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Chiral theories with spontaneous symmetry breaking such as the Nambu–Jona-Lasinio (NJL) model lead to
the existence of a scalar mode. We present in a detailed manner how the corresponding low-momentum effective
Lagrangian involving the scalar field can be constructed starting from the NJL model. We discuss the relevance
of the scalar mode for the problem of nuclear binding and saturation. We show that it depends on the nucleon
mass origin with two extreme cases. If this origin is entirely due to confinement, the coupling of this mode to the
nucleons vanishes, making it irrelevant for the nuclear binding problem. If instead it is entirely due to spontaneous
symmetry breaking, it couples to the nucleons but nuclear matter collapses. It is only in the case of a mixed origin
with spontaneous breaking that nuclear matter can be stable and reach saturation. We describe models of nucleon
structure where this balance is achieved. We also show how chiral constraints and confinement modify the QCD
sum rules for mass evolution in nuclear matter.
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I. INTRODUCTION

The relation between the fundamental properties of low-
energy QCD, namely, chiral symmetry and confinement, and
the nuclear many-body problem is one of the most challenging
aspects of present-day nuclear physics. One question is how
the interplay between chiral symmetry and confinement in the
nucleon structure manifests itself in the nuclear many-body
problem. In a set of recent papers [1–3], we have associated the
mean-field nuclear attraction with the in-medium modification
of a (chiral invariant) background scalar field which reflects
part of the evolution of the chiral quark condensate. In this
framework the nuclear medium can be seen as a shifted QCD
vacuum. Nuclear stability is ensured with the phenomenolog-
ical incorporation of the nucleon response to this scalar field.
This response depends on the quark confinement mechanism
inside the nucleon. This framework has been implemented
in nuclear matter calculation at the Hartree level [1]. In a
subsequent work [2], we also incorporated nonrelativistically
the pion loop correlation energy. A full relativistic Hartree-
Fock (RHF) calculation was then done in Ref. [3], allowing us
to reproduce also the asymmetry properties of nuclear matter.

The aim of this paper is to discuss the foundations of
this picture and the nature of this scalar background field.
Although the concept of a scalar field has been widely used
for nuclear matter studies [4], its precise origin or meaning is
still a controversial subject. The problem is that there is no
sharp scalar resonance which would lead to a simple scalar
particle exchange. In our approach instead we stress the chiral
aspect of the problem. As soon as we start from a model which
gives a correct description of chiral symmetry breaking in the
QCD vacuum such as the Nambu–Jona-Lasinio model (NJL),
the emergence of a scalar field linked to the quark condensate
cannot be avoided. This is by construction a low-momentum

concept which does not imply the existence of a sharp scalar
meson if the effect of confinement is taken into account.
Indeed it has been demonstrated by Celenza et al. [5,6] that
the inclusion of a confining interaction on top of the NJL
model pushes the qq̄ scalar state, located originally at twice the
constituent quark mass, well above 1 GeV. As for the f0(600),
it appears as a broad ππ resonance which has no direct
relation with the scalar field. The explicit construction of the
scalar field can be done using a bosonization technique based
on a derivative expansion valid at low (spacelike) momenta.
The corresponding “scalar mass,” which is around twice the
constituent quark mass, is in a fact a low-momentum parameter
related to the inverse of the vacuum scalar susceptibility. We
recall for completeness that, according to Refs. [5,6], the
confining interaction has little influence on the low-momentum
parameters entering the effective Lagrangian.

A priori, the range of this mass and the magnitude of the
scalar coupling to the nucleon make it relevant for nuclear
physics. The real question for this relevance is intimately
related to the problem of the structure of the nucleon and
the origin of its mass. The respective roles of spontaneous
symmetry breaking and confinement in the generation of this
mass are indeed crucial. Confinement has little effect on the
low-momentum parameters, but it leads to the concept of
a nucleonic response to the scalar field, as was originally
introduced by Guichon [7]. Without it (i.e., in the pure NJL
model), nuclear matter would not be stable and would collapse
[8] due to attractive three-body forces (tadpole diagram). On
the other hand, if the nucleon mass were entirely due to
confinement, as in the MIT bag model, the background scalar
field of the NJL model would be irrelevant in nuclear physics,
since its coupling to the nucleon would vanish. The reason is
very simple: the quarks inside the bag, a bubble of perturbative
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vacuum, do not feel the presence of the surrounding scalar
field. Said differently, the constituent quarks to which this
scalar field couples are in this case absent in the nucleon. It is
likely that the nucleon mass has a mixed origin, in part from
chiral symmetry breaking and in part from confinement. In
this case, the nucleon mass in the nuclear medium can feel the
presence of the scalar field of the NJL model. At the same time,
it reacts against this field, and it is possible to stabilize nuclear
matter. Nuclear saturation may then result from a delicate
balance between the influence of chiral symmetry breaking
and confinement in nucleon structure. It is clear, however, that
the importance of the role played by the background scalar
field in nuclear binding and saturation should not be left to
prejudice and beliefs but to facts which may help elucidate
this role.

This is among the purposes of this article. Some questions
to be answered are, If the scalar field is an actor in the nuclear
binding and saturation problem, is this role quantitatively
compatible with nuclear phenomenology? What information
do we have on the role played by confinement? Is it compatible
with acceptable models of the nucleon structure? The last
question is a motivation for the second part of this work, in
which we propose models of the nucleon where confinement
and chiral symmetry breaking contribute roughly equally to
the mass. The influence of the spontaneous breaking of chiral
symmetry is large enough for the background scalar field to
act as a source of nuclear attraction. But the confining aspect
is sufficient to stabilize nuclear matter.

Our article is organized as follows. Section II is devoted
to the Nambu–Jona-Lasinio model. After a brief reminder
of the basic properties of the model, we derive from it
an effective Lagrangian which is valid for low (spacelike)
momenta relevant to nuclear physics studies. We first use
a sharp momentum cutoff, and in a final step for practical
calculations we use a delocalized version. We conclude that
section by some general comments concerning in particular
the evolution of the nucleon mass and quark condensate when
confinement effects at the level of the nucleon structure are
incorporated. In Sec. III, based on a simple quark-diquark
string model, we discuss how the interplay between chiral
symmetry breaking and confinement in the nucleon structure
influences nuclear matter binding properties. We also discuss
the influence of the modeling of the confinement mechanism
inside the nucleon.

II. SCALAR BACKGROUND FIELD FROM
THE NAMBU–JONA-LASINIO MODEL

A. Standard NJL model

We first introduce the NJL model in the light quark sector
whose original aim is to describe the low-mass mesons: the π ,
σ , ρ, a1, and ω mesons. The Lagrangian is

L = ψ̄(i γ µ∂µ − m) ψ + G1

2
[(ψ̄ψ)2 + (ψ̄ iγ5 �τ ψ)2]

− G2

2
[(ψ̄ γ µ�τ ψ)2 + (ψ̄ γ µγ5 �τ ψ)2 + (ψ̄ γ µ ψ)2].

(1)

Using path integral techniques it can be equivalently written
in a semibosonized form

L = ψ̄[i γ µ∂µ − m − 	 − i P γ 5 − γ µ(Ṽµ + γ5 Ãµ)]ψ

− 1

4 G1
trf (	2 + P 2) + 1

4 G2
trf (Ṽ µṼµ + ÃµÃµ).

(2)

Here ψ represents an isodoublet of quark fields, 	 is a scalar-
isoscalar field, and the matrix P = �τ · �P ≡ τjPj describes a
pseudoscalar isovector field. The matrix Ṽ µ = 
̃µ + τj Ṽ

µ

j

contains an isoscalar (
̃) and an isovector (Ṽj ) vector field,
and Ãµ = τj · Ã

µ

j is an isovector axial-vector field. The current
quark mass is m, and G1 and G2 are two (positive) coupling
constants. �P is the chiral partner of the 	, Ãj is the chiral
partner of Ṽj , and in the limit of vanishing m (chiral limit) this
Lagrangian is chiral invariant. Coupling to left (Lµ) and right
(Rµ) electroweak currents is included through the replacement

Ṽµ + γ5 Ãµ → Ṽµ + γ5Ãµ + Vµ + γ5Aµ

with Vµ = Rµ + Lµ

2
, Aµ = Rµ − Lµ

2
.

In the mean field approximation, the constituent quark mass
M0 is the solution of the gap equation

M0 = m + 4 Nc Nf G1 M0 I1(M0)
(3)

with I1 =
∫

i d4k

(2 π )4

1

k2 − M2
0

=
∫ �

0

d3k

(2 π )3

1

2 Ek

,

where Nc = 3 and Nf = 2 are the number of colors and

flavors, and Ek =
√

k2 + M2
0 . The quark condensate (per

flavor) is 〈q̄q〉 = − 4 Nc M0 I1. The second form of the I1

integral has been obtained through the introduction of a sharp
three-momentum cutoff �. This sharp noncovariant cutoff is
first taken for simplicity. We will use later a delocalized version
of the NJL which corresponds to a softer cutoff procedure. The
mesons can be generated as collective qq̄ modes either by ap-
plying a standard random-phase approximation to the original
Lagrangian or by performing a second-order expansion in the
fluctuating fields of the bosonized effective action. We list here
some results, and for that purpose we introduce the integral

I (ω) ≡ 2NcNf I2(ω)

= 2Nc Nf

∫ �

0

d3k

(2π )3

1

Ek

(
4E2

k − ω2
) . (4)

The qq̄ scattering amplitude at zero c.m. momentum,M(π)(ω),
in the pion channel is obtained from the polarization bubble
�̃0

PS(ω) in the pseudoscalar channel incorporating the π − a1

mixing:

M(π)(ω) = G1

1 − G1 �̃0
PS(ω)

≡ 1/Ĩ (ω)

ω2 − M2
π (ω)

(5)
with M2

π (ω) = m

G1M0 Ĩ (ω)
.

The difference between Ĩ (ω) = I (ω)/[1 + 4 M2
0 G2 I (ω)] and

I (ω) comes from the mixing effect. From this result, we deduce
the physical pion mass, the pion-quark coupling constant, and
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the pion decay constant:

m2
π = M2

π (mπ ), g2
πqq = rπ

Ĩ (mπ )
, f 2

π = M2
0 Ĩ (mπ ) rπ .

(6)

Here the factor rπ = [1 + m2
π

Ĩ (mπ )
( ∂Ĩ
∂ω2 )]−1, which in practice is

very close to unity, is the residue at the pion pole.

B. Effective theory for low-momentum nuclear physics

The meson spectrum (scalar and vector mesons) can in
principle be obtained in the previous scheme. This approach
is notoriously unsatisfactory due to the lack of confinement:
in particular, unphysical decay channels of vector mesons in
qq̄ pairs may appear; but, as discussed in the Introduction,
we aim to derive an effective low-momentum theory (i.e., for
low spacelike momenta relevant in nuclear physics) and not
to discuss the on-shell properties of scalar and vector mesons,
in particular their physical masses. Hence our resulting mass
parameters for scalar and vector mesons will not be the on-shell
masses but simply mass parameters associated with the inverse
of the corresponding correlators taken at zero momentum.
As emphasized by Celenza et al. [5,6], confinement, which
is needed to prevent unphysical decays of mesons, plays a
minor role for the low-momentum fields (in particular the
scalar one) relevant in nuclear physics. We now describe the
technical steps needed to establish the form of the effective
low-momentum Lagrangian.

1. Effective Lagrangian from NJL model

The aim is to establish a low-momentum Lagrangian in
the meson sector so as to generate the dynamics of the scalar
field. Technically this can be done by integrating out quarks
in the Dirac sea using a path integral formalism. The physical
meaning is simply a projection of qq̄ vacuum fluctuations onto
mesonic degrees of freedom.

In the spirit of our previous works [1–3,9,10], we first
go from the Cartesian representation (	,P ) to a polar
representation (S,π ) by making the change of variables:

m + 	 + iP = S U with U ≡ ξ 2 = ei �τ · �π . (7)

The motivation is that the description of nuclear matter
attraction is more suited as explained in particular in Ref. [10].
It is convenient to introduce a new quark field q defined by

q = ξ5ψ, q̄ = ψ̄ξ5, with ξ5 = ei �τ · �πγ5/2, (8)

and new vector and axial-vector fields according to

V µ = ξ
Ṽ µ + Ãµ

2
ξ † + ξ † Ṽ µ − Ãµ

2
ξ − Vµ

c + Vµ
ξ ,

(9)

Aµ = ξ
Ṽ µ + Ãµ

2
ξ † − ξ † Ṽ µ − Ãµ

2
ξ − Aµ

c + Aµ
ξ ,

with

Vµ
c = i

2
(ξ∂µξ † + ξ †∂µξ ), Aµ

c = i

2
(ξ∂µξ † − ξ †∂µξ ),

(10)
Vµ

ξ = 1
2 (ξRµξ † + ξ †Lµξ ), Aµ

ξ = 1
2 (ξRµξ † − ξ †Lµξ ).

There is in principle a Jacobian associated with the above
Weinberg transformation which is usually taken into account
in the functional integral by introducing ghost fields. This point
is discussed in Ref. [11], but we do not consider it in this paper.
With the new fields defined in Eqs. (7)–(9), the semibosonized
Lagrangian takes the form

L = q̄[i γ µ∂µ − S − γ µ(Vµ + γ5Aµ)]q

− 1

4 G1
trf [S2 − mS (U + U †)]

+ 1

4 G2
trf

[(
V µ + Vµ

c − Vµ
ξ

)2 + (
Aµ + Aµ

c − Aµ
ξ

)2]
.

(11)

The next step is to integrate out the quarks in the Dirac
sea. In that way the kinetic energy term of the mesons
fields will be dynamically generated from the quarks
loops, i.e, from quantum fluctuations. For convenience,
we go from Minkowski space to Euclidean space. Using
standard transformation rules, the corresponding Euclidean
Lagrangian is

LE = q̄Dq with D = iγ E
µ · �µ + S,

(12)
�µ = Pµ − �µ ≡ −i∂µ − (Vµ + γ5Aµ).

The Euclidean partition function is expressed in terms of the
fermion determinant according to

Z = e−SF =
∫

dq dq̄ e−d4xq̄Dq. (13)

Ignoring its imaginary part, the effective action can be written
as

SF = −Tr lnD = − 1
2 Tr ln(DD†)

= − 1
2 Tr ln(�2

+iαµνWµν + S2 − γµDµS), (14)

with

�µ = Pµ − �µ ≡ −i∂µ − (Vµ + γ5Aµ),

DµS = ∂µS + 2iγ5Aµ, (15)

Wµν = ∂µ�ν − ∂ν�µ − i[�µ, �ν].

We perform a derivative expansion valid at low momentum
of the fermion determinant to second order in the derivatives.
The difficulty lies in the fact that we do not make an expansion
around a constant (vacuum expectation value of the scalar
field), but we want to have a formal expansion with the scalar
objet S keeping its field status, so as to include its possible
modification in the nuclear environment. For that purpose, we
use the elegant method proposed by Chan [12]. The starting
point is the following trick which uses translational invariance
in momentum space:

Tr[A(�µ,G(X))] = Tr[eik·XA(�µ,G(X))e−ik·X]

= TrA(�µ + kµ,G(X)), (16)

where A represents any operator depending of the position
operator X and of the generalized momentum �. Hence the
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arbitrary four-momentum k can be averaged:

Tr[A(�µ,G(X))]

= 1

δ(4)(0)

∫
d4k

(2π )4
TrA(�µ + kµ,G(X)). (17)

It follows that the quark determinant can be calculated as

SF = −1

2

1

δ(4)(0)

∫
d4k

(2π )4
Tr[ln(G−1)

+ ln(1 + G�2 + G(2k · � + a))],

with G = (k2 + S2)−1, a = iαµνWµν − γµDµS.

(18)

As pointed out by Chan, the introduction of the momentum
integration does not disturb the full trace operation and
offers the freedom needed for manipulations, such as cyclic
permutations of the operators or integrations by part under
the condition that there is an implicit regularization scheme.
The essential point is that the final form for the action is
entirely expressible in terms of covariant derivatives [�µ,S]
and [�µ,�ν] = Wµν , as it should. Once this is done, the
explicit trace over |x〉 states can be performed, producing
the δ(4)(0) compensating the one coming from the average
procedure. To perform a second-order derivative expansion
corresponds in practice to make a fourth-order expansion in
�µ and second order in a. The result is

SF = −1

2

∫
d4k d4x

(2π )4
trDFC

(
ln(G−1) − 1

2
G2 a2

+ k2 G2 S2 ∂µS∂µS + k2k2

12
WµνWµν

)
, (19)

where the trace operation acts in Dirac, flavor, and color
spaces. The resulting effective action is reducible to a local
Lagrangian. Coming back to Minkowski space but keeping
the momentum k explicitly in Euclidean space, this local
Lagrangian Lmes has the form

Lmes = 1

2
2NcNf I2S (S) ∂µS ∂µS − W (S)

+ mS
4 G1

trf (U + U † − 2) +1

2
2NcNf I2(S)4 �Aµ · �AµS2

+ 1

4 G2
trf

[(
V µ + Vµ

c − Vµ
ξ

)2 + (
Aµ + Aµ

c − Aµ
ξ

)2]
− 1

6
2NcNf I2V (S)(
µν
µν+ �V µν · �Vµν + �Aµν · �Aµν).

(20)

The chiral effective potential W (S) is

W (S) = −2NcNf I0(S) + (S − m)2

2 G1
. (21)

The quantity −I0 (S) represents the vacuum energy density
per degrees of freedom associated with the Dirac sea

I0 (S) =
∫

i d4kE

(2 π )4
ln

(
k2
E + S2

) =
∫ �

0

d3k

(2π )3
Ek(S),

(22)
Ek ≡ Ek(S) =

√
k2 + S2,

where the second form corresponds to the sharp noncovariant
cutoff. The integral I2 (S) is the usual NJL loop integral

I2 (S) =
∫

i d4kE

(2 π )4

1(
k2
E + S2

)2 =
∫ �

0

d3k

(2π )3

1

4E3
k (S)

. (23)

The integrals I2S,V (S) entering the scalar and vector kinetic
energy terms are

I2S = I2 − 2S2I3 + 2S4I4, I2V = I2 + S2I3 − 1
2S

4I4,

I3 (S) =
∫

i d4kE

(2 π )4

1(
k2
E + S2

)3 =
∫ �

0

d3k

(2 π )3

3

16 E5
k (S)

,

(24)

I4 (S) =
∫

i d4kE

(2 π )4

1(
k2
E + S2

)4 =
∫ �

0

d3k

(2 π )3

5

96 E7
k (S)

.

This expression of the Lagrangian shows that our objective of
eliminating the vacuum qq̄ fluctuations in terms of “observ-
able” background fields is realized. Contrary to usual methods,
the integrals I2S,V appearing in the scalar and vector kinetic
energy terms differ from the usual I2 integral. However, the
difference between I2S,V and I2 has no influence on the nuclear
matter calculation, at least in the Hartree approximation, since
the derivative terms play no role. It is also important to
notice that the derivation has been done assuming implicitly
a covariant regularization procedure and may not be strictly
valid for the noncovariant cutoff which will be used in practice.

The mesonlike Lagrangian written above in Eq. (20) has
been obtained by integrating out the fluctuating quark fields
(quarks in the Dirac sea). It remains to enlarge this Lagrangian
to the “classical” quark fields corresponding to the valence
quark sector. Formally this can be done by introducing quark
source terms (ω̄, ω) and splitting the quark field q into
a classical part Q and a fluctuating part η = q − Q. For
convenience, we use again the Euclidean formulation and
introduce the source-dependent partition function:

Z(ω̄,ω) = e−W (ω̄,ω) =
∫

dη dη̄ e−d4x (q̄ D q−q̄ω−ω̄q). (25)

The exact classical quark field is approximated by the one
satisfying the classical equation of motion DQ = ω, and the
terms linear in the fluctuation disappear in the exponent. The
integration of the fluctuation part produces the above quark
determinant, and we obtain for the generating functional

W (ω̄,ω) = −Tr lnD + Q̄D Q − Q̄ω − ω̄Q. (26)

The effective action is obtained by the Legendre transforma-
tion:

�(Q̄,Q) = W (ω̄,ω) + Q̄ω + ω̄Q = −Tr lnD + Q̄ D Q.

(27)

Hence we recover the fermion determinant containing the
meson fields plus a classical piece described by anticommuting
fermions fields that we associate with the non-integrated-out
valence quarks interacting with the meson fields. Coming back
to the Minkowski space, we get in addition to the mesonic
Lagrangian, Lmes, the valence quark effective Lagrangian
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which simply reads

Lval = Q̄[i γ µ∂µ − S − γ µ(Vµ + γ5 Aµ)]Q. (28)

Recall that S is still a field, and its vacuum expectation
value [corresponding to the minimum of W (S)] is the vacuum
constituent quark mass M0, solution of the gap equation (3).
In nuclear matter, its expectation value S̄ is the solution
of an in-medium gap equation modified by the presence of

the nucleonic scalar density. It coincides with the in-medium
modified constituent quark mass M (see the next section). Its
fluctuation enters the scalar exchange Fock term according
to the treatment given in Ref. [3]. In the following, we
will replace in Eq. (20) the scalar field by its expectation
value in all derivatives terms and in the extra mass term,
I2(S) 4 �Aµ · �Aµ S2, for the axial-vector meson. In order to
prepare the identification of canonical modes, we rewrite
(omitting electroweak fields) the mesonic Lagrangian as

Lmes = 1

2
2NcNf I2S(S̄) ∂µS ∂µS − W (S) + mS

4 G1
trf (U + U † − 2) + Ĩ (S̄) S̄2 trf

(
Aµ

c · Ac
µ

)

+ 1

4 G2
[1 + 4 G2 I (S̄) S̄2] trf

(
Aµ + Aµ

c

1 + 4 G2 S̄2 I (S̄)

)2

+ 1

4 G2
trf

(
V µ + Vµ

c

)2 − 1

6
2NcNf I2V (S̄) (
µν
µν + �V µν · �Vµν + �Aµν · �Aµν), (29)

where we have introduced the quantities

I (S̄) = 2NcNf I2(S̄),

Ĩ (S̄) ≡ 2NcNf Ĩ2(S̄) = I (S̄)

1 + 4 G2 S̄2 I (S̄)
.

We now redefine the axial-vector meson field in order to
eliminate the π -a1 mixing. For this purpose, we introduce
the canonical axial-vector field aµ defined according to

Aµ + Aµ
c

1 + 4 G2 S̄2 I (S̄)
= gV aµ,

(30)

with g2
V = 3/2

2NcNf I2V (S̄)
,

where gV is the quark-vector coupling constant. Similarly the
canonical vector (ωµ, vµ) and scalar (S) fields are defined as


µ = gV ωµ, V µ = gV vµ,
(31)

S = g0S S, with g2
0S = 1

2NcNf I2S(M0)
.

Here the quark-scalar coupling constant g0S is defined at the
vacuum point. Omitting the ρππ coupling terms, the low-
momentum effective Lagrangian takes the form

Lmes = 1

2

I2S(S̄)

I2S(M0)
∂µS∂µS + W (S = g0SS)

+ mS
4 G1

trf (U + U † − 2) + Ĩ (S̄) S̄2 trf
(
Aµ

c · Ac
µ

)
+ 1

2
M2

V (ωµωµ + �vµ · �vµ) + 1

2
M2

A (�aµ · �aµ)

− 1

4
(ωµνωµν + �vµν · �vµν + �aµν · �aµν). (32)

The vector and axial-vector low-momentum mass parameters
are given by

M2
V = g2

V

G2
,

M2
A

M2
V

= 1 + 4 G2 I (S̄) S̄2. (33)

One defines the canonical pion field, � ≡ �τ · ��, through U =
exp(i�/F ), where the constant F is given by F 2 = Ĩ (M0) M2

0 .
Coming back to the previous form of the Lagrangian [Eq. (20)],
a direct inspection of the coupling of ∂µ� to the axial weak
current allows us to identify the pion decay constant Fπ with
the parameter F . The vacuum pion mass parameter is finally
obtained as

M2
π = m M0

G1 F 2
π

. (34)

In nuclear matter, the explicit S factor in front of the pion
mass term renormalizes the pion mass. As in Ref. [2], we do
not consider this effect. Indeed we know phenomenologically
that the pion mass is almost not modified in nuclear matter,
since the the pion-nucleon isoscalar scattering length is
essentially compatible with zero. Within a chiral approach
beyond this present approach, several terms interfere destruc-
tively to realize the stability of the pion mass in nuclear
matter [13]. As for the (canonical) vacuum scalar mass,
it is

M2
σ = g2

0S

(
∂2W

∂S2

)
S=M0

= I2(M0)

I2S(M0)

[
4 M2

0 +
(

M2
V

M2
A

)
vac

M2
π

]
. (35)

We stress again that the quantities MV ,MA,Mπ, Fπ are not
on-shell constants but low-momentum effective Lagrangian
parameters, i.e., taken at zero momentum. In practice, however,
Mπ and Fπ differ little from the physical pion mass and
pion decay constant. On the contrary, the vector and axial-
vector mass parameters have a priori no reason to coincide
with the physical ω, ρ, and a1 meson masses. We now
develop an alternative approach which relaxes the sharp cutoff
procedure.
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2. Delocalized NJL model

As seen before, when a vector interaction term is added,
the π -a1 mixing has the effect of decreasing the pion decay
constant, and it is not easy with the sharp cutoff to reach
a sufficiently large value for Fπ . This is one motivation for
adopting, for practical phenomenological calculations, another
version of the NJL model with a smooth cutoff function. As
discussed below, there is also physical motivation for such a
smooth regularization associated with nonlocalities.

The nonlocal version of the NJL model is obtained, for any
channel, with the replacement

(ψ̄�jψ)(x) → Jj (x)

=
∫

d4x1 d4x2 Fc(x1 − x) Fc(x − x2) ψ̄(x1)�jψ(x2). (36)

The presence of the form factor automatically provides a regu-
larization procedure. Moreover, such a delocalized Lagrangian
possesses a physical basis in terms of a quark-instanton
interaction [14]. We define the Fourier transform f (p) of the
form factor appearing in the delocalized currents Jj (x),

Fc(x) =
∫

d4p

(2π )4
e−ip·x f (p), (37)

with f (0) = 1 in such a way that Fc satisfies the normalization
condition

∫
d4x Fc(x) = 1. As can be checked, this procedure

maintains the chiral invariance of the interaction. For actual
calculations, we will take the noncovariant version of the
nonlocal NJL model

Fc(x) = δ(t) F (�r), f (p) ≡ f ( �p) =
∫

d3r e−i �p·�r F (�r).

(38)

One practical consequence is that the interaction when written
in momentum space is modified according to

Gjδ
(3)( �p1 + �p2 − �p3 − �p4)

→ Gjδ
(3)( �p1 + �p2 − �p3 − �p4) f ( �p1)f ( �p2)f ( �p3)f ( �p4).

(39)

As it is always implicitly done in NJL (with various cutoff
prescriptions), we also apply the delocalization procedure to
the current quark mass term:

m ψ̄(x)ψ(x) → m

∫
d4x1 d4x2

×Fc(x1 − x) Fc(x − x2) ψ̄(x1)ψ(x2).

It can be checked that the QCD realization of explicit chiral
symmetry breaking is not affected in the sense that the
operator identity [Qi[Qj,H ]] = HχSB is still realized, and
consequently the Gell-mann-Oakes-Renner (GOR) relation
also holds. In the following, we choose a Gaussian for the
form factor

f ( �p) = e
−p2

2 �2 , (40)

where � (possibly related to the inverse of the instanton
size) is the cutoff parameter of the order of 1 GeV. One
advantage of the nonlocal version is the smooth momentum
dependence of the constituent quark mass, in agreement with
lattice calculation. Indeed the gap equation in vacuum is
written as

M( �p) = M0 f 2( �p), with M0 = m − 2 G1 〈q̄q〉,
〈q̄q〉 = −NcNf

∫
d3k

(2π )3
f 2(�k)

M(k)

Ek

, (41)

Ek =
√

k2 + M2(k).

The delocalized version of the semibosonized form of
Eq. (2) is

L(x) = ψ̄(x)i γ µ∂µ ψ(x) −
∫

d4x1d
4x2 ψ̄(x1) Fc(x1 − x)[	 + i P γ 5 + γ µ(Ṽµ + γ5 Ãµ)](x) Fc(x − x2) ψ(x2)

− 1

4 G1
trf ((	 − m)2 + P 2)(x) + 1

4 G2
trf (Ṽ µṼµ + ÃµÃµ)(x) (42)

In the presence of the form factor, we found it more convenient
to perform the quark integration with the original quark field.
Going again in Euclidean space, the Dirac operator Dl is
defined according to

Dl = iγ E
µ · �l

µ + Wl, �l
µ = Pµ − �l

µ,

�l
µ = F̂ (P )(Ṽµ + γ5Ãµ)F̂ (P ), (43)

Wl = F̂ (P )WF̂ (P ), W = 	 + iγ5P ≡ S U5 ≡ Sξ 2
5 ,

where F̂ (P ) is an operator diagonal in momentum space whose
eigenvalues coincide with the form factor f (p). We can see
that the effect of nonlocal coupling is to transform all the field
operators O(X) into Ol(X) = F̂ (P )O(X)F̂ (P ). Inclusion of

electroweak coupling is done by making the replacement of
the type F̂ (P )ÃµF̂ (P ) → F̂ (P )ÃµF̂ (P ) + Aµ.

The Euclidean effective action is

SF = −Tr lnDl = − 1
2 Tr ln(DlDl†)

= − 1
2 Tr ln

(
�l2 + iαµνW

l
µν + WlWl† − γµDl

µW l
)
,

(44)

with

Dl
µW l = ∂µ	l − {

Ãl
µ, P l

}
+ iγ 5

(
∂µP l − [

Ṽ l
µ, P l

] + {
Ãl

µ,	l
})

Wl
µν = ∂µ�l

ν − ∂ν�
l
µ − i

[
�l

µ, �l
ν

]
. (45)
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For the derivative expansion, we again use the momentum
averaging trick. It involves F̂ (k + P ) terms and consequently
terms with derivatives of f (p). Here we take the prescription
of neglecting them. Hence within this approximation all the

fields such as S will be multiplied by the number f 2(k) in
the various momentum integrals. The calculation of the quark
determinant is formally identical to the previous case:

SF = −1

2

∫
d4xd4k

(2π )4
tr[ln(G−1) + ln(1 + G�2 + G(2k · � + al))],

(46)
with G = [k2 + f 2(k)S2]−1, al = iαµνWµν − γµDl

µW l†.

Coming back to Minkowski space, we obtain a new effective Lagrangian. We omit again in its expression ρππ terms and terms
involving couplings of pion and axial-vector fields to the derivatives of the scalar field:

Ll
mes = 1

2
2NcNf I l

2S(S) ∂µS ∂µS − Wl(S) + mS
4 G1

trf (U + U † − 2)

+ 1

2
2Nc trf

[
I l

2(S)S2 ∂µU ∂µU † + 4I l
26(S) ∂µP Ãµ	 + 4I l

28(S) ÃµÃµ	2
]

+ 1

4 G2
trf (Ṽ µṼµ + ÃµÃµ) − 1

6
2NcNf I2V (S) (
̃µν
µν + �̃V µν · �̃V µν + �̃Aµν · �̃Aµν). (47)

The new chiral effective potential Wl(S) is

Wl(S) = −2NcNf I l
0 (S) + (S − m)2

2 G1
. (48)

The quantity −I l
0(S) represents the vacuum energy density

associated with the Dirac sea:

I l
0 =

∫
d4kE

(2 π )4
ln

[
k2
E + f 4(k)S2

] =
∫ ∞

0

d3k

(2 π )3
Ek(S),

(49)
Ek ≡ Ek(S) =

√
k2 + f 4(k)S2,

where the second form corresponds to a noncovariant prescrip-
tion. The various other integrals are

I l
2S = I l

2 − 2S2I l
3 + 2S4I l

4, I l
2V = I l

2 + S2I l
3 − 1

2S
4I l

4,

I l
2 =

∫
d4kE

(2 π )4

f 4(k)[
k2
E + f 4(k)S2

]2 =
∫ ∞

0

d3k

(2 π )3

f 4(k)

4 E3
k (S)

,

I l
3 =

∫
d4kE

(2 π )4

f 4(k)[
k2
E + f 4(k)S2

]
3

=
∫ ∞

0

d3k

(2 π )3

3f 4(k)

16 E5
k (S)

,

I l
4 =

∫
d4kE

(2 π )4

f 4(k)[
k2
E + f 4(k)S2

]4 =
∫ ∞

0

d3k

(2 π )3

5f 4(k)

96 E7
k (S)

,

I l
26 =

∫
d4kE

(2 π )4

f 6(k)[
k2
E + f 4(k)S2

]
2

=
∫ ∞

0

d3k

(2 π )3

f 6(k)

4 E3
k (S)

,

I l
28 =

∫
d4kE

(2 π )4

f 8(k)[
k2
E + f 4(k)S2

]
2

=
∫ ∞

0

d3k

(2 π )3

f 8(k)

4 E3
k (S)

.

(50)

Again the pion-axial-vector mixing has to be eliminated.
Keeping only the relevant terms for nuclear physics purposes,

we obtain the following effective Lagrangian:

Ll
mes = 1

2

I l
2S(S̄)

I l
2S(M0)

∂µS∂µS − W (S = g0SS)

+ 1

4
F 2 M2

π

S̄
M0

trf (U + U † − 2)

+ 1

2F 2
Ĩ (S̄) S̄2 ∂µ ��∂µ ��

+ 1

2
M2

V (ωµωµ + �vµ · �vµ) + 1

2
M2

A (�aµ · �aµ)

− 1

4
(ωµνωµν + �vµν · �vµν + �aµν · �aµν), (51)

where we have introduced the quantities

I l(S̄) = 2NcNf I l
2(S̄), Ĩ l(S̄) = 2NcNf Ĩ l

2(S̄),

Ĩ l(S̄) ≡ 2NcNf Ĩ l
2(S̄) = I l(S̄) − 4G2S̄2 I l2

6 (S̄)

1 + 4 G2 S̄2 I l
8(S̄)

, (52)

F 2 = Ĩ l(M0) M2
0 .

The constant F given above defines the canonical pion field
� through U = exp(�/F ). The canonical vector and axial-
vector fields are defined according to


̃µ = gV ωµ, Ṽ µ = gV vµ,
(53)

Ãµ + 2 G2 S̄2 I l
6(S̄)

1 + 4 G2 S̄2 I l
8(S̄)

∂µ� = gV aµ,

with

g2
V = 3/2

2NcNf I l
2V (S̄)

, M2
V = g2

V

G2
,

(54)
M2

A

M2
V

= 1 + 4 G2 I l
8(S̄) S̄2.

Coming back to the previous form of the Lagrangian [Eq. (47)],
the axial weak current, introduced through the replacement
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f 2(k)Ãµ → f 2(k)Ãµ + Aµ, coupling to the quantity ∂µ�

allows the identification of the pion decay constant parameter
Fπ with the parameter F :

Fπ = I l(M0) M2
0

F
− 2 I l

6(M0) M2
0

F

2G2M
2
0 I l

6(M0)

1 + 4 G2 M2
0 I l

8(M0)
≡ F.

(55)

The pion mass parameter keeps its formal expression

M2
π = m M0

G1 F 2
π

. (56)

As for the scalar field, the rescaling parameter [similar
to Eq. (31)] becomes g2

0S = [2NcNf I l
2S(M0)]−1, and the

corresponding canonical mass parameter is

M2
σ = g2

0S

(
∂2W

∂S2

)
S=M0

= I l
28(M0)

I l
2S(M0)

[
4 M2

0 +
(

Ĩ2

I28

)
vac

M2
π

]
.

(57)

Notice that the results differ from the sharp cutoff case, since
we now have three different integrals, I l

2, I l
26, and I l

28, in place
of one, I2.

We have a priori four parameters: G1,G2,�, and the bare
quark mass m. We use

� = 1 GeV, m = 3.5 MeV, G1 = 7.8 GeV−2,

and we obtain for the vacuum quark mass at zero momentum
and the quark condensate

M0 = 371 MeV ⇒ 〈q̄q〉 = −(286 MeV)3

The G2 parameter constrained to reproduce the vector-
dominance model (VDM) phenomenology is

(G2)VDM = g2
V

M2
V

=
(

2.65

0.770

)2

GeV−2.

With this value, we obtain for the pion parameters,

G2 = (G2)VDM ⇒ Fπ = 91.3 MeV, Mπ = 141.3 MeV.

However, in nuclear matter calculations, we allow for a small
variation of G2:

G2 = 0.78 (G2)VDM ⇒ Fπ = 93.6 MeV, Mπ = 137.8 MeV.

With this set of values, the low-momentum mass parameters
for Mσ defined in Eq. (57) and for other quantities are

Mσ = 923 MeV, MV = 1256 MeV, MA = 1398 MeV.

The numerical value of the vacuum scalar coupling constant
is g0S = 5.55. Notice that the numerical values of these
mass parameters and the associated coupling constants are
significantly altered by the fact that I2S,V differ from I2.
However, the ratios gV /MV and g0S/Mσ = 0.006 MeV−1,
which are the relevant quantities for nuclear matter calculation,
are not sensitive to this effect.

It is interesting to derive the potential of the equivalent
linear σ model. It is obtained through a second-order expansion
in S2 of the Dirac sea energy defined in Eqs. (48) and (49)
around its vacuum expectation value M2

0 . We recover the usual
linear σ potential once we introduce a rescaled “effective”

scalar field (S)eff = (Fπ/M0)S, normalized to Fπ in the
vacuum:

WLσM = 1

4

(
M2

σ

)
eff − M2

π

2F 2
π

[
(S2)eff − F 2

π

(
M2

σ

)
eff − 3M2

π(
M2

σ

)
eff − M2

π

]2

−FπM2
π (S)eff . (58)

This potential has the form of the linear σ model potential
and the parameters, instead of being arbitrary constants, have
been dynamically generated. We remind that our field (S)eff is
a chiral invariant, so as to respect all chiral constraints for the
mass evolution, while the scalar field of the σ model, σ , is not.
The mass associated with this effective scalar field is

(
M2

σ

)
eff =

[
4 M2

0

(
Ĩ2

I28

)
vac

+ M2
π

]
⇒ (Mσ )eff = 659 MeV,

and the corresponding scalar coupling constant is the one of
the quark level linear σ model (g0S)eff = M0/Fπ . Taking the
nucleon as a naive juxtaposition of three constituent quarks,
its mass evolution at low density goes as follows:

M∗
N 
 MN + 3 (g0S)eff [(S)eff − Fπ ].

3. Completion of the model

To prepare the ground for a quark-diquark model of the
nucleon (see next section), we also introduce an interaction
in the quark-quark channel. We limit ourselves to the color 3̄,
scalar-isoscalar diquark channel. The corresponding contribu-
tion to the NJL interaction is

Ldiquark = G̃1

2
(ψ̄c iγ5τ2βa ψ) (ψ̄ iγ5τ2βa ψc), (59)

where βa = √
3/2λa (a = 2, 5, 7) are color matrices, ψc =

iγ2ψ
∗ is the charge conjugate of the quark spinor, and G̃1

is a (positive) coupling constant. It can be generalized to the
delocalized version exactly as for the case of the interaction
in the qq̄ channel. In the presence of the diquark channel, the
bosonization procedure can be also done in the presence of
diquarks using the Nambu-Gorkov formalism. In the simplest
approximation with a constant scalar background field, one
obtains the mass and kinetic energy Lagrangian for the scalar-
isoscalar diquark fields, �a

S :

Ll
diquark = ∂µ�a

S ∂µ�
a†
S − M2

D �a
S �

a†
S . (60)

The diquark mass in a background scalar field S̄ is

M2
D(S̄) = 1

2NcNf G̃1I
l
2(S̄)

− 2I l
1(S̄)

I l
2(S̄)

. (61)

We now come to the valence quark sector of the Lagrangian.
It also has an explicit delocalized form written below:
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Ll
val(x) = �̄(x)i γ µ∂µ �(x)

−
∫

d4x1d
4x2 �̄(x1) Fc(x1 − x)[	 + i P γ 5 + γ µ(Ṽµ + γ5 Ãµ)](x) Fc(x − x2) �(x2)

−
∫

d4x1d
4x2 �̄c(x1) Fc(x1 − x) iγ5τ2βa �

a†
S (x) Fc(x − x2) �(x2)

−
∫

d4x1d
4x2 �̄(x1) Fc(x1 − x) iγ5τ2βa �a

S(x) Fc(x − x2) �c(x2). (62)

The full Lagrangian, Ll
mes + Ll

diquark + Ll
val, can be utilized

to describe the nucleon, generating models from a simple
juxtaposition of constituent quarks to more refined ones such
as chiral solitons (nucleon bound by the chiral fields) or quark-
diquark models including quark exchange diagrams. However,
with these models, nuclear matter still remains unstable. This
is the motivation for the next section, where we introduce on
top of the effective NJL Lagrangian some confining interaction
between quarks or between quark and diquark. If it is done,
the momentum of a valence quark inside the nucleon will be
limited to p ≈ K

1/2
string ≈ �QCD ≈ 200 MeV, which is much

smaller than the scale � ≈ 1 GeV entering the form factor. In
such a case the delocalization effect is essentially not visible,
and one can ignore the effect of the form factor on the valence
quark dynamics. If we again perform the chiral transformation
on quark fields and vector fields, the valence quark sector
Lagrangian used in nucleon structure calculation can be safely
taken as

Lval 
 Q̄[i γ µ∂µ − S − γ µ(Vµ + γ5 Aµ)]Q

− Q̄c iγ5τ2βa �
a†
S Q − Q̄c iγ5τ2βa �a

S Q. (63)

C. Concluding remarks on this section

In the pure NJL picture, at finite baryonic density, the value
of the constituent quark mass, which is the expectation value
of the scalar field S, is modified. It can be obtained self-
consistently from a gap equation modified by the presence of
a Fermi sea. However, in the real world, baryonic matter is
not made of independent constituent quarks but of clustered
objects, the nucleons. These nucleons are embedded in the
scalar background field S̄, and the nuclear medium can be seen
a priori as a shifted vacuum. The nucleon mass will depend
in some way on the scalar background field, and the energy
density of symmetric nuclear matter at the Hartree level reads

E0

V
= ε0 =

∫
4 d3p

(2π )3
�(pF − p)

(√
p2 + M2

N (S̄) − (MN )vac
)

+W (S̄) + 9
G2

2
ρ2. (64)

The expectation value for the scalar field is self-consistently
obtained by minimization of the energy density,

∂ε0

∂S̄
= 0 ⇔ S̄ − m

G1
= −2 〈q̄q〉(S̄) − ∂MN

∂S̄
(S̄) ρN

s (MN (S̄)),

(65)

which constitutes an in-medium modified gap equation. The
connection between the field S, normalized to the quark mass,
and the scalar field s used in our previous work [1–3,9] is
s̄ = (Fπ/M0)(S̄ − M0) and ρN

s (MN (S̄)) is the nucleonic scalar
density. The scalar coupling constant of the nucleon to the
effective scalar field (which is normalized to Fπ in the vacuum)
is

(gS)eff(S̄) = M0

Fπ

(
∂MN

∂S̄

)
,

which depends crucially on nucleon structure. For instance
if the nucleon mass fully originates from confinement (bag
models), ( ∂MN

∂S̄ ) = 0, the scalar field just decouples from the
nucleon, (gS)eff = 0. In this case there is no shift of the vacuum,
and the scalar field is thus an irrelevant concept for nuclear
matter studies. On the other extreme if the nucleon mass
fully originates from chiral symmetry breaking (naive additive
NJL, chiral soliton), then the nucleon mass in the medium is
affected by the scalar field associated with the dropping of
the chiral condensate. However, in this case, attractive tadpole
destroys stability. Only in the case where the nucleon mass
has a mixed origin can the scalar background field contribute
to the nuclear attraction without destroying the stability and
saturation properties. In that case, by rearranging its quark
structure linked to the confinement mechanism, the nucleon
reacts against the scalar field, generating effectively repulsive
three-body forces. The origin of this repulsion lies in the
decrease of the scalar coupling constant of the nucleon. In
short, a possibly important part of the saturation mechanism
is associated with the progressive decoupling of the nucleon
from the scalar field associated with the dropping of the chiral
condensate.

In the next section, we will introduce nucleon models
capable of achieving the balance between large enough
attraction and sufficient reaction. Of course, one falls here
in the modeling uncertainties. However, we show below that a
stringent constraint exists for the numerical value of the scalar
nucleon coupling constant which is model dependent, from the
value of the free nucleon σ commutator.

The pion-nucleon σ term is an important piece of ex-
perimental information. It is obtained from the Feynman-
Hellman theorem: σN = m (∂MN/∂m) 
 50 MeV. It receives
a contribution from the pion cloud, σ

(pion cloud)
N . According to

previous works [2,15–17] we expect σ
(pion cloud)
N 
 20 MeV,

which corresponds to a pion-cloud self-energy of −420 MeV.
For the nonpionic part, an explicit calculation in the NJL model
shows that the linear σ model result is recovered but with the
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nucleon structure aspect hidden in the scalar coupling constant
gσ ≡ (gS)eff(M0):

σ
(no pion)
Nσ = Fπgσ

M2
π(

M2
σ

)
eff

. (66)

Its numerical value has to be σ
(no pion)
Nσ = σN − σ

(pion cloud)
N 


50 − 20 
 30 MeV. This separation of the σ term into two
pieces is quantitatively supported by the lattice study of
Leinweber et al. [15] on the nucleon mass evolution with the
bare quark mass. In their work the pionic part of this evolution
which has a nonanalytical behavior is calculated explicitly and
subtracted out. For the rest, an expansion is made in powers
of m2

π . The linear term in m2
π is linked to the nonpionic σ

commutator, giving a value σ
(no pion)
Nσ 
 29 MeV, close to our

value. With the value (Mσ )eff = 659 MeV given previously, it
leads to gσ 
 7.

Concerning the nucleon mass problem, there exist QCD
sum rules which link in an approximate way the nucleon mass
to the condensate both for a free nucleon [18] and for a bound
one [19,20]. For a dilute medium, these sum rules lead to the
following mass evolution:

M∗
N

MN


 〈q̄q〉
〈q̄q〉vac

= 1 − σN ρ

F 2
π M2

π

= 1

−
(
σ

(no pion)
Nσ + σ

(pion cloud)
N

)
ρ

F 2
π M2

π


 1 + s̄

Fπ

− 〈�2〉
2 F 2

π

,

(67)

where the last expression is the one obtained from the
condensate evolution in the NJL model. We see that the quark
condensate modification receives two contributions, one from
the scalar field and one from the pion cloud, reconstituting at
low density the full pion nuclear σ term.

Our description brings important restrictions to this expres-
sion. First the pion-cloud contribution to the σ commutator,
σ

(pion cloud)
N , contributes to the condensate evolution. It does not

contribute to the mass evolution, otherwise chiral constraints
would be violated (such as the presence of a term in mπ in the
NN potential, forbidden [21] by chiral symmetry). In fact its
influence on the mass vanishes in the chiral limit, and hence
it is a small effect which we ignore. Only the scalar piece,
σ

(no pion)
Nσ , should then enter the mass evolution. In a pure chiral

theory such as NJL, the low-density expansion of the mass
evolution is then

M∗
N

MN


 1 − σ
(no pion)
Nσ ρ

F 2
π M2

π

. (68)

This separation already introduces a model dependence in
the prediction of the mass evolution. This expression would
hold, for instance, for an assembly of nucleons described
as superpositions of constituent quarks or by chiral soliton
models. Second, when we introduce confinement, i.e., when
we go beyond NJL, the evolution of the nucleon mass with
density also depends on the nucleon structure through the
value of the coupling constant of the scalar field to the nucleon,
gσ . Indeed, to leading order, we have M∗

N = MN + gσ s̄ with

s̄ = −gσρ/(M2
σ )eff which gives

M∗
N

MN


 1 − gσFπ

MN

σ
(no pion)
Nσ ρ

F 2
π M2

π


 1 − gσ

10

σ
(no pion)
Nσ ρ

F 2
π M2

. (69)

In the linear σ model where gσ = MN/Fπ = 10, we recover
the Ioffe sum rule generalized at finite density just corrected
from pionic effects. With confinement, the value of the
scalar coupling constant is reduced, and the mass evolution
is slower than the condensate one. The suppression of the
pionic contribution to the mass evolution further accentuates
the difference between the mass and condensate evolutions.
For instance at normal nuclear density, the condensate has
dropped by 
30%. With the value gσ 
 7 deduced above, the
mass reduction is significantly lower, 
13%. The challenge is
to establish the compatibility between our results and the full
QCD sum rules.

III. EFFECT OF CONFINEMENT: SIMPLE MODELS
FOR THE IN-MEDIUM NUCLEON

We now come to the last point of this paper, namely, the
modeling of the nucleon mass origin and the scalar response of
the nucleon defined from the second derivative of the nucleon
mass with respect to the scalar field:

κNS(S̄) = ∂2MN

∂s̄2
= M2

0

F 2
π

(
∂2MN

∂S̄2

)
= M0

Fπ

(
∂(gS)eff

∂S̄

)
.

(70)

For a nucleon made of the simple adjunction of three NJL
constituent quarks (or a NJL quark and a NJL diquark), the
scalar coupling constant is independent of the scalar field and
there is no scalar response. The importance of the response
is related to the respective roles of chiral symmetry breaking
and confinement in the generation of the nucleon mass. In the
following we will consider nucleons built from NJL quarks of
mass M bound by some confining force. The information that
we need is contained in the relation between the nucleon mass
MN and the NJL mass M , MN = f (M). The scalar coupling
constant of the nucleon is related to that of the NJL quarks,
which is M/Fπ , through gS = ∂f

∂M
∂M
∂s̄

. The next derivative with
respect to s̄ gives the nucleon scalar response. A nonvanishing
value requires ∂2f

∂2M
= 0 and it entirely arises from confinement.

For instance, in soliton models where the quarks are bound
only by chiral forces, the nucleon mass is proportional to the
NJL mass and the second derivative vanishes. In the following
we establish this relation for different models, showing their
effect on the saturation properties.

In a previous work [22] we have introduced a model of
a nucleon made of three constituent quarks bound together
by a confining harmonic force. The magnitude of the scalar
response which followed was too small to prevent the collapse
of nuclear matter. We will come back later to this type of model.
A possibility of improvement is to reduce the relative role of
chiral symmetry breaking. This can be achieved by considering
a nucleon made of a quark and a sufficiently light diquark to
leave enough room for confinement. A practical advantage
is that a three-body problem is transformed into a simpler
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two-body problem. Besides this simplification, there are theo-
retical and phenomenological reasons to favor a quark-diquark
model of the nucleon with relatively light scalar-isoscalar
diquark. For instance the work of Shuryak et al. on hadronic
current-correlation functions based on a random instanton
vacuum [23] finds a strong attraction in the scalar-isoscalar
channel leading to a diquark with a mass about 400 MeV.
An axial-vector diquark is also found but with a much larger
mass of the order of 900 MeV. It is also possible to nicely
reproduce the light baryon spectrum [24], while a calculation
without diquark correlations predicts an abundance of missing
resonances [25].

As discussed in a set of works of Bentz et al. (see Ref. [8]
for application to nuclear matter), it is possible from the
NJL model to construct a nucleon with a diquark component.
Introducing the standard interaction in the diquark channel as
discussed previously, one obtains for the mass of the scalar
diquark result quoted in Eq. (61). This mass is also medium
dependent since it depends on the constituent quark mass.
Its vacuum value is strongly sensitive to the value of G̃1

which defines the quark-quark interaction [see Eq. (59)]. For
G̃1 = G1 it is exactly equal to the pion mass. Here we choose

G̃1 = 0.92 G1 ⇒ MD = 398.5 MeV,

which turns out to be nearly equal to the constituent quark mass
in agreement with the work of Ref. [23]. In Ref. [8], it was
realized that to obtain a scalar susceptibility, and consequently
nuclear matter saturation, requires a confinement mechanism.
An infrared cutoff µR 
 200 MeV was thus introduced in
the Schwinger proper time regularization scheme. Such a
prescription implies that quarks cannot propagate at a relative
distance larger than 1/µR , hence mimicking a confinement
mechanism. Here we propose to incorporate confinement in
a more direct way. Since the diquark is in an antitriplet color
state, it is physically plausible that a string develops between
the quark and the diquark as in a QQ̄ meson. We thus introduce
a confining potential between the quark and the diquark:

V (r) = 1
2 K r2.

In the nonrelativistic limit, the problem reduces to solving
the Schrödinger equation for a particle with reduced mass µ,
placed in a harmonic potential. In this limit, the mass of the
(in-medium) nucleon is given by:

MN (S̄) = M(S̄) + MD(S̄) + 3

2

√
K

µ(S̄)

with µ = M MD

M + MD

.

We take for the string tension a standard value K =
(290 MeV)3. We obtain for the vacuum nucleon mass MN =
1304 MeV. The nucleon mass origin splits roughly into a chiral
symmetry breaking component (60%) and a confinement com-
ponent (40%). The vacuum value scalar coupling constant of
this nucleon to the effective scalar field is gσ ≡ (gS)eff(M0) =
7.14. This leads to the value of the nonpionic piece of the
σ term: σ

(no pion)
Nσ = 30 MeV, as was required.

To show that such a model is capable of describing the
saturation properties of nuclear matter, we calculate the energy
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FIG. 1. (Color online) Mass of the quark (dashed line), diquark
(dot-dashed line), and nucleon (full line) vs the relative deviation,
� = (M0 − M)/M0 ≡ |s̄|/Fπ , of the scalar field with respect to its
vacuum value.

of symmetric nuclear matter in the Hartree approximation,
using Eqs. (64) and (65). The resulting curve displays a
saturation mechanism driven by the scalar nucleon response
[κNS , proportional to the second derivative of the nucleon
mass with respect to S̄, Eq. (70)], which has a positive value.
Said differently, the scalar coupling constant, ∂MN/∂S̄, is a
decreasing function of |s̄| or the density. This translates into
the fact that the nucleon mass stabilizes or even increases
with increasing |s̄| (see Fig. 1). However, the binding is
nevertheless not sufficient unless we decrease artificially the
vector coupling constant G2 at a value much smaller than the
VDM result.

To improve the description, although this is not necessarily
consistent with our present nucleon model, we add on top
of the Hartree mean field result the pion loop (Fock term
and correlation energy) contribution obtained in our previous
work [2]. Taking the value of G2 at the value quoted previously,
G2 = 0.78 (G2)VDM, we obtain a decent saturation curve,
shown in Fig. 2. Likely a fully consistent calculation within
the model of the pion loop energy would modify the result, but
a fine tuning on G2 would be presumably sufficient to recover
the correct saturation curve. The lesson of this simple model
calculation seems to confirm our previous conclusions. The
confinement effect (scalar response of the nucleon) is able to
stabilize nuclear matter, and the pion loop correlation energy
helps to get the correct binding energy.

We have shown that an acceptable quark-diquark model of
the nucleon makes plausible the role of the background scalar
field in the nuclear binding. It is interesting to investigate
if other confining mechanisms can achieve the same result.
For this we have also studied models where the nucleon
is made of three constituent quarks moving in a mean-field
linear confining potential but shifted with a constant attractive
potential mimicking short-range attraction:

V = 1 + γ0

2
(K2 r − 2 V0).
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FIG. 2. (Color online) Binding energy of nuclear matter vs
nuclear matter density in units of normal density. The full line
corresponds to the full result, and the dashed line represents the
Hartree result. The dot-dashed line corresponds to the contribution of
the Fock term, and the dotted line represents the correlation energy.
All the numerical inputs are given in the text.

This model has been successfully utilized for baryon spec-
troscopy studies by Jena et al. [26]. We do not aim to justify
this particular equally mixed scalar and vector confining po-
tentials, the main motivation being the existence of analytical
solutions. The energy of the lowest orbit, solution of the Dirac
equation, is

E(M) = M − 2 V0 +
√

K2 xq ,

with xq , solution of

x4
q + 2

M − V0√
K2

x4
q − (2.338 11)3 = 0,

and the mass of the in-medium nucleon (in absence of
c.m. correction) is MN (S̄ = M) = 3E(M). Hence the quark
mass contribution (essentially the chiral symmetry breaking
contribution) to the quark orbital energy and then to the
nucleon is reduced due to the presence of the attractive
shift, −2V0, leaving more room for the confining part. The
scalar coupling constant (still omitting c.m. correction) can
be written as

(gS)eff(S̄) = M0

Fπ

(
∂MN

∂S̄

)
≡ 3

M0

Fπ

qs,

where qs = ∫
d3r (u2 − v2)(r) is the quark scalar charge. We

see that the scalar field contribution to the σ term is represented
by the usual integrated scalar quark density as in bag models.
In practice we also include in the numerical calculation the
effect of c.m. correction using the results quoted in Ref. [26].
If we take K2 = (300 MeV)2 and V0 = 200 MeV, it is possible
to obtain a saturation curve, but the saturation has the tendency
to come too early. Certainly this point deserves a more detailed
study. Here we wish to concentrate on the main result, namely,
a decreasing scalar coupling constant when increasing |s̄| as
demonstrated by the dashed curve on Fig. 3. We also checked
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FIG. 3. (Color online) Effective scalar coupling constant vs
the relative deviation, (M0 − M)/M0 ≡ |s̄|/Fπ , of the scalar field
with respect to its vacuum value for the linear confining potential
(dashed line), the quadratic linear potential (dotted line), and the
quark-diquark model (full line).

that replacing the linear potential by a quadratic potential,

V = 1 + γ0

2

(
1

2
K3 r2 − 2 V0

)
,

with K3 = (300 MeV)3 and V0 = 200 MeV, one obtains
similar results as depicted in Fig. 3 (dotted curve). It is
worthwhile to notice that this model differs from the one used
in Ref. [22] by the introduction of the constant attractive shift
−2 V0. The energy of the lowest orbit is the solution of the
equation

E = M − 2 V0 + 3

2

√
2 K3

E + M
.

Again this shift allows us to reinforce the role of confinement
in the origin of the nucleon mass.

Also shown on Fig. 3 is the behavior of the scalar coupling
constant for the quark-diquark model. In this case, the decrease
at low density is less strong, which translates into a softer
equation of state. According to a preliminary study based on a
variational relativistic calculation, the strong dropping beyond
|s̄|/Fπ ≈ 0.2 (which roughly corresponds to normal density)
might be to some extent an artifact of the nonrelativistic
approximation.

IV. CONCLUSION

We have studied the role played by the spontaneous
breaking of chiral symmetry in the problem of nuclear binding.
The existence of a scalar field linked to the quark condensate
emerges in chiral theories such as the NJL one. This field
may be at the origin of the masses. This the case in the
NJL model or the linear σ one. In this case, several things
follow naturally. The partial restoration of chiral symmetry
in dense matter implies a reduction in magnitude of the
condensate and hence of the nucleonic mass, which could
a priori account for the nuclear binding; but in this case,
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a tadpole term inherent in these theories destroys stability.
A combination with the confining aspects is able to restore
stability. Confinement indeed reduces the coupling constant of
the scalar field to the nucleon and makes it field dependent.
Equivalently it introduces a scalar response a the nucleon
to this field in such a way that the nuclear medium reacts
against a buildup of the scalar field with increasing density,
which helps in the saturation problem. However, confinement
should not be the only origin of the nucleon mass, since
in this case the scalar background field decouples from the
nucleons. It is only in a mixed case, with a simultaneous
influence of spontaneous symmetry breaking and confinement,
that the scalar field can be an efficient actor in the nuclear
saturation problems. We have given examples of nucleonic

models where this balance is achieved. They require the role
of confinement in the generation of the mass to be sufficient.
We have shown how confinement affects the QCD sum rule
for the in-medium nucleon mass originally shown to follow
the condensate evolution. Our formula shows that the mass
evolution is reduced as compared to the condensate one
by a factor r , ratio of the scalar coupling constants in the
presence and in the absence of confinement. In addition, as we
pointed out in previous works, only the nonpionic part enters
the mass evolution. These combined effects considerably
reduce the mass evolution as compared to the condensate one.
Nevertheless the remaining effect can be sufficient to make the
scalar field of chiral symmetry breaking an important actor in
the nuclear binding question.
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