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Quark model study of strange dibaryon resonances
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Two nonrelativistic quark models, a chiral quark model and a quark delocalization color screening model, are
employed to calculate the baryon-baryon scattering phase shifts to look for dibaryon resonances with strangeness
by means of the resonating group method. The two models predict similar-strangeness dibaryon resonance
states. No resonance appears in the octet-octet channels, but resonance did exist in the octet-decuplet and
decuplet-decuplet channels. These resonances were distributed in the energy region 2400–2800 MeV. The widths
are generally smaller than 10 MeV but increased to tens of MeV after taking into account the off-shell widths of
decuplet baryons. These resonances all appear in the D-wave nucleon-hyperon and hyperon-hyperon scatterings
and can be searched for through hyperon-nucleon scatterings with hyperon beams and hyperon-hyperon vertex
and masses reconstruction with the data collected by relativistic heavy ion collisions.
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I. INTRODUCTION

Since Jaffe’s prediction of the H particle [1], there have
been big efforts, both theoretically and experimentally, to
search for dibaryons [2]. In 1987, M. Oka et al. [3] claimed
that a sharp resonance appears in 1S0 �� scattering at Ec.m. =
26.3 MeV, which might correspond to the dihyperon state H

particle. Moreover, M. Oka [4] also proposed several J = 2+
dibaryons in the quark cluster model without meson exchange.
In 1987, Goldman et al. proposed that the S = −3, I = 1/2,
J = 2 dibaryon state might be a narrow resonance in a rela-
tivistic quark model [5]. The quark delocalization color screen-
ing model (QDCSM) confirmed that it was a very narrow res-
onance [6,7], whereas the chiral quark model claimed that N�

and �� systems are the weakly bound states [8]. In addition
there are other dibaryon candidates, including the “inevitable”
state d∗(SIJ ) = (003) [9], predicted in QDCSM [10,11]. In
1990, Kopeliovich et al. [12,13] predicted that there are strong-
interaction-stable dibaryons with high strangeness, such as
the S = −6 di-� state within the flavor SU(3) Skyrmion
model. Zhang et al. [14] showed that the �� dibaryon has
large binding energy and small size and suggested searching
for the di-� in relativistic heavy ion collisions. The chiral
SU(3) quark model also suggested several dibaryon candidates
[15]. However, so far no dibaryon has been confirmed by
experiments. Recently, the CELSIUS-WASA Collaboration
reported that the production cross section of the pn → dπ0π0

reaction shows evidence of an isoscalar JP = 1+ or 3+
subthreshold �� resonance with mass ∼2.36 GeV and width
∼80 MeV [16], which stimulates the research further. In
addition, the recent experiments of the BaBar, Belle, and
BES Collaborations also suggest the existence of tetraquark
and baryonium systems [17–20]. The further experiments
at COSY, JLab, BEPCII, SPRING-8, COMPAS, and other
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facilities will provide more information on exotic hadrons.
Especially with the availability of strange hadron beams,
J-PARC will be a good place to do hyperon-nucleon (YN )
scattering to search for strange dibaryons.

Quantum chromodynamics (QCD) has been verified to
be the fundamental theory of the strong interaction in the
perturbative region. However, in the low-energy region, it is
hard to directly use QCD to study complicated systems such
as hadron-hadron interactions and exotic quark states due to
their nonperturbative nature, although lattice QCD has made
impressive progress on nucleon-nucleon (NN ) interactions
and tetra- and pentaquark systems [21–23]. Therefore, various
QCD-inspired models have been developed to obtain physical
insights into many phenomena of the hadronic world.

To study the baryon-baryon interaction, the most common
approach is the chiral quark model (ChQM) [24,25], in
which the constituent quarks interact with each other through
Goldstone-boson exchange in addition to the effective one-
gluon exchange. To obtain the immediate-range attraction, the
σ meson has to be introduced. BES and other collaborations
have observed a signal in ππ invariant mass spectra. But
the modern treatments of correlated two-pion exchange show
that in addition to a long-range scalar-isoscalar attraction
traditionally associated with scalar exchange, there is also a
strong scalar-isoscalar repulsive core [26], a complication that
has not yet been included in the σ exchange.

An alternative approach to study baryon-baryon interaction
is the QDCSM [27], which was developed in the 1990s with
the aim of explaining the similarities between nuclear and
molecular forces. By introducing the quark delocalization to
enlarge the model space and taking into account the differences
of confinement interaction inside a single baryon and between
two color-singlet baryons, the model gives a good description
of NN and YN interactions and the properties of deuteron
[10,27,28]. Recent studies also show that the intermediate-
range attraction mechanism in the QDCSM, quark
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delocalization and color screening, is an alternative mechanism
for the σ -meson exchange in the ChQM [29].

To provide the necessary information for experiments to
search for the dibaryon states, dibaryon spectrum calculation
alone is not enough. The calculation of baryon-baryon
scattering, the main production process of dibaryons, is
indispensable. The scattering phase shifts will show a
resonance behavior in the dibaryon resonance energy region.
The NN scattering phase shifts including N� and ��

channel couplings in the framework of the resonating group
method (RGM) [30] have been calculated recently [31].
Extending the calculation to the strange sector is the goal of
the present work. As before, two quark models, ChQM and
QDCSM, are used for a mutual check.

In the RGM equation, the reduced mass of two clusters is
obtained by separating the total kinetic energy of six quarks
into an internal part, a relative motion part, and a center-of-
mass part. For NN scattering, the theoretical reduced mass
is the same as the experimental one. For strange baryons, the
theoretical reduced masses are different from the experimental
ones. To ensure the correct scattering kinematics, the reduced
mass employed in the RGM equation should be, therefore,
readjusted to the experimental value. A prescription to do
this without breaking the Pauli principle is used and will be
discussed in detail in Sec. II. In addition, a brief description of

the QDCSM and the ChQM is also given in Sec. II. In Sec. III,
we present calculated results and a discussion. Finally, a
summary is given Sec. IV.

II. TWO QUARK MODELS AND MODIFICATION OF THE
RESONATING GROUP EQUATION

A. Chiral quark model

In the chiral quark model, the constituent quarks acquire
their masses due to the spontaneous breaking of chiral sym-
metry. These quasiparticles interact with each other through
Goldstone-boson π,K, η exchange, in addition to the effective
one-gluon exchange from QCD dynamics (perturbative part).
The color confinement is imitated by the confining potential,
which is usually simplified to be quadratically dependent on
the interquark distance. The model details can be found in
Refs. [32,33]. Here we only give the Hamiltonian:
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H (x) = (1 + 3/x + 3/x2)Y (x), Y (x) = e−x/x, (8)

where αs is the quark-gluon coupling constant. In order to
cover the wide energy range from light, strange, to heavy
quarks one introduces an effective scale-dependent quark-
gluon coupling constant αs(µ) [34]:

αs(µ) = α0

ln
(

µ2+µ2
0

�2
0

) . (9)

The coupling constant gch for a scalar chiral field is determined
from the NNπ coupling constant through

g2
ch

4π
=

(
3

5

)2
g2

πNN

4π

m2
u,d

m2
N

, (10)

and flavor SU(3) symmetry is assumed. The other symbols in
these expressions have their usual meanings.

B. Quark delocalization color screening model

The Hamiltonian of the QDCSM is the same as that of the
chiral quark model but with two modifications [10,11,27]:
First, there is no σ -meson exchange in the QDCSM, and
second, the screened color confinement is used between quark
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pairs that reside in different baryon orbits. That is,

V C
ij =

⎧⎪⎪⎨⎪⎪⎩
−acλ

c
i λ

c
j

(
r2
ij + v0

)
if i, j is in the same
baryon orbit,

−acλ
c
i λ

c
j

(
1−e

−µij r2
ij

µij
+ v0

)
otherwise.

(11)

The color screening constant µij in Eq. (11) is determined
by fitting the deuteron properties, NN scattering phase shifts,
and N� and N� scattering cross sections, respectively, µuu =
1.20, µus = 0.30, and µss = 0.08, satisfying the relation
µ2

us = µuuµss .
The quark delocalization in the QDCSM is realized by

replacing the left- (right-) centered single Gaussian functions,
the single-particle orbital wave function in the usual quark
cluster model,

φα(Si) =
(

1

πb2

) 3
4

e
− (r−Si /2)2

2b2 ,

(12)

φβ(−Si) =
(

1

πb2

) 3
4

e
− (r+Si /2)2

2b2

with delocalized ones,

ψα(Si , ε) = [φα(Si) + εφα(−Si)] /N (ε),

ψβ(−Si , ε) = [φβ(−Si) + εφβ(Si)]/N (ε), (13)

N (ε) =
√

1 + ε2 + 2εe−S2
i /4b2

.

The delocalization parameter ε(Si) is determined by the
dynamics of the quark system rather than adjusted parameters.
In this way, the system can choose its most favorable
configuration through its own dynamics in a larger Hilbert
space.

The parameters of the two models are given in Table I. The
calculated baryon masses in comparison with experimental
values are shown in Table II.

TABLE I. The parameters of the two models studied: mπ =
0.7 fm−1, mk = 2.51 fm−1, mη = 2.77 fm−1, mσ = 3.42 fm−1;
�π = 4.2 fm−1, �k = 5.2 fm−1, �η = 5.2 fm−1, �σ = 4.2 fm−1;
g2

ch/(4π ) = 0.54; θp = −15◦.

Model QDCSM ChQM

State b (fm) 0.6 0.518
mu (MeV) 313 313
md (MeV) 313 313
ms (MeV) 539 573

Confinement ac (MeV) 18.5283 48.59
µuu 1.20 –
µus 0.30 –
µss 0.08 –
v0 (MeV) −0.3333 −1.2145

OGE α0 0.7089 0.5101
�0 (fm−1) 1.7225 1.5250
µ0 (MeV) 445.8512 445.8080

TABLE II. The masses of ground-state baryons (in MeV).

N � � � �∗ � �∗ �

QDCSM 939 1232 1118 1224 1358 1365 1499 1654
ChQM 939 1232 1124 1238 1360 1374 1496 1642
Expt. 939 1232 1116 1193 1385 1318 1533 1672

C. The calculation method

To calculate the baryon-baryon scattering phase shifts, the
well-developed RGM is used. The details of the RGM can be
found in Refs. [30,31]. Here only the necessary equations
and the appropriate treatment of the reduced mass of two
baryons are given. In the RGM, the multiquark wave function
is approximated by the cluster wave function

ψ(ξ 1, ξ 2, R) = Aφ(ξ 1)φ(ξ 2)χ (R),

where ξ i , i = 1, 2 are the internal coordinates of quark cluster
1 and 2 and R is the coordinate of the relative motion of two
quark clusters. The internal motions of clusters are frozen, and
the relative motion wave function χ (R) satisfies the following
RGM equation:∫

H (R′′, R′)χ (R′) dR′ = E

∫
N (R′′, R′)χ (R′) dR′, (14)

where{
H (R′′, R′)
N (R′′, R′)

}
=

〈
A[φ1φ2δ(R − R′′)]

×
∣∣∣∣{H

1

}∣∣∣∣A[φ1φ2δ(R − R′)]
〉
. (15)

A = 1 + A′ is the antisymmetrization operator and has
the properties AH = HA, A2 = A. With these properties,
the RGM equation can be written as an integrodifferential
equation:[∇2

R′′

2µ
− V D(R′′) + Ec.m.

]
χ (R′′) =

∫
WL(R′′, R′)χ (R′) dR′,

(16)

where Ec.m. = E − Eint is the kinetic energy of the relative
motion, and WL is the whole exchange kernel,

WL(R′′, R′) = HE(R′′, R′) − ENE(R′′, R′), (17)

where the exchange kernels of Hamiltonian and overlap are
defined as

HE(R′′, R′) = 〈φ1φ2δ(R − R′′)|H |A′[φ1φ2δ(R − R′)]〉,
(18)

NE(R′′, R′) = 〈φ1φ2δ(R − R′′)|A′|φ1φ2δ(R − R′)〉.
In Eq. (16), the reduced mass µ, which is obtained by
decomposing the kinetic energies of six quarks into internal
relative motion and center-of-mass parts, is generally not the
same as the experimental one, which is the reduced mass of two
baryons. In order to fit to the scattering kinematics, a prescrip-
tion [35] has to be introduced, i.e., multiplying all the kinetic
terms in Eq. (16) by µ/µexp, with µexp being the experimental
reduced mass, and defining the physical relative motion energy
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FIG. 1. The N� D-wave phase shifts with I, J = 1/2, 3. 2cc
represents ��∗ and N� channel coupling.

Ẽc.m. as E − E
exp
int , with E

exp
int as the sum of two experimental

masses of two baryons. Then the RGM equation to be solved is[ ∇2
R′′

2µexp

− V D(R′′) + Ẽc.m.

]
χ (R′′)

=
∫

W̃L(R′′, R′)χ (R′) dR′, (19)

where W̃L means that the kinetic kernel in it is multiplied by
the factor µ/µexp.

III. RESULTS AND DISCUSSION

The baryon-baryon scattering that is accessible through
experiments requires that the baryons are strong-interaction-
stable baryons, i.e., octet baryons and �. So in the present
calculation, the baryons in the initial state of scattering are
limited to octet baryons and �. Two quark models have

FIG. 2. The N� D-wave phase shifts with I, J = 1/2, 3. 2cc
represents ��∗ and N� channel coupling.

FIG. 3. The N�∗ D-wave phase shifts with I, J = 1/2, 3. 2cc
represents ��∗ and N�∗ channel coupling.

been successfully applied to describe the YN scattering cross
sections [27,35]. In this work, we extend the calculation
to other baryon channels. From the previous bound-state
calculation [36], there is no octet-octet dibaryon state in the two
quark models used here, and there are several octet-decuplet
and decuplet-decuplet dibaryons. These dibaryons should
appear as resonances in the corresponding octet-octet baryons’
S- or D-wave scattering channels and acquire finite widths. In
addition, the off-shell widths of decuplet baryons should also
be considered if they are included in the dibaryon resonances.
A simple estimation of the off-shell width for the bound
unstable baryons is used in this calculation [31].

Among all channels calculated in this paper, the two
models give essentially consistent results. In some sense,
the results are not dependent on the details of models, and
it also serves as a further test of the equivalence of two
mechanisms for intermediate-range attraction. The general
features of the calculated results are as follows. First, in
the S-wave baryon-baryon scattering, there is no resonance
occurring, similar to NN scattering. To save space, the detailed
results of S-wave baryon-baryon scattering are not shown in
this paper. Second, coupling to open D-wave baryon-baryon
channels, the energies of bound states are pushed down a little,
which means that the mass shift of the bound state is dominated
by the open D-wave scattering states above the energy of
the stand-alone bound state. The results are different from

TABLE III. The masses and widths of state S, I, J = −1, 1/2, 3
in MeV. �bs is the width contributed by decuplet baryons � and �∗

in the bound state. The threshold of ��∗ is 2617 MeV.

Coupled channels QDCSM ChQM

M � �bs M � �bs

��∗ 2446 – – 2539 – –
��∗-N� 2444 8.1 36.5 2538 12.2 101.0
��∗-N� 2444 3.2 31.6 2538 4.9 88.3
��∗-N�∗ 2444 0.2 32.2 2538 0.5 78.9
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FIG. 4. The N� D-wave phase shifts with I, J = 1/2, 3.

those of NN scattering [31]. Third, the S-wave bound states
decay to open D-wave baryon-baryon channels only through
tensor interaction, so the decaying widths are generally small.
However, the off-shell widths of decuplet baryons will greatly
increase the total width of the dibaryon candidates. Here a
simple formula [31,37] is used to calculate the off-shell widths
of decuplet baryons. To do a systematic search of dibaryons, a
crude estimate of the width of the dibaryon states is enough. To
take into account the dynamical effect of the unstable particles
in RGM, some serious prescriptions [38] should be used; these
are left for further study. In the following, we present the results
in order of increasing strangeness.

(i) S = −1. The state ��∗ (I, J = 1/2, 3) is a good
dibaryon candidate with large binding energy in the two quark
models. The possible decay channels are N�, N�, N�∗,
and ��. Because the mass of the dibaryon is lower than the
threshold of ��, the process ��∗ → �� is forbidden. To
find the width of the dibaryon, we calculate the scattering phase
shifts of various possible scattering channels coupling to ��∗.

TABLE IV. The mass and width of state S, I, J = −2, 0, 2 in
MeV. �bs is the width contributed by the decuplet baryons in the
bound state. The thresholds of the three channels N�∗, ��∗, and
�∗�∗ are 2472, 2578, and 2770 MeV, respectively.

Coupling channels QDCSM ChQM

M � �bs M � �bs

N�∗ 2430 – – 2418 –
��∗ 2531 – – 2553 –
�∗�∗ 2611 – – 2685 –
N�∗-��∗-�∗�∗ 2425 – – 2407 –
N�∗-�� 2428 0.5 8.3 2416 1.0 7.4
��∗-�� 2531 0.01 23.0 2551 9.0 24.5
�∗�∗-�� 2610 6.0 23.6 2683 8.7 53.0
N�∗-��∗-�∗�∗-�� 2424 0.1 7.7 2407 0.3 6.5
N�∗-N� 2429 3.8 8.5 2416 3.9 7.5
��∗-N� 2531 0.04 23.5 2552 0.2 25.5
�∗�∗-N� 2610 2.5 24.2 2683 2.2 55.0
N�∗-��∗-�∗�∗-N� 2423 3.3 7.9 2404 2.8 6.2

FIG. 5. The �� D-wave phase shifts with I, J = 0, 2. 2cc(a),
2cc(b), and 2cc(c) stand for �� coupling to N�∗, ��∗, and �∗�∗,
respectively. The four-channels coupling is denoted by 4cc.

Figures 1–3 show the results, and Table III gives the energy
shifts and the decay widths of the dibaryon. The phase shifts
clearly show a narrow resonance. Figure 1 shows the D-wave
phase shifts of N� scattering. From the shape of the resonance,
the mass and the decay width of the dibaryon are obtained as
2444 and 8 MeV in the QDCSM and 2538 and 12 MeV in the
ChQM. The small width is obviously due to tensor coupling.
In comparison with the single ��∗ channel calculation, the
mass of the dibaryon is pushed down a little bit (1–2 MeV).
Figures 2 and 3 show the D-wave phase shifts of N� and
N�∗ scattering, respectively. The locations of the resonance
are the same as those of N� scattering. Summing up the three
scattering channel results, one finds that the decay width of
this dibaryon is about 11 MeV in the QDCSM or 17 MeV
in the ChQM. By taking into account the off-shell width
�bs of � and �∗ themselves [31,37], the total width of this
dibaryon is 48 MeV in the QDCSM or 118 MeV in the ChQM

FIG. 6. The N� D-wave phase shifts with I, J = 0, 2. 2cc(a),
2cc(b), and 2cc(c) stand for N� coupling to N�∗, ��∗, and �∗�∗,
respectively. The four-channel coupling is denoted by 4cc.
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TABLE V. The mass and width of state S, I, J = −2, 1, 3
in MeV. The theoretical thresholds of the two channels ��∗ and
�∗�∗ are 2765 and 2770 MeV, respectively.

Coupling channels QDCSM ChQM

M � �bs M � �bs

��∗ 2642 – – 2702 – –
�∗�∗ 2647 – – nba – –
��∗-�∗�∗ 2629 – – 2662 – –
��∗-N� 2642 0.01 55.2 2700 6.3 101.9
�∗�∗-N� 2645 3.8 37.6 nrb – –
��∗-�∗�∗-N� 2627 2.4 47.5 2661 7.8 72.6
��∗-N�∗ 2641 0.3 52.7 2701 0.5 96.6
�∗�∗-N�∗ 2646 0.08 36.0 nr – –
��∗-�∗�∗-N�∗ 2628 0.2 45.5 2662 0.3 68.7
��∗-�� 2642 0.08 55.0 2701 0.3 93.0
�∗�∗-�� 2646 0.02 37.0 nr – –
��∗-�∗�∗-�� 2628 0.03 48.5 2662 0.1 69.8
��∗-�� 2641 0.3 47.5 2701 0.4 86.3
�∗�∗-�� 2646 0.04 31.8 nr – –
��∗-�∗�∗-�� 2628 0.2 41.6 2662 0.2 62.1
��∗-�� 2641 3.5 47.6 2701 3.3 88.2
�∗�∗-�� 2645 0.06 31.8 nr – –
��∗-�∗�∗-�� 2628 4.7 41.7 2661 6.6 62.1
��∗-��∗ 2642 0.002 53.8 2701 0.011 92.8
�∗�∗-��∗ 2647 0.02 36.1 nr – –
��∗-�∗�∗-��∗ 2628 0.0006 47.6 2662 0.002 68.5

aUnbound.
bNo resonance in these coupled channels.

(taking the largest �bs). The large width in ChQM is due
to the small binding energy of the dibaryon with respect to
the theoretical threshold of 2617 MeV. Coupling all these
channels, ��∗, N�,N�, and N�∗, we get almost the same
results as those of the ��∗-N� channel coupling (see Fig 4).

J-PARC will have its � beam soon, and a �N scattering
extending to this resonance energy region is expected.

FIG. 7. The D-wave N� phase shifts with I, J = 1, 3. 2cc(a)
and 2cc(b) stand for N� coupling to ��∗ and �∗�∗, respectively,
and the three-channel coupling is denoted by 3cc.

FIG. 8. The D-wave �� phase shifts with I, J = 1, 3. 2cc(a)
and 2cc(b) stand for �� coupling to ��∗ and �∗�∗, respectively,
and the three-channel coupling is denoted by 3cc.

Because the octet-decuplet baryon (except for �) scattering
is not accessible, in the following we do not present the figures
for octet-decuplet baryon scattering.

(ii) S = −2. The promising dibaryon candidate is the
state with quantum numbers I, J = 0, 2. The state includes
three channels, N�∗, ��∗, and �∗�∗. Table IV gives
some information about this state. According to its quantum
numbers, this state can couple to octet-octet baryon channels
��, ��, and N� by tensor interaction. Because the mass of
the dibaryon is lower than the �� threshold, the decay to ��

is excluded. The D-wave scattering phase shifts of the ��

and N� channels are shown in Figs. 5 and 6, respectively.
In the QDCSM, the N�∗ single-channel calculation gives
a bound-state mass of 2430 MeV, which is below the N�∗
threshold. Coupling to the open D-wave �� channel pushes
the state down to 2428 MeV with a narrow width of 0.5 MeV.
Similarly, ��∗ or �∗�∗ appears as a resonance in the ��

FIG. 9. The D-wave �� phase shifts with I, J = 1, 3. 2cc(a)
and 2cc(b) stand for �� coupling to ��∗ and �∗�∗, respectively,
and the three-channel coupling is denoted by 3cc.
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TABLE VI. The mass and width of state S, I, J = −3, 1/2, 2 in MeV. The theoretical thresholds of the five channels N�, ��∗, ��∗,
��∗, and �∗�∗ are 2611, 2726, 2703, 2649, and 2918 MeV, respectively.

Coupling channels QDCSM ChQM

M � �bs M � �bs

��∗ 2722 – – 2724 – –
��∗ 2697 – – 2712 – –
��∗ nba – – 2619 – –
�∗�∗ 2802 – – 2813 – –
N� nb – – 2558 – –
N�-��∗-��∗-��∗- �∗�∗ 2549 – – 2528 – –
��∗-�� 2721 1.7 8.9 2722 5.9 7.9
��∗-�� 2696 1.0 29.0 2707 1.7 30.1
��∗-�� nrb – – 2619 0.2 9.6
�∗�∗-�� 2802 4.4 24.6 2510 8.5 28.9
N�-�� 2592 0.01 0.0 2557 0.2 0.0
N�-��∗-��∗-��∗- �∗�∗-�� 2547 0.004 3.9 2528 0.1 1.7

aUnbound.
bNo resonance in these coupled channels.

D-wave scattering phase shifts with a narrow width. Also,
the coupling pushes down the energy of the dibaryon a little.
The N�∗, ��∗, and �∗�∗ three-bound-state coupling pushes
the lowest state down to 2425 MeV. The open channel, D-wave
�� coupling pushes down the state 1 MeV further. However,
except for the lowest state N�∗, other resonances that might
be related to excited states ��∗ and �∗�∗ do not clearly show
up in the �� D-wave phase shifts in the four-channel coupling
calculation. There is only a wavy motion around the energy
of the second state, ��∗. The reason may be the opening of
N�∗, which pushes up those otherwise excited resonances.

The phase-shift calculation of D-wave N� gives similar re-
sults to those of the �� calculation. So the dibaryon resonance
has almost the same behavior on different scattering channels.
Summing up the two decay widths, we have that the dibaryon
state with I, J = 0, 2 has a total decay width of 3.4 MeV,

FIG. 10. The D-wave �� phase shifts with I, J = 1/2, 2 in
QDCSM. 2cc(a), 2cc(b), 2cc(c), 2cc(d), and 2cc(e) stand for ��

coupling to ��∗, ��∗, ��∗, �∗�∗, and N�. The six-channel
coupling is denoted by 6cc.

and the width increases to 11 MeV after taking into account
the off-shell width of �∗.

In the ChQM, we obtained almost the same results as in the
QDCSM. So it is a promising approach to look for a dibaryon
state with quantum numbers I, J = 0, 2 in the scattering of
N� with the J-PARC � beam in the near future.

In the same strangeness sector, the states with I, J = 1, 3
are also interesting. In the QDCSM, there are two decuplet-
decuplet bound states ��∗ and �∗�∗, whereas there is only
one bound state ��∗ in the ChQM. The results are shown in
Table V and Figs. 7–9. The possible two-body decay channels
are N�, ��, ��, N�∗, ��, and ��∗. The situation
is the same as before: the bound states appear as narrow
resonances after coupling to the D-wave open channels by
tensor interaction, and the energies are pushed down a little.
From Figs. 7–9, we find that there is only one resonance
in the octet-octet baryon scattering, although there are two
bound states in the QDCSM. The reason is that the channel
coupling pushes the higher state above the threshold. The cusps

FIG. 11. Same as Fig. 10 in the ChQM.
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FIG. 12. The D-wave �� phase shifts with I, J = 1/2, 2,
including N� and �∗�∗ channels.

in the curves denoted by 2cc(b) are a remnant of �∗�∗ in the
ChQM. So these two quark models both support that there
is a I, J = 1, 3 dibaryon resonance with a mass of around
2627 (2661) MeV and a width of around 50 (90) MeV in the
QDCSM (ChQM).

The �N scattering measurement, if it is done at J-PARC,
should be extended to this resonance energy region.

(iii) S = −3. N� is an interesting state in this section.
It has been proposed that N� is a good dibaryon candidate
[5,7]. This state can serve as a test of the flavor-dependent
q-q interaction due to Goldstone-boson exchange and due to
quark delocalization, because there is no common flavor quark
between N and � and so no quark exchange between these two
baryons. In this calculation, the single-channel approximation
gives three bound states, ��∗, ��∗, and �∗�∗, in the
QDCSM and five bound states, N�, ��∗, ��∗, ��∗, and
�∗�∗, in the ChQM with quantum numbers I, J = 1/2, 2.
In the QDCSM, the adiabatic calculation of N� with the

TABLE VII. The mass and width of state S, I, J = −3, 3/2, 3,
in MeV. The theoretical thresholds of the two channels �∗�∗ and ��

are 2857 and 2886 MeV in the QDCSM and 2856 and 2874 MeV in
the ChQM, respectively.

Coupling channels QDCSM ChQM

M � �bs M � �bs

�∗�∗ 2822 – – 2836 – –
�� 2836 – – 2851 – –
�∗�∗-�� 2797 – – 2791 – –
�∗�∗-�� 2821 2.9 28.2 2836 4.8 35.0
��-�� 2835 2.7 68.3 2849 4.7 87.7
�∗�∗-��-�� 2795 2.3 47.5 2788 6.1 52.4
�∗�∗-�∗� 2821 0.07 30.1 2837 0.2 37.2
��-�∗� 2835 0.004 70.9 2849 0.01 90.8
�∗�∗-��-�∗� 2796 0.02 51.4 2790 0.03 56.7
�∗�∗-��∗ 2821 0.001 30.3 2838 0.001 37.2
��-��∗ 2835 0.009 71.0 2850 0.009 92.2
�∗�∗-��-��∗ 2796 0.02 52.4 2791 0.01 57.7

new color screening parameter shows that there is only a
weak attraction (∼12 MeV) between N and �. The dynamical
calculation did not yield a bound N� state. However, coupling
to the open-channel D-wave �� pushes the N� state below
the threshold to form a resonance at 2592 MeV with a very
narrow width of 10 keV. The results are shown in Table VI and
Figs. 10 and 11. By coupling all the states together, only one
resonance appears at 2547 MeV, and a wavy motion appears
around 2700 MeV.

A methodology study of the channel coupling phase-shift
calculation has been done with these channels. We first do
a three-channel, ��, N�, �∗�∗, coupling calculation. The
energy of N� is significantly smaller than that of �∗�∗, and
so the coupling between these two channels is rather weak.
The result is shown in Fig. 12, which shows that there are two
resonances in the �� D-wave phase shifts, located at 2588
and 2797 MeV, respectively. In comparison with N�-��,
�∗�∗-�� two-channel calculations, there are 2- and 5-MeV
changes for N� and �∗�∗, respectively. The decay widths
of the two resonances, ∼10 keV and 5 MeV, also show that
these two resonances come from N� and �∗�∗. However, a
six-channel calculation does not show more than one complete
resonance. To check this multiresonance behavior, the same
calculation has been done for the ChQM. We obtain the same
results (see Table VI and Figs. 11 and 12). Usually the lowest
state will be pushed down by more channels coupling, but
whether the other states move up or down is dependent on the
details of these coupling channels. Here the other states are
pushed up from three- to six-channel coupling.

The conclusion of these two quark model calculations is
the existence of a very narrow (of width less than 4 MeV)
I, J = 1/2, 2 dibaryon resonance with a mass of 2547 MeV
(QDCSM) or 2528 MeV (ChQM). This conclusion is different
from that of Oka [4] and in agreement with Silvestre-Brac and
Leandri [39] and our previous results [5,7].

This resonance might be detected in relativistic heavy
ion collisions by the existing RHIC and COMPAS detectors
through the reconstruction of the �� vertex mass.

FIG. 13. The D-wave �� phase shifts with I, J = 3/2, 3. 2cc(a)
and 2cc(b) stand for �� coupling to �∗�∗ and ��, respectively, and
the three-channel coupling is denoted by 3cc.
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TABLE VIII. The mass and width of state S, I, J = −5, 1/2, 0
in MeV. The theoretical threshold of channel �∗� is 3153 MeV in
the QDCSM and 3138 MeV in the ChQM, respectively.

Coupling channels QDCSM ChQM

M � �bs M � �bs

�∗� nba – – 3097 – –
�∗�-�� nrb – – 3095 0.2 5.3

aUnbound.
bNo resonance in these coupled channels.

In the same strangeness sector, the system I, J = 3/2, 3
is also interesting. There are two decuplet-decuplet channels:
�∗�∗ and ��. The calculated results are shown in Table VII,
and the corresponding octet-octet baryons �� scattering phase
shifts are shown in Fig. 13. The QDCSM suggests a dibaryon
resonance with a mass of 2795 MeV and a width of 50 MeV,
and the ChQM gives the resonance at 2788 MeV with a width
of about 60 MeV. If the �� vertex mass is successfully
reconstructed at RHIC and COMPAS, then it is interesting
to reconstruct the �� vertex mass.

(iv) S = −4. In this section, neither the QDCSM nor the
ChQM have a dibaryon resonance.

(v) S = −5. For the system I, J = 1/2, 0, there is a mild
attraction between �∗ and �. In the QDCSM, the attraction
(∼28 MeV) is not strong enough to bind the two baryons, while
in the ChQM the attraction (∼40 MeV) is just enough to form
a bound state. Since the spin is zero, the decuplet-decuplet
state �∗� can only couple to �� through tensor interaction.
In the D-wave phase shifts of �� scattering, the state �∗�
appears as a cusp at the threshold of �∗� in the QDCSM and
appears as a narrow (with a width of 0.2 MeV) resonance at
3095 MeV in the ChQM (see Table VIII and Fig. 14). Taking
into account the off-shell width of �∗ (�bs = 5.3 MeV), one
finds that the width of the state �∗� is about 5.5 MeV.

(vi) S = −6. The di-� with I, J = 0, 0 was reported as a
strong-interaction-stable state [36]. There is no other dibaryon
resonance in this sector.

FIG. 14. The D-wave �� phase shifts with I, J = 1/2, 0. 2cc
denotes the coupling �∗�-��.

IV. CONCLUSION

In this paper, we performed a channel coupling scattering
calculation with the inclusion of possible dibaryon states in the
framework of RGM by means of two constituent quark models,
in which the baryons are treated as three-quark clusters.
Because the RGM formalism cannot reproduce the measured
baryon masses, the RGM must be modified to fit the scattering
kinematics. A simple prescription, which has been used in
other calculations, is applied.

The two quark models have been successfully applied to
fit NN scattering phase shifts, deuteron properties, N� and
N� scattering, and reaction cross sections with the unified
parameters. Even though they have different mechanisms
of intermediate-range attraction, the two quark models give
almost the same dibaryon resonances. This is a further check
of the equivalence of the intermediate-range attraction mech-
anism, the quark delocalization color screening mechanism
in the QDCSM and the σ meson exchange in the ChQM.
Before coupling to the open scattering channel the dibaryon
state appears as a bound state. After coupling it appears as
a resonance in the corresponding baryon-baryon scattering.
The location of the resonance is generally different from the
energy of the stand-alone bound state due to the well-known
energy shift. In the case of the S-wave bound-state coupling
to the S-wave baryon-baryon scattering channel, the energy
shifts will be as large as 200 or 300 MeV [31]. In the
present calculation, all couplings are due to tensor interaction,
the S-wave bound states coupling to D-wave baryon-baryon
scattering channels. So the energy shifts are small, usually a
few MeV. In addition, these resonances will acquire a small
width (a few MeV or less). However, as we are dealing
with strong-interaction-unstable baryons, the decay width of
these baryons should be taken into account. We use a simple
estimation developed in [31] to obtain the off-shell width due
to binding. The widths of dibaryon resonances usually increase
to tens of MeV.

In our calculation we found an interesting phenomenon: For
a fixed bound state, the coupling of different baryon-baryon
scattering channels give almost the same resonance energy. If
there are several bound states with the same quantum numbers,
the scattering channel coupling generally only generates one
complete resonance, the lowest dibaryon state. Other states do
not appear as resonances in the baryon-baryon scattering phase
shifts due to the interaction between these coupling channels.
We are not sure if this is a special case for our studied channels.
Further study is needed.

Based on our calculation, we suggest that the following
dibaryon resonances are worth searching for through YN

scattering when the hyperon beams are available or through
reconstruction of the multistrangeness vertex masses with data
already stored in the detectors of the relativistic heavy ion
collisions: (1) S, I, J = −1, 1/2, 3, with a mass of
2440–2540 MeV and a width of 48–118 MeV through N�

or N� scattering; (2) S, I, J = −2, 0, 2, with a mass of
2400–2430 MeV and width of 10–11 MeV through N�

scattering; (3) S, I, J = −2, 1, 3, with a mass of 2620–
2660 MeV and a width of 50–90 MeV through N� scattering;
(4) S, I, J = −3, 1/2, 2, with a mass of 2528–2547 MeV and a
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width of 2–4 MeV through �� mass vertex reconstruction; and
(5) S, I, J = −3, 3/2, 3, with a mass of 2788–2795 MeV and a
width of 50–60 MeV through �� vertex mass reconstruction.
These two quark models have been fitted to vast NN data and a
small amount of N�, N� scattering data. So these predictions
are more reliable for low-strangeness channels.
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