs. (45), (55), and (56), one can easily show that
I°(¢k p) and I°(¢2 p) are, respectively, even and odd functions
of the angle q&j;p, ie.,

I(—¢2,) = 16%,),  I'(=¢%,) = —I'$L,). (97

Indeed, from the symmetry relation (45) with ¢, = 0 and thus
®pqg = $zp and the definitions (55) and (56) follows

‘C(I)()(an 9179 97‘[[7’ _¢7rp) = TéQ(an 9117 eﬂps ¢7rp)s (98)

a(l)o(q,,, Oy, Oxp, —Pmp) = _Uéo(qnv Oy, Onp, Pxp).  (99)

Furthermore, from Eq. (88) and the invariance in Eq. (92) of
the Jacobian, one finds

)l *
7'—()0 (quv 97]5 97-[’77 _¢;P)

= 200(@y> O Orpr —Brp)|J (COS O, =3 cOs O3, =3 )|

= T(l)()(qna Gm 97[])5 ¢7rp)|J(COS 97[[)5 ¢er; Ccos 9;;[” ¢;p)|

(%)l

= Too @y, Oy Oz 7)), (100)

[
O'(EZ;) (Qn’ 0777 6;:];’ _(b;p)

=000(@n: On» Opr —Pp)| T (COS Orp, —rps cOS O3, — @7 )|
= - U(é()(‘]na 97}7 Oﬂpa ¢np)|J(COS 9:1177 ¢:rp; cos 9;[;, ¢:;p)|

= — o4 (qy. 0. 01 B%,)- (101)

From these relations the noted symmetries of Eq. (97)
follow directly with the help of the definitions in
Egs. (95) and (96).

In Figs. 6 and 7 we compare our results with the data. In
view of the fact that the data were not included in the fit of the
model parameters, the agreement is reasonable. Already the
single D33 model [including only D33(1700) and D33(1940)]
reproduces the experimentally observed shape and magnitude
of the observables, so that admixtures of other terms leads
to relatively small corrections. Our results are in general
agreement with those obtained in Ref. [24], except, maybe,
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(a) W=1706£64 MeV (b) W=1834+64 MeV
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FIG. 6. The beam asymmetry /¢ calculated for two total c.m.
energies W. The data are from Ref. [8] (only the statistical errors are
shown). The upper two panels (a) and (b) refer to an active proton,
the two middle panels (c) and (d) refer to an active eta, and the two
lower panels (e) and (f) refer to an active pion as function of the
angle between the corresponding reaction plane and decay planes as
counted from the reaction plane (see Fig. 5). Notation of the curves
as in Fig. 3.

I, for which the model [24] predicts vanishingly small values
(see Fig. 4 of the cited paper).

At the end of this section we will briefly return to circularly
polarized photons. Without target polarization, one has as
a semiexclusive cross section for the same experimental
conditions as above,

do _ dU()
d¢,d¢;, d¢,do;,
where only one beam asymmetry appears. In Ref. [6] this

circular photon asymmetry was introduced with the notation
1°ie.,

(1+ PYT"), (102)

& TO(S‘)“((p* )
d¢, ddy, P
_ doy I®(¢* )= ldo’Jr —do~
de, do;, TP 2 d¢,do;,

max

/ dcos 6}, / g2 dqy Ty (qy. 00107, 9%,). (103)
gy
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FIG. 7. Same as in Fig. 6 for the beam asymmetry /°.

where do® denotes the cross section corresponding to the
photon beam with a helicity P/ = A, = %1, respectively.
Furthermore, as in Ref. [9], instead of /©, we will consider
an observable whose definition slightly differs from Eq. (103),
namely,

27 do we mdot —do”
o dp,dei, © o de,der,

with o being the unpolarized total cross section. According

to the definitions in Egs. (52) and (53), and the symmetry

property in Eq. (44), W¢is an odd function of the argument
= and therefore may be expanded into a sine series

We(gs,) = . (104)

WL, =Y Aysinngy,. (105)

For further analyses it is convenient to have an analytic
expression for W¢(¢*) of Eq. (104), and we neglect for
simplicity the small background. Furthermore, as already
noted, in our energy region the reaction seems to be dominated
by the D33 wave accompanied by relatively small admixtures
of resonance states in other waves, in our case, P33, P31, and
F3s. The latter contribute mainly as long as the corresponding
amplitudes can interfere with that coming from the Ds;3
excitation. In this connection, we will retain in further relations
only those terms that are linear in the “weak’ amplitudes. Then
the integrand in Eq. (85), calculated up to the first order in 1,
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FIG. 8. Coefficients A, (n = 1, 2, 3) of the sine expansion (105). Notations as in Fig. 3. The data are from Ref. [9].

tP3 and 175, reads
(e |, D3 |2 *Dy3 Py *D33 P33 *D33  F3s
Too = |tmf)» +2Re {tmf)» tlan + tmfk tmjc)» + tmfA tmfk}

— (b= =) (106)

Using Eqgs. (76)—(78) in (106), one obtains for the asymmetry
in Eq. (104)

WE(¢%,) = Arsing, + Aasin 297, (107)

where the coefficients A; and A, are expressed in terms of
resonance parameters and are given in Appendix C. Of key
importance is the fact that the first term in (107) is almost
exclusively determined by the D33 wave. The contributions
of other waves into A; are quadratic in the corresponding
amplitudes and may therefore be neglected. As a result,
the “weak” resonances enter only into the second term of
Eq. (107), which is owing to an interference of the amplitudes
tP, tP53 and ¢t with the dominant +P%. In this respect, the
sin 2¢; , admixture in the asymmetry W€(¢; ,) may be viewed

as a signature of positive parity states in 777 photoproduction.

In Fig. 8 we compare our calculation for A,, n = 1,2, 3,
with the results obtained from the measurements of Ref. [9].
As one can see, the single D33 resonance model reproduces
rather well the coefficient A; in the whole energy interval.
As expected, addition of other resonances does not visibly
change its value, because, as already noted, the corresponding
contributions are of second order in the “small” amplitudes.
For A, the agreement is worse. In particular, the model gives
a wrong sign of this coefficient. It is also worth noting that
A has a rather small value at w, < 1.3 GeV. Unfortunately,
the data do not allow us to find the reason for this fact,
whether itis a consequence of a general smallness of individual
contributions, or whether it is caused by an accidental
cancelation between different terms. The last coefficient Aj
is comparable with zero, which is in line with our discussion
above as well as with the model predictions. In the general
case, the term with sin 3¢} » would be owing to an interference
of D33 with negative parity resonances such as S3;, Dss, etc. In
this respect, its smallness may be considered as an indication
of an insignificant role of these states in this reaction.

VI. CONCLUSION

In this work we have derived formal expressions for the
differential cross section and the recoil polarization of 77

photoproduction on the nucleon, including various polar-
ization asymmetries with respect to polarized photons and
nucleons.

A general analysis allowing the determination of the moduli
and relative phases of the four independent photoproduction
amplitudes requires a complete set of polarization experi-
ments, which for photoproduction of two pseudoscalar mesons
is discussed, e.g., in Ref. [6]. However, in the w7 case, owing
to the assumed dominance of the D33 wave, the information
on bilinear combinations of the amplitudes may require much
smaller parameters. The situation is similar to that existing in
n photoproduction, which is known to be dominated by the
S11 wave in a wide energy region. Making use of this fact has
allowed, e.g., an almost model-independent extraction of the
parameters of the resonance D;3(1520) in a much cleaner way,
than in 7 photoproduction, where it overlaps with a multitude
of other resonance states.

As noted above, according to the analyses of Refs. [1]
and [18], in the energy region below w, = 1.4 GeV, the
main contribution beyond the Dj33 resonance should come
from the positive parity states P33, P31, and F3s, which reveal
themselves through their interference with the dominant D33
amplitude. Our results show that the corresponding ““‘small”
amplitudes may be identified, e.g., through their contribution to
the second Fourier coefficient A, in the sine series for W¢(¢2 p)
in Eq. (105).

It is also important to note that the D33 resonance decays
predominantly into an s-wave nA state. As a result, in the
single D33 model (only the D33 wave is included into the
amplitude) most of the polarization observables vanish. There-
fore, the results of polarization measurements are expected to
be sensitive to even small admixtures of “weak’ resonances.

A comprehensive program for single- and double-
polarization measurements of the reaction yp — 7%yp is
planned for the near future at MAMI and ELSA. The
information obtained by these new experiments will provide
stringent constraints on the quantum numbers of the resonance
states entering the reaction amplitude.
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POLARIZATION OBSERVABLES IN 7% ...
APPENDIX A: SEMIEXCLUSIVE DIFFERENTIAL
CROSS SECTION j (7, p)np

To derive the general expression for the semiexclusive cross
section, we first introduce the quantities

PHYSICAL REVIEW C 83, 015503 (2011)

WIM(CIr]’Q ) - /dan wlM(qU» 97]1 '97rp7 ¢pq)— _f/dgnp C(Qns '9;17 an)Z( 1)——m,

1 1
X (2 2
m. —m;
Vii(@ns 00) = Viv(qy, 6,) £ vM(q,,,e)
with

) Z tm/lm (qn, 91‘[[7’ ¢pq)tm,~—lm[(%;a 91]» 91‘[[7’ ¢pq)a

mm

(AL)

(A2)

T
V;M(Qn’ 0 ) - fdan UIILM(Qna Qna an’ ¢pq) = T/dgzﬂp C(‘Zr]v 97]’ an)

1
D ICD ]

m; Iﬂ

Using now the property (44), one finds with the help of

2 2
/(; d¢np f(_¢pq) = /(; d¢np f(¢pq) (A4)

for a periodic function f(¢,, +27) = f(¢,,) (please note
Opq = Gxp — ¢y), the relation

Vf}\/}(qnv 971) = /er{pv (qnv 977» ans ¢pq)

— -1y / A9 V)11 O O — )’
= (—=D'V}y(qy. 6", (A5)
and thus
VIjA:/I(qU’ 0y = VllM(q'?’ 0y) £ (=Df VIlM(q'N 6y)".

Correspondingly, using (45), one obtains

(AO6)

WIM(Qm Qn)* = (_1)1 / dan w}M(Qn» 97]’ an’ _¢pq)

= (=) Win(gy, 6y). (A7)

From the two foregoing equations, we can conclude that V',
and Wy, are real for / = 0 and imaginary for / = 1, whereas
Ve 1s imaginary for I = 0 and real for I = 1. Therefore,
according to (53)—(56), the following integrated asymmetries
vanish:

/dQ @ _0 f ae€{0,/l} and I =1, (A8)
O =Y M ey and T=0 "

/dQ “ _0 f ae{0,/l} and I =0, (A9)
O = 0N ehey and T=1 "

Instead of using these results for deriving from (57) the
threefold semiexclusive differential cross section, we prefer

) Z g (D> Ons Ops Bpg Vi gm; (qns O Oy Bpg)-

(A3)

I
to start from the expression in (51), and obtain

>erly !
1=0,1 M=0 + 8
x Re [eMP=(VE, + PY V)]

Toddy = T gy 0
n

1
+P > d,’v,o(es)Re(ei‘/fMW,M)}. (A10)

M=—I

This expression can be simplified using the fact that i%' W,

in VIJ;,I, and i'~%n Vs are real according to (A6) and (A7).

The latter two quantities can be written as

iV, =2Re (i'V},,), (Al1)

'V, =2Re (i) = —2Im (i7" V).
(Al12)

Now using

Re (el'M¢m VI+ ) =Re [ei(M¢nx_5ll 77/2)i511 Vf;fl]
= 2Re (i*'V})) cos(M,,s — 871 7/2),
(A13)

A 1
Re (eMP V) = Re [7e
l

i(M¢ns+dn 7T/2)l'1—511 VIM:|

= —2Im (i °"'V},,) sin(M s + 871 7/2),
(A14)
Re (eiT//M Wim) = Re [ei(llfM*fSn 7/2) ;8 Winl

= i Wy cos(Yy — 811 7/2), (A15)

we find as the final form for the threefold semiexclusive
differential cross section (60).
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APPENDIX B: THE RECOIL POLARIZATION

For the recoil polarization, we have to evaluate according
to (24) the quantities Bﬂil, of (25). From (39) we obtain for
M =0,1,

/ I
(=¥ Mo,y 11
B = s s 2 PP 20 M Prdi @)
2(1 + duro) 1=0,1  M=—I
~l+ ~ 1+ ~l+ ~ 1t
X [vM’;IM T Vyiau t Pcy(vM’;IM - vM’;IM)
+ P/ (w}wi';lMeizi% + w&lﬁM‘fzi(pw)]’ (BI)
where for convenience we have defined
~ e~k " Iz
v/wM’;IM = v/wlM’;IM + U/wl—M’;IM'
One should note that

V/Whyy =2v/wiyy and T/@h,, = 0.

(B2)

(B3)

These quantities obey the obvious property
~ [ ~pE IR S V2eS
v/w_M,;IM = :l:v/wM,;,M.

Then one obtains as a final expression for the Cartesian
nucleon recoil polarization components as defined in (24),
including beam and target polarization contributions,

do
Py
dq, dQzp

(B4)

1

= > pf( > a0 1. 4y cOs (Mbys)

1=0,1 M=0
+ Gg;IM sin (M ¢ys) + Pcy [T;;IM cos (M)

I
0l sin (M@ PT D dig(0:)(thu cos Yiu
M=-—1I

+0, .y sin W)), (B3)

where the various beam, target, and beam-target asymmetries
are given by

1 ) )
0 ~l;— ~1—
T/0. vy = F—=———Re/Im (v, + V1)
/ /yiIM ﬁ(1+5Mo) ( 1;,IM 1,1M)
(B6)
c 1 ~1;— ~—1;—
T/08 um = ;ERe/Im(ul;,M — D ) (B7)
1 ~Te
I/U,i/y;IM = :FﬁRe/Im (wL’,M). (B8)
0 ~1; ~—1;
T/00 = 20+ 530) SMO)Re/Im (vO;I+M + vo;,;})
= ! Re/Im (v1 + vjy ) B9)
1 + (SMO 10;IM 10;1M )
t/0y = sRe/Im (T)’(l);;fM - ?50_},;,’)
= Re/Im (v{4.131 — Viowru)- (B10)
T/Uzl,;IM = %Re/lm (wé;rM) = Re/Im (in;IM)’
(B11)

where we have used (B3) for P,.
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APPENDIX C: THE EXPANSION COEFFICIENTS

The first two coefficients in the Fourier expansion of W¢
in Eq. (105) may be derived from the general expressions in
Egs. (76), (77), and (78). Using the actual resonance quantum
numbers, one obtains after straightforward manipulations

T b2 L D2 e
Al = - |:(A3/32) + g(Al/z) ]/Im (CZBCD}})
x sin? 0x,d0y, dwy, (ChH

T
Ay = _; (FD33P31 + FD33P33 + FD33F35)' (C2)

The individual terms on the right-hand side of Eq. (C2) read

4 Dy ,p (1) ()
FD33P31 = _3\/3 A1/323Al;12/1m (CD336‘1;731 )

x sin’ 07, do%, do,, (C3)

8 Dy 4 P Dy 4 P M) _(1A)
Fpypy = —3\/B(A3/323A3/3% - A1/323A1/3§)/Im C>Lk)3301?33
2 4@ N 2 k() (N7
+\/;(ch3 Clg; pﬂp - CD33 C;’; X”q”p”P)
. 2
x sin~ 67, doy dw,, (C4)
FDssts
1 Dy 4 F: Dy 4 F
VT (VOAT3 AL + AP AL)
*(1) (nA) *(2) (TN*) 2
x /Im[CDsscF35 _2(CD33 CF35 p”P
1) (rN* .
o e pn,,)i| sin? 0, d0}, dew,,  (C5)

where X, = m;/(M, + my). In the expressions above, ﬁ”p
is, as previously, the relative 7 p momentum. The factors cgs‘)
a € {nA, w N*} appear in the general ansatz for the resonance
amplitudes in Eq. (76). For convenience we have introduced in
Egs. (C3)—(C5) the following notations for the combinations

of the coefficients c(g) :
33

) (nA) I’c(nN*) @

n (TN*)
CDi; = Dy + q Dy B Xnc :
e

D3z ™ 7™ D33

(Co)
T
APPENDIX D: THE T-MATRIX FOR AN ACTIVE PROTON

For an active proton, the partial-wave decomposition of the
final state reads
- ~
( )< Z lnn DQ’,UnM(d)m]y _07'(]’)’ _¢7rn)

anMay

R 1
QHnlzﬁ
L

X (_)<Q7mlm7mnn|v

~ 1
Z Ip <lp05mf |mef)

pJpmp

(D1

R 1
O(ppmy| = \/T_rr
!

’

. _ 1 .
x D’]'ff»mp(d’p’ =0, _¢I’)( )<pp (lp§> Jpmp
(D2)
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where again my, and m, refer to the photon momentum k
as the quantization axis. Then we follow the same steps as in
Egs. (10)—(14). With the help of the multipole decomposition
and the Wigner-Eckart theorem, one obtains

_ 1\ . 1
( )<517rn lmymm,;Pp (lp§> Jpmp Eml>

= Z(_l)lnn*jﬂr]f lnn jp J J L %
Myy My —My ) \—M; n m;

JM,;

nL
OM

. ury
X Gy Ppi Uy Ups)jplJ 11O ”5 , (D3)

with the selectionrule m, + my, = M; = pu + m;. Rewriting
the angular dependence,

ip lﬂv
D1£1/,m,,(¢pa _Qp, —¢p)Do_mm(¢nn, _enn’ _¢7rr])

J Iz [ —
— dmpf,m,,(_ep)do,n ,,(_Qﬂﬁ)el[(mp mf)¢])+m7m¢7m]’ (D4)

and rearranging
(mp - mf)¢p + mnn¢nn = mﬂn¢pq +(u+m; — mf) ¢p
(D5)

with ¢,, = ¢, — ¢, one finds that the dependence on ¢, can
be separated, i.e.,

Tmf,um,'(va an) — ei(ﬂ«-&-ln;—m;»)d’htmfﬂmi(Qp’ 97”]’ ¢pq) ,
(D6)
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where the small ¢ matrix depends only on 6,, 6;,, and the
relative azimuthal angle ¢, .

The explicit form for the ¢ matrix in the case of an active
proton then reads

D pm; Oy Ops Bpg)
1 PSS
= —— > iLLT T, j ey
2V2m Ligyianly jpm I M,

A=t 4m—1,—j lP % Jp
X(—l) T2 F=tr—Jp 0 _
mpy mpy

Lew — Jp J J L 3
—M; wu m

1\ . ul 1
XA\ PanPp> lrn] lpz Jp Jo ”5

Ly
X doﬁmm

My, m, —M;

(O )il i, (—O,)e 101 (D7)

Parity transformation leads to the following property of the
reduced matrix element:

(=D s [ben (Lep ) Jep] TNOT#EN1E)

= (PapPpi [lxn (lxp3) Jap] TNO*E3) (D8)

which in turn
Eq. (15).

gives the symmetry property of
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