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Realistic transverse images of the proton charge and magnetization densities
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We develop a technique, denoted as the finite radius approximation (FRA), that uses a two-dimensional
version of the Nyquist-Shannon sampling theorem to determine transverse densities and their uncertainties from
experimental quantities. Uncertainties arising from experimental uncertainties on the form factors and lack of
measured data at high Q2 are treated. A key feature of the FRA is that a form factor measured at a given value of
Q2 is related to a definite region in coordinate space. An exact relation between the FRA and the use of a Bessel
series is derived. The proton Dirac form factor is sufficiently well known such that the transverse charge density
is very accurately known except for transverse separations b less than about 0.1 fm. The Pauli form factor is well
known to Q2 of about 10 GeV2, and this allows a reasonable, but improvable, determination of the anomalous
magnetic moment density.
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I. INTRODUCTION

A truly impressive level of experimental technique, effort,
and ingenuity has been applied to measuring the electro-
magnetic form factors of the proton, neutron (nucleon), and
pion [1–6]. These quantities are probability amplitudes that
a given hadron can absorb a specific amount of momentum
and remain in the ground state, and therefore should supply
information about charge and magnetization spatial densities.

The textbook interpretation of these form factors is that
their Fourier transforms are measurements of the charge
and magnetization densities. This interpretation is deeply
buried in the thinking of nuclear physicists and continues to
guide intuition, as it has since the days of the Nobel Prize–
winning work of Hofstadter [7]. Nevertheless, the relativistic
motion of the constituents of the system causes the textbook
interpretation to be incorrect [8]. The difficulty is that in
electron-proton scattering the initial and final nucleon states
have different momenta and therefore different wave functions.
In general, these different states are related by a boost operator
that depends on the full complexity of QCD. The use of
transverse densities [9,10] avoids this difficulty by working
in the infinite momentum frame and taking the spacelike
momentum transfer to be in the direction transverse to that of
the infinite momentum. In this case, the different momenta of
the initial and final nucleon states are accommodated by using
two-dimensional Fourier transforms. The transverse charge
and magnetization densities are constructed from density
operators that are the absolute square of quark-field operators,
so they are correctly defined as densities.

It is useful to note that the transverse densities are
closely connected to generalized parton distributions (GPDs),
which describe the distribution of quark and antiquarks with
respect to longitudinal momentum and transverse position. The
integral of the GPD H , evaluated at 0 skew, over longitudinal
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momentum gives the transverse charge density of interest
here [11,12].

In this paper, we are concerned with extracting the spatial
information by developing and using a theoretical technique
that is model independent and also provides a practical
way of dealing with both experimental uncertainties and the
lack of information on unmeasured regions, with minimal
assumptions. In the subsequent text, we plan to show how to
construct bands of transverse densities that are consistent with
available experimental knowledge and also take into account
the possible effects of data taken at momentum transfer Q2

higher than available in the present data set. This allows one
to consider the possible impact of future experiments.

There also is a more general context, with the high current
interest in mapping the three-dimensional structure of the
nucleon [13]. Therefore, we also aim to provide a technique
that can be easily extended to determining the spatial aspects
of other quantities [11,12] related to transverse momentum
distributions and generalized parton distributions.

Next, we present an overview of the remainder of this paper.
Section II concerns the following situation: Suppose a form
factor F (Q2) and transverse density ρ(b) are related by a
two-dimensional Fourier transform and that ρ(b) is localized,
ρ(b) = 0 for b greater than some finite distance. The function
ρ(b) is band limited and can be written as a discrete Fourier
series involving F (Q2). This result, known as the Nyquist-
Shannon [14] sampling theorem, enables us to associate the
density at a given range of values of b with a discrete value of
the momentum transfer; see Eq. (3) (which we denote as the
finite radius approximation, FRA). The equivalence between
the FRA and the Bessel series expansion technique is also
established. A general version of the FRA, applicable to other
observable quantities, is also presented.

Section III is concerned with exploring the validity and
utility (which depend on the number of terms needed in
the discrete Fourier series) of the FRA using examples
in which the form factor is given by a monopole (M) or
dipole (D) form. Section V is concerned with the reality
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that the proton electromagnetic form factors are not known
as analytic functions. Instead, form factors GE,M, F1,2 (with
uncertainties) measured at discrete values of Q2 up to a finite
maximum value Q2

max are known. This means that ρ is known
only within some uncertainties, and a technique to determine
the uncertainties in ρ must be developed. This is accomplished
by using the values of Fi ± dFi in the FRA. Estimates of the
effects of incompleteness, arising from contributions in the
unmeasured region, Q2 > Q2

max, are also provided. The paper
is concluded with a brief summary.

II. GENERAL CONSIDERATIONS

Intuitively, we expect particles to be localized. That is,
we expect densities associated with the particle to be well
approximated by functions that are zero outside some max-
imum radius. This assumption, the FRA, greatly simplifies
the relationship between form factors and their associated
densities.

Let ρ(b) be a two-dimensional transverse density function
(we later take this to be charge or magnetization density), and
let F (Q2) be the associated form factor. The transverse density
is given by [9,15]

ρ(b) = 1

(2π2)

∫
d2qe−iq·b F (Q2 = q2)

= 1

2π

∫
QdQJ0(Qb)F (Q2), (1)

with the azimuthal symmetry of ρ obtained from the Lorentz
invariant form of F in the spacelike region with q+ = 0. If
one knows F (Q2) exactly for all values of Q2, the transverse
density is known immediately. However, one knows F (Q2)
only within experimental uncertainties for a finite range of Q2.
This means that ρ is known only within some uncertainties,
and it is necessary to develop a technique to determine the
uncertainties in ρ.

We proceed by assuming that ρ(b) ≈ 0 for b � R, where
R is a finite distance. Since the functions ρ, F are Fourier
transforms, F is band limited. We proceed in the spirit of the
Nyquist-Shannon sampling theorem. The function ρ can be
expanded as

ρ(b) =
∞∑

n=1

cnJ0

(
Xn

b

R

)
, (2)

where Xn is the nth zero of J0 and cn is given approximately
by the formula

cn ≈ c̃n = 1

2π

2

R2J1(Xn)2
F (Q2

n), (3)

with

Qn ≡ Xn

R
. (4)

Equation (3), which is the two-dimensional version of
Ref. [14], is the central formal result of this paper. Using

this in Eq. (2) yields the following expression for ρ(b):

ρ(b) = 1

πR2

∞∑
n=1

J1(Xn)−2F (Q2
n)J0

(
Xn

b

R

)
, (5)

The result, Eq. (5), is the central phenomenological result
because it tells us that measuring a form factor at Q2

n provides
information about the density mainly at values of b < R/Xn.
This is because Bessel functions are of the order of unity only
for values of arguments less than that of its first zero.

A. Equivalence with the Bessel series

Replacing cn by c̃n would be exact if the assumption ρ(b �
R) = 0 is exactly true. This condition is clearly approximately
true, so we expect a near equality between cn and c̃n. In fact,
it turns out that the approximation is amazingly accurate, as
we now demonstrate. Numerical examples are provided in
subsequent sections. The exact values of cn are obtained from
the orthogonality of the cylindrical Bessel functions as

cn = 2

R2J1(Xn)2

∫ R

0
bρ(b)J0

(
Xn

b

R

)
db. (6)

The use of this in Eq. (1) followed by integration over b can
be done using a standard identity to yield

cn = Xn

πR2J1(Xn)

∫ ∞

0

qF (q2)J0(qR)(
Xn

R

)2 − q2
dq. (7)

We may use a dispersion relation for the form factor [16] to
establish the connection between c̃n and cn. First, recall that,
for Q2 > 0,

F (Q2) = 1

π

∫ ∞

4m2
π

dt
ImF (−t)

t + Q2
, (8)

and that using this expression in Eq. (1) yields

ρ(b) = 1

2π2

∫ ∞

4m2
π

dt K0(
√

tb)ImF (−t). (9)

Proceed by using this in Eq. (6) and then integrate over b using∫ R

0
bdbK0(

√
tb)J0

(
b
Xn

R

)

= 1
X2

n

R2 + t
× [1 + XnJ1(Xn)K0(

√
tR)]. (10)

Then,

cn = 1

R2J1(Xn)2π2

∫ ∞

4m2
π

dt
ImF (−t)

t + X2
n

R2

× [1 + XnJ1(Xn)K0(
√

tR)]. (11)

Using only the first term within the brackets along with Eq. (8)
allows one to identify the integral over t as πF (Q2

n). Thus
[using Eq. (3)] one arrives at the result that cn = c̃n plus a
correction term, suppressed by a modified Bessel function
evaluated at a large argument. For example, a significant con-
tribution to Im F comes from the region t ∼ m2

ρ = 0.5 GeV2,
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and by using R = 3.3 fm (see Sec. III), K0(mρR) = 10−6. The
net result is that

cn = c̃n + δn,
(12)

δn ≡ XnR
2J1(Xn)

J 2
1 (Xn)π2

∫ ∞

4m2
π

dt
ImF (−t)

t + X2
n

R2

K0(
√

tR).

A reasonable estimate is that
cn − c̃n

c̃n

∼ XnJ1(Xn)10−6. (13)

The condition that δn be small is so that R is chosen to be large
enough. We ensure that this condition is satisfied for all of our
examples and applications.

B. Preliminary evaluations

It is worthwhile to perform some preliminary analysis of
the expression Eq. (5). For x � 1, J0(x) is well approximated
[17] by

J0(x) ≈
√

2

πx
cos

(
x − π

4

)
, (14)

so that the n’th zero of J0, Xn, is given approximately by

Xn ≈ (
n + 3

4

)
π, (15)

and

J1(Xn) = −J ′
0(Xn)

≈ (−1)n21/2π−1
[(

n + 3
4

)]−1/2
. (16)

It follows that for large n, the terms in the series Eq. (5) for
ρ(b) are of the form

π

2R2

(
n + 3

4

)
F

(
Q2

n

)
J0

(
Xn

b

R

)
∼ n F

[(
nπ

R

)2]
at b = 0. So for the series to converge everywhere, namely
at b = 0, we need F to fall faster than Q−2 for large Q.
The oscillations of the cylindrical Bessel functions hasten the
convergence for nonzero values of b.

Given this convergence, the function ρ(b) can be approxi-
mated by using a finite number of terms in the series Eq. (5).
Because Q2

n = (Xn/R)2 serves as the Q2 in the argument of
F , cutting off the series at N terms is equivalent to taking
F (Q2) = 0 for Q2 > (XN/R)2.

If the assumption that ρ(b) = 0 for b � R holds for a given
value of R, then it also holds for larger values of R. We can see
from Eq. (5) that increasing R increases the frequency with
which F (Q2) is sampled and therefore decreases the range that
is sampled. As a consequence, an increase in R demands an
increase in the number of terms in the approximation for ρ.

A quick result following from the fact that ρ is the Fourier
transform of F is that the mean square radius 〈b2〉 is given by

〈b2〉 ≡
∫

d2b b2ρ(b) = −4
d log F

dQ2

∣∣∣∣
Q2=0

. (17)

In this paper, we choose R ≈ 5
√

|〈b2〉| in determining the
number of terms in our expansion. Numerical studies of the

form factors considered in preparing this paper have shown
that this value of R is sufficiently large so that perturbations to
this value lead to the same density functions and that R2ρ(R)
is always small enough so that the difference between cn and
c̃n is minute.

C. Other transverse densities

We believe that the techniques used in this paper can be
exploited to image other quantities that depend on transverse
position. Suppose there is a transverse quantity ρ(λ)(b) that
is a two-dimensional Fourier transform of an experimental
observable F (λ)(Q2) such that

ρ(λ)(b) = 1

2π

∫
QdQJλ(Qb)F (λ)(Q2). (18)

An example, discussed in detail in Sec. VC, is the magnetiza-
tion density ρm of the anomalous magnetic moment. We expect
that the index (λ) is associated with a given number of units of
orbital angular momentum. Extracting ρ(λ)(b) is facilitated by
using the expansion

ρ(λ)(b) =
∞∑

n=1

cnλJλ

(
Xλ,n

b

R

)
, (19)

where Xλ,n is the nth zero of the Bessel function of order λ.
Then the sampling theorem leads immediately to the result:

cn,λ ≈ c̃n,λ = 2

R2Jλ+1(Xλ,n)2
F (λ)

(
Q2

λ,n

)
,

(20)

Qλ,n = Xλ,n

R
.

The difference between cn,λ and c̃n,λ can be shown to be
very small by using the arguments of Sec. II A. The result,
Eq. (20), can be used to relate accessible kinematic ranges
with transverse regions.

III. EXAMPLES

To demonstrate our method and explore its limitations, we
now analyze two models of the form factor. For the first model,
let the form factor be given by the monopole form

FMono(Q2) = 1

1 + Q2

�2

, (21)

where � = 0.77 GeV. This form factor is taken as a caricature
of the pion electromagnetic form factor. Then the associated
charge density is obtained from Eq. (1):

ρMono(b) = 1

2π
�2K0(�b). (22)

This function diverges as log(1/b) for small values of b and
so provides a severe test of the method. With the stated
value of �, we find 〈b2〉Mono = 4/�2 = 0.26 fm2 and thus
take R = 5

√
|〈b2〉| = 2.56 fm. We then find the fractional

difference between cn and c̃n of Eq. (12) is less than 5 × 10−4

for small values of n, and the magnitude decreases rapidly as n

increases.
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FIG. 1. (Color online) Plot of ρM (blue, solid), 10-term approx-
imation (red, long dash), 20-term approximation (green, medium
dash), and 50-term approximation (brown, short dash).

We compare to ρMono to its approximation as an expansion
in N terms, with N = 10, 20, 50 in Fig. 1. We see that
our approximations differ from the exact result, but the
difference decreases with increasing value of N . The 50-term
approximation works reasonably well for all values of b for
which the density differs appreciably from 0. Unfortunately
the 10-, 20-, and 50-term approximations would require
measurements at Q2 = 6, 23, and 144 GeV2. Only the first
value seems achievable at this time.

We now examine the dipole form factor given by

FD(Q2) = 1(
1 + Q2

�2

)2 (23)

where �2 = 0.71 GeV2. This value is suggested by its
historically close relationship with the proton electromagnetic
form factors. The dipole transverse charge density is obtained
by from Eq. (1) to be

ρD(b) = 1

4π
b�3K1(b�). (24)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

b fm

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ρ D
b

fm
2

FIG. 2. (Color online) Plot of ρD (solid), 5-term approximation
(red, long dash), 10-term approximation (green, medium dash), and
15-term approximation (brown, short dash).

TABLE I. Upper limit, N , dependence of 〈b2〉M,D computed for
values of b from 0 to 1.5 fm.

N 〈b2〉M (fm)2 〈b2〉D (fm)2

5 0.259 0.313
10 0.362 0.320
15 0.368 0.319
∞ 0.367 0.319

This form factor falls more rapidly with increasing Q2 than
does FM and also corresponds to the larger physical extent
of the proton as compared to the pion. Furthermore, ρD is
not singular at the origin [∼1 − 0.058(b�)2]. Thus, there
are several reasons to expect to find better convergence
properties and therefore a more accurate representation of
the transverse density for the proton. With this value of �,
〈b2〉 = 8/�2 = 0.439 fm2, and R = 3.31 fm. Once again the
fractional difference of Eq. (12) is truly tiny for all values of
n: The fractional differences are less than about 10−5 for all
values of n that correspond to nonzero cn. We plot ρD and its
approximations in Fig. 2.

We can see how the approximations converge to the exact
ρD . Even the 10-term approximation is reasonably good, and
the 15-term approximation is extremely accurate except for
b < 0.1 fm.

Another way of looking at convergence properties is to
examine properties of the transverse density. We display upper-
limit dependence of 〈b2〉M,D for both the monopole and dipole
form factors. We compute these matrix elements for a range of
values of b from 0 to 1.5 fm. This covers the region up to where
ρ is about 0.1% of its central value. The results are shown in
Table I. Despite the relatively poor convergence obtained for
the monopole form factor (Fig. 1), reasonable convergence for
the expectation value is obtained.

However, the convergence is much better for the dipole form
factors. The 5-, 10-, and 15-term approximations correspond
to values of Q2 = 0.9, 4, and 9 GeV2. These and even greater
values have already been achieved experimentally. Thus, we
reasonably expect that the proton transverse density is now
known. Indeed, this has already been suggested [9]. Thus,
now we can answer the question: ‘How well is the proton
transverse charge density known?

IV. EXTRACTION OF PROTON FORM FACTORS
AND UNCERTAINTIES

The transverse densities we seek are given in terms of the
Dirac F1 and Pauli F2 form factors, which are expressed
in terms of the Sachs electromagnetic form factors GE

and GM as

F1(Q2) = GE + τGM

1 + τ
, F2(Q2) = GM − GE

1 + τ
, (25)

where τ = Q2

4M2
p
.

Elastic electron-proton scattering has been measured up to
Q2 of about 30 GeV2, with the separation of both GE and
GM extracted using a variety of techniques up to 10 GeV2.
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There are two sources of uncertainty in the extraction of
the transverse densities. Experimental uncertainties from the
measurements of GE and GM yield uncertainty in the extracted
densities, and incompleteness errors arise from the lack of form
factor measurements at very high Q2 (above 30 GeV2). In this
section, we perform extractions of the transverse density and
evaluate the effects that two kinds of uncertainties have on the
densities.

The form factors GE and GM have been extracted from
a global analysis of the world’s cross-sectional and polar-
ization data, including corrections for two-photon exchange
corrections from Ref. [18]. The analysis is largely identical
to that that of Ref. [19], although additional high-Q2 form
factor results [20] have been included. In addition, the slopes
of GE and GM at Q2 = 0 were constrained in the global fit
based on a dedicated analysis of the low-Q2 data. In the global
fit, the large body of high-Q2 data, especially for GM , can
constrain the fit well enough that the low-Q2 behavior is not
primarily constrained by the low-Q2 data. Constraining the
slope based on an analysis of only the low-Q2 data keeps
the global fit from doing a poor job at low Q2 simply to
make a slight improvement in the high-Q2 data. In writing
GE(Q2) = 1 − Q2R2

E/6, the value of RE was constrained to
be 0.878 fm, and RM was constrained to be 0.860 fm. This is
important in the extraction of the large-scale structure of the
density. The fit is of the following form:

GM (Q2) = µp

1 + p6τ + p10τ
2 + p14τ

3

1 + p2τ + p4τ 2 + p8τ 3 + p12τ 4 + p16τ 5
,

GE(Q2) = 1 + q6τ + q10τ
2 + q14τ

3

1 + q2τ + q4τ 2 + q8τ 3 + q12τ 4 + q16τ 5
, (26)

where the fitting constants p2 . . . p16, q2 . . . q16 are given in
Table II and we use µp = 2.792782.

We also need a reliable estimate of the experimental
uncertainties in the form factors to determine the uncertainty
in the extracted coefficients c̃n. In the global analysis, there
are two sources that can contribute to the uncertainties in GE

and GM : the uncertainty on each individual cross section or
polarization ratio and the normalization uncertainty associated
with each cross section data set. The normalization factors are
allowed to vary in the fit, as was the case in Ref. [19]. To
estimate the uncertainty in the fitted normalization factors, we
take the normalization factor from a single data set and vary it
around its best fit value (while allowing all other parameters
to vary) to map out the change in the χ2 of the fit as a function

TABLE II. Fit parameters for GM (pi) and GE (qi).

i pi qi

2 9.70703681 14.5187212
4 3.7357 × 10−4 40.88333
6 −1.43573 2.90966
8 6.0 × 10−8 99.999998
10 1.19052066 −1.11542229
12 9.9527277 4.579 × 10−5

14 2.5455841 × 10−1 3.866171 × 10−2

16 12.7977739 10.3580447

of the normalization factor. This yields uncertainties between
0.2% and 2.5% (typically 0.6%–1%), compared to the initially
quoted uncertainties of 1.5% to 5%, for the data before the
normalization has been constrained by the fit. However, by
assuming that all uncertainties are entirely uncorrelated or
pure normalization factors, we neglect the possibility that there
may be some angle-dependent or Q2-dependent correction
that could bias the determination of the relative normalization
coefficients. Thus, we assume that the final uncertainty on each
normalization factor is at least 0.5%, even if the result of the
χ2 analysis yields a smaller result.

Having the uncorrelated uncertainties for each data point
and the constrained normalization uncertainties, we then
extract the uncertainties for GE and GM . For the uncorrelated
uncertainties, we randomly shift each cross section and po-
larization ratio measurement within its uncertainties and then
redo the fit for GE and GM . We repeat this 1000 times and
look at the range of values for several Q2 values (55 Q2 values
between 0.007 and 31.2 GeV2). This yields our uncorrelated
uncertainty at each of the Q2 points. To obtain the impact of the
normalization uncertainties, we repeat this procedure, varying
the normalization of each cross-sectional data set according to
its uncertainty and determine the range of GE,GM values for
the same set of Q2 points. In this procedure, the uncertainty
obtained depends on the fit function used, and a functional form
with insufficient flexibility will yield significant smoothing
of the results and thus unrealistically small uncertainties. We
scale up our uncertainties by a factor of two, which yields good
agreement with best direct measurements of the form factors
and uncertainties.

As mentioned previously, we use the electric and magnetic
radii extracted from just the low-Q2 data in as a constraint to
the global fit, which can yield unrealistically small uncertain-
ties for below Q2 = 0.2 GeV2, especially for GM , where the
very low Q2 data is extremely limited. Thus, for these low Q2

values, we calculate the uncertainty at each Q2 corresponding
to the uncertainty in the extracted radius, assuming the linear
expansion. We take this larger uncertainty, rather than the result
from the fit, until the uncertainties from direct extractions of the
form factors are of comparable size, at which point we take the
direct extraction of the uncertainty. For Q2 > 10 GeV2, there
are no direct extractions of GE , and thus we again have to
be sure that we do not underestimate the uncertainties. The
global fit yields GE/GD ≈ 0 at high Q2, but it is difficult to tell
if GE becomes zero or if GE/GM continues its linear decrease
with Q2 [20]. Thus, for Q2 > 10 GeV2, we set the uncertainty
to be the difference between the best fit, which yields GE ≈ 0,
and the fit where the linear falloff in GE/GM continues,
with GE changing sign and then increasing in absolute
value.

We then use the fit and uncertainties for GE and GM to
extract F1 and F2, treating the uncertainties in GE and GM as
uncorrelated, yielding

(dF1)2 =
(

1

1 + τ

)2

(dGE)2 +
(

τ

1 + τ

)2

(dGM )2, (27)

(dF2)2 =
(

1

1 + τ

)2

(dGE)2 +
(

1

1 + τ

)2

(dGM )2. (28)
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FIG. 3. (Color online) The electromagnetic form factors F1(Q2)
and F2(Q2) and their error bands, scaled by a factor of Q4.

While the Rosenbluth extractions yield a strong anticorrelation
between the uncertainties on GE and GM , the polarization ratio
yields a correlated uncertainty; in the global fit, the combined
result is fairly well approximated by entirely uncorrelated
uncertainties. Figure 3 shows the extracted values of F1 and
F2 along with their uncertainties. Because the elastic cross
section is dominated by the contribution from GM at large
Q2, the fractional uncertainties on GEare much larger, and the
uncertainty on GE dominates the uncertainty on both F1 and
F2, even though its contribution to F1 is suppressed by a factor
of τ relative to the GM contribution.

We note that for Q2 < 0.5, the uncertainty coming from
cross-sectional normalizations can be the larger contribution
to the total uncertainty (and it is dominant for GE below
0.1 GeV2). While the normalization uncertainty in the cross
sections will not give a normalization-style uncertainty on GE ,
the normalization of a given experiment will tend to have a
correlated effect on all of the extractions within the Q2 covered
by the experiment. This effect is accounted for by using the
procedure discussed in Sec. VA.

V. EXTRACTION OF REALISTIC PROTON
TRANSVERSE DENSITIES

The principle aim of this paper is to use data observed in
experiments to obtain the charge and magnetization densities.

Recall that the transverse charge density ρch is given by

ρch(b) = 1

2π

∫
QdQJ0(Qb)F1(Q2). (29)

The two-dimensional Fourier transform of F2, ρ2 is similarly
given by

ρ2(b) = 1

2π

∫
QdQJ0(Qb)F2(Q2). (30)

However, the true magnetization density, obtained by comput-
ing the expectation value of the transverse position operator
with the electromagnetic current operator, is given [10] by

ρM (b) = −b
d

db
ρ2(b)

= b

2π

∫
Q2dQJ1(Qb)F2(Q2). (31)

This quantity is the density related to the anomalous magnetic
moment. We begin by extracting ρch,2. The starting point
is to use these expressions along with the experimentally
determined F1,2 obtained from the fits of Sec. IV. However,
extracting realistic transverse densities requires a determina-
tion of the uncertainties in the results. There are two sources of
uncertainty. Experimental data have uncertainties in the region
where they are measured, and no direct information is available
above some maximum value of Q2 = Q2

max, where there are no
measurements. The experimental uncertainties lead directly to
uncertainties in the c̃n via Eq. (3), and can be taken into account
without further ado. However, uncertainty must arise because
of lack of knowledge of form factors for Q2 > Q2

max, and these
need to be estimated. This error is called the incompleteness
error.

A. Impact of experimental uncertainties on the extracted
transverse densities

We first treat the experimental uncertainties. We use only
the series Eq. (5) for values of Q2

n for which form factors have
been extracted. The magnetic form factor GM is well measured
up to Q2 = 31 GeV2, but GE is only known up to ∼10 GeV2.
Based on the estimated uncertainties on GE above 10 GeV2,
we find that while F1 is relatively well measured up to 30 GeV2,
the uncertainties on F2 grow rapidly above 10 GeV2, reaching
25% by 13 GeV2. These upper limits on Q2 are related to limits
on the summation index n [of Eq. (5)] through Eq. (4), which
requires values of Ri . Taking 〈b2〉 given by ρch,2 from the fits
presented previously, we use Eq. (17) to obtain R1 = 3.29 fm
and R2 = 3.62 fm for F1,2. This corresponds to upper limits
N on the sum over n: n = 30, Q2

30 = 31 GeV2 for ρch(b), but
only up to n = 20, Q2

20 = 11 GeV2 for ρ2(b).
The transverse densities ρch,2 are plotted as the solid curves

in Fig. 4. The densities peak at b = 0 and the transverse density
ρ2 has a slightly broader spatial extent than that of ρch.

The next step is to extract c̃n from the fit to the form
factor using Eq. (3). The uncertainty on F1,2(Q2) directly
yields an uncertainty on c̃n and thus its contribution to ρ(b)
[Eq. (2)]. Assuming the errors from each c̃n extraction add
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FIG. 4. (Color online) The transverse densities ρch,ρ2 (blue, solid)
of the parametrizations and their approximates to 10 terms (red, long
dash), 20 terms (green, medium dash), 30 terms (brown, short dash)
using the parametrization of Eq. (26). The approximations converge
as the number of terms increases.

constructively, we obtain

	expρch(b) =
30∑

n=1

∣∣∣∣∂ρch(b)

∂F1

∣∣∣∣ dF1

[(
Xn

R1

)2 ]

= 1

πR2
1

30∑
n=1

J1(Xn)−2

∣∣∣∣J0

(
Xn

b

R1

)∣∣∣∣ dF1

[(
Xn

R1

)2]
,

(32)

	expρ2(b) =
20∑

n=1

∣∣∣∣∂ρ2(b)

∂F2

∣∣∣∣ dF2

[ (
Xn

R2

)2 ]

= 1

πR2
2

20∑
n=1

J1(Xn)−2

∣∣∣∣J0

(
Xn

b

R2

)∣∣∣∣ dF2

[(
Xn

R2

)2]
.

(33)

Note that the errors are added linearly. This means that we are
taking the worst case possible by assuming a full correlation.
These uncertainties in densities are plotted in Fig. 5. They are
about 1.5% of the transverse density at b = 0 and decrease
(in absolute value) at increasing distances. The fractional
uncertainty is small (less than 10%) until b ≈ 1 fm, where
the density is only a few percent of the peak density.
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0.030

ex
p
ρ

b
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2

FIG. 5. (Color online) Uncertainties in transverse densities
	expρch (solid, blue) and 	expρ2(b) (dashed, red) due to experimental
uncertainties on F1, F2.

B. Incompleteness error

We next study the uncertainties in the transverse density
caused by lack of experimental knowledge at large values
of Q2. The first step is to understand the meaning of the
truncations made in Eqs. (29) and (31). Plots of these
approximations are given in Fig. 4. We see that for ρ2 one
achieves agreement with the parametrization for values of
N as low as 20, with the largest disagreement at b = 0.
For ρch(b = 0), the difference between the result from the
parametrization and the N = 30 approximation is −2%, while
for ρ2(b = 0), the N = 20 approximation is only 1% below
the full result. Even though fewer terms are included in the
approximation for F2, the agreement is comparable because
of the more rapid fall-off of F2 with increasing values
of Q2.

Given this information, we can state our procedure. Our ba-
sic transverse densities are obtained by using the parametriza-
tion Eq. (26) to evaluate the expressions of Eqs. (29), (30), and
(31). However, we are justified in using this parametrization
for values of Q2 corresponding to N = 30 (20) for F1(2). We
assume a maximum error by taking the uncertainty in the
form factor to be ± the value given by the parametrization.
Therefore, the estimated incompleteness uncertainty is given

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
b fm

0.01

0.02

0.03

0.04

in
c
ρ

b
fm

2

FIG. 6. (Color online) Incompleteness error. The absolute error
in ρch (solid, blue) and ρ2 (dashed, red).
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FIG. 7. (Color online) ρch (solid, blue) with error bands (short
dashed, red).

by the expression

	inc(b) ≡
∣∣∣∣∣

∞∑
N+1

cnJ0(Xn/R1)Fi

(
Q2

n

)∣∣∣∣∣ , (34)

as a function of b, with i = 1, 2. The results are shown in
Fig. 6. It is necessary to realize that using this expression
for the incompleteness error overestimates the error because
using this expression is equivalent to assuming that the form
factor vanishes for Q2 > Q2

N in Eq. (5). But the form factor
cannot suddenly drop to 0. Figure 3 shows a fractional error
bar for F1 (31 GeV2) that is only about 0.2 and a fractional
error bar at 13 GeV2 that is only about 0.3 of the form factor
F2. Thus, using Eq. (34) amounts to making an overestimate.
To be conservative, we obtain the total uncertainty by adding
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FIG. 8. (Color online) ρ2, with error bands.

the contributions of Eq. (32) [or Eq. (33)] to the estimated
incompleteness uncertainty given by Eq. (34).

We now have working expressions for the transverse
densities ρch,2 and their respective uncertainties. We start with
the basic term for ρch,2, obtained by using the parametrization
Eq. (26) to evaluate the expressions of Eqs. (29), (30), and
(31), then add the two separate errors 	inc,exp to get a total error
	 = 	inc + 	exp for ρch. A band is formed by considering the
region between the basic plus or minus the appropriate 	 for
the two densities.

The transverse densities ρch,2(b) are plotted with their error
bands in Figs. 7 and 8. The errors are very small except for
values of b less than about 0.1 fm. The results in this figure
are the central numerical findings of this paper. The transverse
densities are known very well indeed. The spatial extent of ρ2

is broader than that of ρch as previously observed [21]. Note
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FIG. 9. (Color online) True magnetization density ρm. The
uncertainties are numerically negligible.

that the realistic transverse densities differ substantially from
the dipole result of Eq. (24), shown in Fig. 2.

C. Extraction of ρM (b)

We now turn to the true transverse anomalous magnetic
density of Eq. (31), defined by taking the matrix element of
1
2

∫
d3r(b × 
j ) in a transversely polarized state [10,21]. This

Fourier transform involves J1(Qb), and therefore the FRA
corresponds to that of Eqs. (19) and (20), with λ = 1. Using
this expansion, instead of simply taking the derivative of ρ2,
allows an expansion in basis functions that explicitly vanish at
b = R2. Then the FRA gives the result

ρM = 1

πR2
2

∞∑
n=1

J−2
2 (X1,n)bQ1,nF2

(
Q2

1,n

)
J1(Q1,nb),

(35)

Q1,n ≡ X1,n

R2
.

Once again, we include the effects of the experimental error
and the incompleteness error. This latter error is larger in

this case than for ρ2 because of the explicit factor of X1,n.
The results for ρm and its error bands are plotted in Fig. 9.
This quantity has a broader spatial extent than ρ2, possibly
resulting from the importance of the pion cloud in causing
the anomalous magnetic moment. The uncertainties on this
quantity are greater than for the other densities. Future
measurements extending knowledge of F2 to higher values
of Q2 would reduce these higher uncertainties.

VI. SUMMARY

This paper is concerned with obtaining a general method to
determine information about densities in the transverse plane.
The use of Bessel series expansion, augmented by the FRA
of Eqs. (2), (3), (19), and (20), allows us to determine the
effects of experimental uncertainties and also allows us to
estimate the effects of the incompleteness error caused by a
lack of measurements at large values of Q2. The method can be
applied to the extraction of any spatial quantity. One example,
related to orbital angular momentum, is shown in Eqs. (19)
and (20).

The method is applied here to analyze electromagnetic
form factors. We can see from Figs. 7 and 8 that the
errors associated with the transverse charge density and the
two-dimensional Fourier transform of F2 are very small.
The anomalous magnetization density ρM , Fig. 9, is also rea-
sonably well determined, but future measurements extending
our knowledge of F2 to higher values of Q2 would reduce the
existing uncertainties.
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